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Abstract: Recently, biometric recognition models such as face identification models have been rapidly developing. At the
same time, the risk of cyber-attacks on such models is increasing, one of whose examples is a model inversion
attack (MIA). MIA is an attack to reconstruct or reveal the training samples of a victim recognition model by
analyzing the relationship between its inputs and outputs. When MIA is conducted on a biometric model, its
training samples such as the face, iris, and fingerprint images could be leaked. Since they are privacy-sensitive
personal information, their leakage causes a serious privacy issue. Hence, it is desirable to develop a defense
method against MIA. Although several defense methods have been proposed in the past decade, they tend to
decrease the recognition accuracy of the victim model. To solve this problem, in this paper, we propose to
use a dummy model trained with synthetic images and parallelly combine it with the victim model, where the
combined model is released to users instead of the victim model. The key point of our proposed method is
to force the dummy model to output a high confidence score only for the limited range of synthetic images.
This allows us to maintain the recognition accuracy of the combined model. We experimentally confirmed that
the proposed method can reduce the success rate of MIA to less than 30% while maintaining the recognition
accuracy of more than 95%.

1 INTRODUCTION

With the development and spread of deep learning
technologies, biometric recognition models such as
face recognition have become common and are of-
ten used in user authentication and verification sys-
tems. On the other hand, the risk of cyber-attacks
against such a recognition model is also increasing.
Various kinds of attacks have been actively studied in
the past decade (Liu et al., 2020; He et al., 2022), one
of whose typical examples is a model inversion attack
(MIA) (Fredrikson et al., 2015). MIA is an attack that
attempts to reconstruct or reveal the training samples
of a target (or victim) recognition model by analyzing
the relationship between its inputs and outputs. More
specifically, in MIA, an attacker first specifies a cer-
tain class label (e.g., individual name or ID) and then
finds an input sample (e.g., a face image) whose con-
fidence score provided by the victim model is max-
imized for the specified label. The sample obtained
by the above attack process becomes quite similar to
the actual training sample. When the attacked victim

a https://orcid.org/0000-0002-4859-4624
∗Corresponding author

model is a biometric recognition system, the results of
MIA could contain a target individual’s biometric in-
formation such as the face, iris, and fingerprint. Thus,
MIA leads to the leakage of privacy-sensitive infor-
mation that should be kept private, which could cause
a serious issue. Therefore, it is urgent to realize a
countermeasure against MIA.

A possible solution is to refuse access trials from
users who have already used the victim model a pre-
determined number of times. This is effective because
attackers generally send a large number of input sam-
ples to the victim model as queries in order to achieve
MIA, whereas ordinary users send fewer queries than
the attackers. However, this kind of defense strategy
is vulnerable to collusion attacks by multiple attack-
ers, where each attacker sends a relatively small num-
ber of queries to the victim model and its correspond-
ing outputs are aggregated across all attackers. Hence,
previous work proposes another defense strategy that
leads MIA results to the samples totally different from
the actual training data (Wang et al., 2021). This is
achieved by minimizing the mutual information be-
tween the inputs and outputs of the victim model. Al-
though this strategy can effectively reduce the success
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rate of MIA, it also reduces the recognition accuracy
of the victim model, which is a critical drawback.

To overcome the drawback, in this paper, we pro-
pose a novel defense method against MIA satisfying
the following two conditions: (1) MIA results are led
to the samples different from the actual training data.
(2) The recognition accuracy of the victim model can
be maintained. To this end, we train a dummy model
using synthetic samples and parallelly combine it with
the victim model. This means the combined model
looks like a two-branch network where the branches
are connected into a single head. Note that the dummy
model is designed so that it provides a low confidence
score for most input samples while providing very
high confidence only for its training samples, i.e., syn-
thetic samples. This allows us to lead the MIA results
to the synthetic samples without reducing the victim
model’s recognition accuracy.

The contributions of this paper are summarized
below.

• We propose a defense method against MIA that
can maintain the recognition accuracy of the vic-
tim model without directly manipulating its struc-
ture and parameters.

