
An Airline Profit Management Model with  
Overbooking and No-Shows 

Elias Olivares-Benitez1 a, Ana Paula Orozco Esparza2, Juan Orejel1 b and Catya Zuniga3 c 
1Faculty of Engineering, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico 

2Faculty of Business Administration and Economics, European University Viadrina, Frankfurt (Oder), Germany 
3Faculty of Technology, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands 

Keywords: Airline Profit, Overbooking, No-Show, Seat Inventory, Airplane Selection. 

Abstract: This research presents a model for airline profit optimization considering information such as demand 
forecasts, seat inventory, operational costs, overbooking penalties, expected no-shows, and time-dependent 
fare classes. The main decisions in the model are the selection of the aircraft, the number of seats sold per 
fare, including overbooking, and the number of denied seats. The model incorporates probabilistic information, 
like the expected demand and the expected proportion of no-shows. The model is constructed as a 
deterministic mixed-integer program. Some data was estimated using information acquired from different 
industry sources, and some data was set with reasonable estimations. A factorial experiment was designed to 
understand the importance of different parameters. The input variables were the overbooking compensation 
penalty, the no-show probabilities per fare and time block, and the seat demand. Using a statistical analysis, 
it was determined that the no-show estimation has the most significant impact on the total revenue, and the 
demand forecast after that. These results highlight the importance of precise estimations to increase the 
airline’s profit. 

1 INTRODUCTION 

The airline industry is a vital engine for the global 
economy, facilitating international trade, tourism, and 
cultural exchange. By connecting countries and 
fostering stronger diplomatic and economic ties, the 
industry plays a pivotal role in enabling both the 
movement of people and goods across borders. 
Airlines act as critical links in the global supply chain, 
ensuring the smooth transport of essential goods and 
services. This role becomes especially important in an 
increasingly interconnected world, where efficient air 
transportation can bolster trade partnerships and 
enhance supply chain resilience. 

Managing flight operations in such a complex, 
globalized industry requires airlines to consider a 
wide range of factors. Key variables like flight 
schedules, passenger capacity, routes, and market 
demand must be balanced to ensure efficient and 
profitable operations. The rapid evolution of the 
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market has driven the adoption of modern 
technologies and sophisticated frameworks. This shift 
has allowed airlines to not only streamline their 
operations but also develop advanced pricing 
strategies to remain competitive in a crowded market.  

One of the central techniques used to manage this 
complexity is profit management, which optimizes 
the relationship between supply and demand by 
adjusting ticket prices, seat availability, and 
operational expenses based on real-time market 
conditions. Some parameters that must be considered 
for the balance of ticket pricing and seat allocation are 
customer segmentation, seat capacity, and the 
handling of cancellations and no-shows. In 
anticipation of no-shows and last-minute 
cancellations, airlines often sell more tickets than the 
actual number of available seats. This approach, 
while beneficial in maximizing revenue, introduces a 
risk of penalties when too many passengers show up 
and there are insufficient seats. However, research 
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shows that the revenue generated from overbooking 
usually outweighs the costs associated with 
compensating passengers who are denied boarding 
(Rothstein, 1985; Ely et al., 2017). This practice 
exemplifies the delicate balancing act airlines must 
perform between profitability and customer service. 

The effective management of overbooking 
requires sophisticated modeling, especially when 
cancellations and no-shows are factored in. Airlines 
often use data-driven methods, relying on historical 
data and forecasting tools to predict demand and 
cancellations accurately. Studies such as those by 
(Subramanian et al., 1999) and (Minga et al., 2003) 
highlight various models that airlines employ to 
manage these uncertainties. By optimizing booking 
limits based on real-time and historical data, airlines 
can minimize losses while ensuring they meet 
customer demand. Algorithms and adaptive methods, 
like those developed by (Ball and Queyranne, 2009), 
have proven effective in refining demand estimates 
and setting optimal booking limits. 