• We give a technique to train a dummy model
whose confidence score can be high only for a
limited range of synthetic samples.

2 RELATED WORK

2.1 Model Inversion Attacks

MIA has been actively studied in the past decade.
There are various existing attack methods of MIA,
and their assumptions on the victim model and the
attackers’ knowledge are different. For the type of
the victim model, some methods consider that the vic-
tim model is a white-box model whose structure and
parameters are known by the attackers, while others
consider the victim model as a black-box model. (We
note that the attackers do not know the role of each
layer or branch in the victim model even in the case
of the white-box setting; what they can do on the vic-
tim model is just back-propagation in addition to the
query sending and output receiving.) Besides, the out-
put information of the victim model is differently con-
sidered. Some methods assume that the victim model
provides a confidence score (i.e., logit) for all classes
it covers, whereas others assume that only label in-
formation is provided as a recognition result. On the
other hand, for the attackers’ knowledge, some meth-
ods allow the attackers to exploit a certain auxiliary

dataset while others do not.
The earliest MIA method was proposed by

Fredrikson et al. (Fredrikson et al., 2015), which
targets a white-box victim model outputting confi-
dence score information and works without any aux-
iliary dataset. Specifically, they assume that the vic-
tim model RT outputs a confidence score vector y =
RT (x) for an input sample x, where the k-th dimen-
sion of y indicates the score for the k-th class. For
such an RT , their proposed method specifies a target
class label ŷ in the form of a one-hot vector and finds
the input sample x that minimizes the error between y
and ŷ. The error is measured by a certain loss func-
tion L as L(y; ŷ) = L(RT (x); ŷ), whose minimization
is achieved by a gradient descent algorithm.

The above method works well when RT is a shal-
low neural network but tends to find a noisy sam-
ple like an adversarial example (Goodfellow et al.,
2014b) when RT is a deep network. To solve this
drawback, Y. Zhang et al. proposed to introduce an
adversarial loss term employed in the GAN frame-
work (Zhang et al., 2020). They use an auxiliary
dataset of real samples to train a GAN discriminator,
and its counterpart generator is parallelly trained so
that it can generate a sample x successfully fooling the
discriminator as well as minimizing the above error
term L(RT (x); ŷ). As a more straightforward method,
Khosravy et al. proposed to narrow down the search
space to find the optimal x by introducing an image
generator trained with an auxiliary dataset, particu-
larly focusing on a face identification system as the
victim model (Khosravy et al., 2022; Khosravy et al.,
2021).

Another MIA method assuming a white-box vic-
tim model was Amplified-MIA (Zhang et al., 2023)
proposed by Z. Zhang. Instead of minimizing the
above error term and obtaining its solution x̂ =
argminx{L(RT (x); ŷ)}, Amplified-MIA attempts to
train an inverse model that directly predicts x̂ from
a given ŷ. In this method, ŷ is not a one-hot vec-
tor but a confidence score vector provided by RT , and
its values are amplified by a nonlinear amplification
layer.

Unlike the above methods, Yoshimura et al. as-
sumed that the victim model is a black-box model. In
the case of a black-box victim model, the attackers
cannot perform a gradient descent process to mini-
mize the error term L(RT (x); ŷ). To solve this prob-
lem, Yoshimura proposed a method for numerically
approximating the gradients (Yoshimura et al., 2021).
Then they performed Khosravy’s method using the
approximated gradients. Note that this method as-
sumes a black-box victim model outputting a full con-
fidence score y. In contrast, Zhu et al. targeted a
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black-box victim model that only outputs label infor-
mation. In this case, the attackers cannot explicitly
obtain RT (x). To solve this, Zhu et al. proposed to es-
timate it only from the label information (Zhu et al.,
2022). More specifically, they exploited the recog-
nition error rate of the victim model on the neigh-
bor region of x to measure RT (x). Liu et al. also
tackled the task of label-only MIA (Liu et al., 2024).
They used a Conditional Diffusion Model (Ho and
Salimans, 2021) trained with an auxiliary dataset to
achieve high-performance MIA under the label-only
setting.