The application of linear programming has been a 
common thread across numerous studies in the airline 
sector, emphasizing its importance in optimizing both 
passenger and cargo operations. (Belobaba, 1987) 
explored fare segmentation, showing how airlines 
adjust ticket pricing based on advance bookings. This 
segmentation allows airlines to offer lower fares to 
early bookers while limiting the number of tickets in 
each fare class to prevent financial losses. (Belobaba 
et al., 2009) also noted that over 30% of denied 
boarding requests result from passengers seeking 
alternatives after being denied a seat, reflecting the 
complexity of managing demand and ticket sales. 

(Kunnumkal et al., 2012) delved into 
overbooking, a widespread practice where airlines 
sell more tickets than available seats, accounting for 
potential no-shows. They employed randomized 
linear programming to model overbooking scenarios 
and no-shows, providing a strategy that helps airlines 
maximize profits while minimizing the risk of unsold 
seats. Introducing an upper bound criterion in their 
research helps airlines determine the optimal 
overbooking levels, mitigating financial losses from 
customer no-shows. 

(Aydin et al., 2013) study some dynamic 
programming models for airline revenue 
management considering overbooking and no-shows. 
(Soleymanifar, 2019) addresses four constraints 
relevant to airline revenue management problem: 
flight cancellation, customer no-shows, overbooking, 
and refunding. They develop a linear program closely 
related to the dynamic program formulation of the 
problem, which is later used to approximate the 

optimal decision rule for rejecting or accepting 
customers. Although Dynamic Programming is the 
preferred approach used in the literature, there are 
some linear programming formulations close to the 
one proposed in this work in (Gaul and Winkler, 
2019), (Gaul and Winkler, 2019), and (Xiao et al., 
2024). 

In this research, we extend the model proposed by 
(Kunnumkal et al., 2012) and originally presented by 
(Bertsimas and Popescu, 2003) to incorporate some 
elements like the selection of the aircraft based on 
costs and capacities and an ethical control on the 
overbooking. We also present a sensitivity analysis 
with variations to a base instance to understand the 
significance of the parameters on the profit objective 
function. The main contributions of this paper are the 
inclusion of aircraft selection and ethical 
overbooking, along with the use of a design of 
experiments to study the significance of some 
parameters on the total profit. 

The structure of the rest of the paper is described 
next. The Methodology in Section 2 explains the 
description of the problem, the mathematical model 
proposed, and the data used for the case study. 
Section 3 describes the results of the base instance 
and the results of the sensitivity analysis using a 
design of experiments. Section 4 shows the main 
conclusions of the study and the proposed future 
work. 

2 METHODOLOGY 

In this problem, we have different types of aircrafts, 
with different capacities and operational costs. The 
seats of the aircraft are divided by fare classes, and 
each class has a fare that changes as time passes. Time 
is “discretized” as time blocks, with the main idea 
being that once the seats for a time block are sold, the 
price increases when the time block is closer to the 
departure time. Some important parameters 
independent of the decision-making are the 
compensation fee for denied boarding, the expected 
demand of seats for fare class and time block, the 
probability of no-shows for seats sold per time block 
and fare class. Other parameters, dependent on the 
decision-making are the fares for class and time 
block, the maximum portion of sold seats that show 
for check-in and are denied boarding, and the 
minimum capacity to cover for an aircraft to be 
operated. The variables are the seats sold, the denied 
boarding seats, both per aircraft, fare class, and time 
block, and the variable that determines the operation 
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of the aircraft. Following is shown the list of sets, 
parameters and variables. 
 

Sets: 
J Set of products (fare classes), j = 1, ..., n 
T Set of time blocks, t = 1, …, T 
I Set of aircrafts, i = 1, …, |I| 

Parameters: 
fijt  price of fare class j in aircraft i in time block t 
θij  penalty for denying boarding of fare class j in 

aircraft i 
ui  fixed cost for operating flight in aircraft i 
qjt  show probability for a seat (passenger) in fare 

class j sold in time block t 
cij  seat capacity for fare class j in aircraft i 
pjt  expected demand for fare class j sold in time 

block t 
α maximum proportion of sold (shown) seats 

with denied boarding 
β  minimum capacity utilization to operate one 

aircraft 
Variables: 

yijt  seats in aircraft i for fare class j sold in time 
block t 

wijt  denied boardings (seats) in aircraft i for fare 
class j sold in time block t 

vi  binary variable, equal to 1 if aircraft i is 
operated, equal to 0 otherwise 

 