2.2 Defense Method Against MIA

Methods for defending against MIA are less actively
studied than those for attacking. This is because MIA
defense is a hard task. Since MIA is a task of recon-
structing an input sample x that satisfies RT (x) = ŷ
from a given output ŷ, it is difficult to achieve MIA
if the victim model RT does not well capture the sta-
tistical relationship between input x and output y; in
other words, such an RT is robust to MIA. However,
this solution sacrifices the high recognition accuracy
of RT . Thus, there is a trade-off between a model’s
recognition accuracy and its robustness against MIA.

Fredrikson et al., who proposed the earliest attack
method, suggested keeping a model’s accuracy rela-
tively low as a countermeasure for MIA (Fredrikson
et al., 2015). Unfortunately, this is not practical due
to the above trade-off. Wang et al. proposed another
defense method that minimizes the mutual informa-
tion between inputs and outputs when training a vic-
tim model (Wang et al., 2021). This is also not good
at maintaining recognition accuracy. Salem et al. pro-
posed a defense method that adds a uniform noise to
the model’s output (i.e., confidence score vector) y
before returning it to the system users (Salem et al.,
2020). This does not degrade the model’s accuracy if
the added noise is small enough. However, a small
noise leads to insufficient robustness against MIA.

Unlike the above existing methods, this paper
aims to propose a defense method against MIA that
can maintain the recognition accuracy of the victim
model as much as possible.

3 ASSUMED ATTACK METHOD

Before explaining the proposed defense method in de-
tail, we first describe the MIA method assumed in this
paper. Note that we pick out a face recognition model
as an example of the victim model in the remainder of
this paper.

As mentioned in Section 2.1, there are many exist-
ing MIA methods, where attackers’ knowledge about
the victim model is differently assumed from several
aspects: white-box or black-box, label-only or not,
presence or absence of an auxiliary dataset, and so
on. Ideally, it should be experimentally examined
whether the proposed defense method can defeat all
the attack methods, which is however difficult in prac-
tice. Hence, in this paper, we introduce an assumption
that is most advantageous for the attackers; the victim
model is a white-box model and outputs a confidence
score of all the class labels for any input image. In
addition, an auxiliary dataset is available. We aim to
realize a defense method that can successfully work
under such a hard condition. Specifically, we em-
ploy Khosravy’s MIA method (Khosravy et al., 2022)
since it satisfies this condition.

In Khosravy’s method, a victim model RT outputs
a confidence score vector y = (y1, · · · , yn)

⊤ = RT (x)
for any input face image x, where yk is the confi-
dence score of the k-th class label (i.e., the k-th in-
dividual ID) and n is the total number of class labels
(i.e., the number of individuals registered in the vic-
tim face recognition model RT ). To conduct MIA for
the RT , an attacker specifies a certain target class ID
in the form of a one-hot vector ŷ. If the target ID
is the k̂-th class, the k̂-th dimension of ŷ is set as 1
and all the other dimensions are set as 0. Next, the
attacker measures the error between y and ŷ, which
is denoted by L(y; ŷ) = L(RT (x); ŷ), using the cross-
entropy loss function L. Theoretically, MIA can be
achieved by finding the image x that minimizes the
above error term by a gradient descent algorithm, ex-
ploiting the knowledge of the structure and the pa-
rameters of RT . However, this tends to lead to a noisy
result, as mentioned in Section 2.1. Hence, Khosravy
et al. proposed to narrow down the search space for
the gradient descent. To this end, their method trains
an image generator F using an auxiliary face dataset,
where F is mathematically a map from a feature vec-
tor ξ to an image x = F(ξ), and employs a new er-
ror term L(RT (F(ξ)); ŷ) instead of L(RT (x); ŷ). Then
the attacker finds the feature vector ξ that minimizes
the new error term. This is equivalent to maximizing
the k̂-th dimension of y = RT (F(ξ)), namely yk̂. Fi-
nally, using the optimal ξ̂ = argminξL(RT (F(ξ)); ŷ),
the MIA result is obtained as x̂ = F(ξ̂). Fig. 1 depicts
the overview of their MIA process.