With these variables, a mixed-integer program is 
constructed to maximize the profit with the following 
objective function and constraints: 

 𝑀𝑎𝑥  ൣ𝑓௧𝑦௧ − 𝜃𝑤௧൧∈ூ,∈,  ௧∈் −  𝑢∈ூ 𝑣        
(1)

Subject to: 
  𝑞௧𝑦௧ − 𝑤௧௧∈் ≤ 𝑐𝑣, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

(2) 𝑦௧∈ூ ≤ 𝑝௧, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 
(3)𝑤௧ ≤ 𝛼𝑞௧𝑦௧,  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (4) 𝑞௧𝑦௧ − 𝑤௧∈,௧∈் ≥ ቌ𝛽  𝑐∈ ቍ 𝑣, ∀𝑖 ∈ 𝐼
(5)𝑦௧, 𝑤௧ ∈ 𝑍ஹ,  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (6) 𝑣 ∈ ሼ0,1ሽ , ∀𝑖 ∈ 𝐼 (7)

 

In this model, the objective function (1) 
determined that the profit is the sum of the sold seats 
minus the penalty for denied boarding, all minus the 
operational cost of selecting certain aircraft for the 

flight. Constraints (2) are the constraints for not 
exceeding the seat capacity per aircraft. Constraints 
(3) establish that the number of sold seats does not 
exceed the demand. Constraints (4) determine that the 
seats (passengers) that show for check-in whose 
boarding is denied do not exceed a certain proportion 
of the seats sold, controlled by parameter α. 
Constraints (5) help to ensure that a certain capacity 
of the aircraft is sold to operate the flight. Constraints 
(6) and (7) are the domains for the integer and binary 
variables. 

The model considers both overbooking and no-
shows, with constraints ensuring capacity limits are 
respected. The number of seats denied boarding 
should not exceed a certain percentage of total sales. 
The introduction of binary variables accounts for 
whether a flight will operate based on a threshold 
capacity to ensure flights only operate when 
economically viable. This constraint prevents 
revenue losses due to low-demand flights. 

Even after accounting for no-shows, seat sales 
may exceed the available capacity on certain flights, 
forcing airlines to deny boarding to some passengers. 
This scenario suggests collaboration between airlines 
to accommodate denied passengers. If the 
compensation fee for denied boarding is too cheap, 
there is an incentive for a high overbooking. In this 
case, the “ethical selling” constraint in Equation (4) 
prevents an excess of boarding denials. 

The model was programmed in AMPL, using 
Gurobi 10.0.1 as the optimizer, and solved in a laptop 
with Intel Core i7 CPU at 2.8GHz with 32 Gb RAM. 
An instance was constructed based on an example 
flight. A one-leg-based approach is adopted for 
simplicity, for the Frankfurt-Mexico City route. The 
flight can be done in 4 different aircraft with the 
capacities shown in Table 1. 

Table 1: Aircraft capacities per fare class. 

Aircraft Economy Economy Plus Business
Boeing 
747-8

244 32 80 

Airbus 
A320

96 48 - 

Embraer 
E-170

56 - 20 

Embraer 
E-175

60 8 20 

 

The fares for the flights for each aircraft and class 
are shown in Table 2.  
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Table 2: Fare per aircraft and class, in €. 

Aircraft Economy Economy Plus Business
Boeing 
747-8 

413 663 1288 

Airbus 
A320 

351 521 - 

Embraer 
E-170 

425 - 1159 

Embraer 
E-175 

339 389 1154 

 

The sale of seats was divided into three time 
blocks. The fare per class increases 50% from the first 
to the second time block, and it increases 70% from 
the first to the third block. The third block is closer to 
the departure time scheduled for the flight. The base 
compensation fee for denying boarding is the ticket 
fare plus 600 €. The operational costs for the flight in 
the different aircraft are estimated from information 
of (EUROCONTROL, 2023), shown in Table 3. 

Table 3: Operational costs, in €. 

Aircraft Operational cost
Boeing 747-8 189265
Airbus A320 105542

Embraer E-170 268065
Embraer E-175 105542

 

In the base instance, the demand was assumed the 
same as the available capacity per fare class. This 
demand was divided into a proportion of 30% for the 
first time block, 30% for the second time block, and 
40% for the third time block. The parameters 
determined by the decision maker were set to α = 0.1 
for the maximum seats with denied boarding, and β = 
0.7 for the minimum capacity threshold for using a 
certain aircraft. 

The proportion of “shows”, i.e., the passengers 
who bought a seat and who showed up to check-in at 
the airport or who did not cancel their purchase, is 
shown in Table 4. Since the fares are more expensive 
in the last time block, closer to the departure time, the 
proportion of no-shows is lower. 

Table 4: Proportion of “shows” for check-in. 

Fare class Time 
block 1 

Time 
block 2 

Time 
block 3

Economy 0.6 0.6 0.75
Economy Plus 0.7 0.7 0.85

Business 0.8 0.8 0.95
    
 

3 RESULTS 

For the base instance, the results are summarized in 
Table 5. Only the flight operated by the Boeing 747-
8 was selected. Table 5 shows the number of seats 
planned to be sold for this aircraft per fare class and 
time block. The behavior of the passengers is to 
consume the cheapest seats first, thus depleting the 
seats planned for sale in the first time block. Once 
those seats are sold, the fare is changed to the next 
time block, with a more expensive price. After the 
seats of this block are sold, the fare changes again, 
being more expensive closer to the departure time. 

Table 5: Seats sold per fare class and time block. 

Fare class Time 
block 1

Time 
block 2 

Time 
block 3

Economy 42 137 182
Economy Plus 0 15 17

Business 7 36 48

Because of the proportion of no-shows, even if the 
number of sold seats exceeds the capacity of the 
aircraft, there is no need to deny boarding because of 
the overbooking. The expected profit was 268197 € 
for this flight. When the demand is high, and more 
than one aircraft is selected for a flight, a negotiation 
with the airport may allow different flights operated 
with different aircrafts with a short difference in the 
departure times. 

A factorial experiment was designed to 
understand the impact of changes in some parameters. 
Three parameters were modified, the compensation 
fee for denying boarding to a sold seat, the no-show 
proportion per fare class and time block, and the 
expected demand. Table 6 shows the low and high 
levels for the compensation fee with respect to the 
base instance. These levels were explored because the 
base instance did not deny boarding to overbooked 
seats, and we wanted to know if the fee reduction may 
incentivize boarding denials. Table 7 shows the low 
and high levels for the “show” proportion. These 
levels were set to explore the effect of the variability 
in the no-shows. The high level is the combination of 
“high” for all the fare classes, and the same happens 
for the “low” level. Table 8 shows the low and high 
levels for the change of demand with respect to the 
base instance. These levels were set considering 
periods of high demand, like holidays and vacations. 
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Table 6: Low and high levels for the compensation fee. 

Level Change in the compensation fee
Low 25%Ticket price + 600EUR
High 50%Ticket price + 600EUR

Table 7: Low and high levels for the proportion of “shows” 
for check-in. 

Fare class Level Time 
block 1 

Time 
block 2 

Time 
block 3

Economy Low 0.55 0.55 0.70
High 0.65 0.65 0.80

Economy 
Plus 

Low 0.65 0.65 0.80
High 0.75 0.75 0.90

Business Low 0.75 0.75 0.90
High 0.85 0.85 1.00

Table 8: Low and high levels for the demand. 

Level Change in the demand
Low +40% in every period
High +70% in every period

 

Thus, a full factorial of 23 experiments was run. 
Table 9 summarizes the averages of the instances 
with the high and low levels of the compensation fee. 
Table 10 summarizes the averages of the instances 
with the high and low levels of the “show” rate. Table 
11 summarizes the averages of the instances with the 
high and low levels of demand. The output variables 
are: 
 Total profit;  
 %sale per fare class, i.e. the proportion of seats 

sold from the expected demand;  
 %denied per fare class, i.e. the proportions of 

denying boarding seats from the total of sold 
seats;  

 %average aircraft utilization, i.e. the proportion 
of seats used from the available capacity.;  

 

The results for some instances indicated that more 
than one aircraft should be selected. It becomes 
evident that this is necessary for periods of high 
demand where additional capacity is needed. In this 
case, the averages reported consider the accumulated 
quantities for all the aircraft selected.  

As can be observed, an increase in the 
compensation fee and the proportion of “shows” 
reduce the total profit. And a high demand increases 
the profit. In all the cases, the levels proposed 
generated some denied boarding seats. In all the 
cases, the aircraft utilization is above 99%. 

 
 
 
 

Table 9: Averages of instances with high and low levels of 
the compensation fee. 

Output variable Low level High level
Total profit 314841.96 308618.93

%sale Economy 76.22 72.26
%sale Economy 

Plus
80.88 77.03 

%sale Business 54.44 54.44
%denied 
Economy

3.48 0.34 

%denied 
Economy Plus

5.12 2.12 

%denied Business 7.91 7.91
%average aircraft 

utilization
99.95 99.88 

Table 10: Averages of instances with high and low levels of 
the show (no-show) levels. 

Output variable Low level High level
Total profit 348354.02 275106.87

%sale Economy 80.83 67.65
%sale Economy 

Plus
84.70 73.21 

%sale Business 57.39 51.48
%denied 
Economy

2.36 1.45 

%denied 
Economy Plus

3.37 3.87 

%denied Business 7.48 8.33
%average aircraft 

utilization
99.92 99.92 

Table 11: Averages of instances with high and low levels of 
the show (no-show) levels. 

Output variable Low level High level
Total profit 303622.76 319838.13

%sale Economy 80.99 67.49
%sale Economy 

Plus
86.20 71.71 

%sale Business 59.12 49.76
%denied 
Economy

1.05 2.76 

%denied 
Economy Plus

2.38 4.86 

%denied Business 7.98 7.83
%average aircraft 

utilization
99.87 99.97 

The results were analyzed statistically using an 
Analysis of Variance (ANOVA) assuming normal 
distributions of the output variables. The results are 
shown in Table 12.  
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Table 12: P-values for the ANOVA. 

Output 
variable 

Compensation 
fee 

“Shows” 
proportion 

Demand 

Total profit >0.05 0.008 0.038
%sale 

Economy 
>0.05 >0.05 >0.05 

%sale 
Economy 

Plus 

0.002 0.001 0.001 

%sale 
Business 

>0.05 <0.001 <0.001 

%denied 
Economy 

>0.05 >0.05 >0.05 

%denied 
Economy 

Plus 

0.022 >0.05 0.027 

%denied 
Business 

>0.05 <0.001 <0.001 

%average 
aircraft 

utilization 

0.021 >0.05 0.015 

 

The results obtained are mixed, but it can be 
observed that the no-shows and the demand have a 
significant impact on the Total profit and on the sales 
of the most expensive fare classes. 

4 CONCLUSIONS 

This study used a deterministic model approach to 
maximize total airline revenue, focusing primarily on 
overbooking, passenger no-shows, operating costs, 
demand, and capacity. The model also incorporated 
compensation fees for denying boarding, which 
influenced decision-making. The data estimated for 
this case study enabled a sensitivity analysis, which 
identified the parameters that significantly impact 
profit. After running the tests, it was determined that 
the compensation fee had minimal effect on profit, 
while show probability and demand were the most 
influential factors. Accurate demand forecasting and 
no-show rates are crucial for airlines to ensure 
positive profit. The main contributions of this paper 
are the inclusion of aircraft selection and ethical 
overbooking in a previously published optimization 
model, along with the use of a design of experiments 
to study the significance of some parameters on the 
total profit. 

However, some limitations emerged in the study. 
The demand was based on fictional variations due to 
a lack of prior data. Airlines with access to historical 
flight data can use realistic variations and 
complement these with no-show rates to better 
estimate denied boarding. Another challenge was 

estimating fixed or operational costs, which were 
sourced from publicly available information. 
Additionally, many airlines have agreements with 
other carriers to accommodate denied boarding 
passengers, offering discounted fees in such cases. 

Future work could explore more advanced 
scenarios, such as multiple flight legs, integrating 
different aircraft capacities, hubs, and nested or non-
nested seat allocation. Additionally, varying the time 
range could also enhance the model’s applicability. 
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