The objective of our proposed method is to pre-
vent the above MIA procedure; that is, we want to
lead the MIA result x̂ to an image dissimilar to the ac-
tual face of the k̂-th individual without reducing the
recognition accuracy of RT .
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Figure 1: Overview of Khosravy’s MIA method (Khosravy et al., 2022).

4 PROPOSED MIA DEFENSE

4.1 Overview

Let RT be the victim model and k̂ be the target individ-
ual ID of MIA. As we described in Section 3, MIA is
the process of finding the input image x ∈ X that max-
imizes the confidence score yk̂, where yk̂ = RT (x)k̂ is
the k̂-th dimension of y = RT (x) and X is the whole
image space. Here, let us suppose the case that the
victim model RT outputs a very high confidence score
for a certain face image x′ ∈ X that is totally different
from the real face image of the k̂-th individual. In this
case, the result of MIA is led to x′, by which the k̂-
th individual’s real face can be protected. Of course,
this x′ causes a misrecognition. However, if images
like the x′ are located only in a quite limited range in
X , the impact of the misrecognition problem is mini-
mized and negligible.

Unfortunately, it is not easy to directly give the
above property to RT . Hence, we introduce a dummy
recognition model Rdmy. Importantly, we train this
dummy model with a set of synthetic face images so
that it outputs a high confidence score only for the
synthetic images and provides a low score for any real
face image. Then we parallelly connect the Rdmy with
RT to construct a combined model R′, as seen in Fig.
2. More specifically, we construct R′ that outputs the
confidence score vector y′ as

y′ = R′(x) = αRT (x)+(1−α)Rdmy(x) (1)

for an input image x, where α (0 < α < 1) is a coeffi-

cient for controlling the weights of RT and Rdmy. As
mentioned above, Rdmy gives a high confidence score
for synthetic images and a low confidence score for
real images. In contrast, RT gives a low confidence
score for most synthetic images since it is trained
with a set of real face images. Hence, when we let
Rdmy(x)k denote the k-th dimension of Rdmy(x), its ar-
gument max, i.e., argmaxxRdmy(x)k, becomes totally
different from argmaxxRT (x)k for all k. In this situ-
ation, by setting α less than 0.5, we can satisfy the
following relationship:

argmaxxR′(x)k̂ = argmaxxRdmy(x)k̂

̸= argmaxxR(x)k̂ = argmaxxyk̂, (2)

where R′(x)k̂ is the k̂-th dimension of y′ = R′(x). This
means the result of MIA against R′ can be led to the
synthetic images. At the same time, the above strat-
egy also allows us to force Rdmy(x)k to be low for all
k (namely Rdmy(x)k ≈ 1/n for all k) when x is a real
face image. This means that the second term in For-
mula (1) is almost constant with respect to k for real
images and therefore

argmaxkR′(x)k = argmaxkRT (x)k (3)

is satisfied in the cases of inputting a real face image
as x into R′. With this property, R′ can correctly rec-
ognize the real face images and successfully maintain
high recognition accuracy. We experimentally ana-
lyze the optimal value of α in Section 5 since theoret-
ically determining it is not straightforward.

The proposed method releases this R′ to the pub-
lic instead of RT . Note that R′ looks like a two-branch
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Figure 2: Overview of proposed MIA defense method.

network for the attackers even if they know its struc-
ture and parameters. In addition, R′ can be released as
a black-box model in practice even though we regard
it as a white-box model in this paper. For these rea-
sons, the attackers cannot judge whether their target
model is protected by the proposed method or not.

4.2 Training Process of Dummy Model

This section describes the training process of the
dummy model Rdmy, particularly how to force Rdmy
to output a high confidence score only for the desig-
nated synthetic images.

The owner of RT has an image set for training
it. Let D be the image set. Of course, this D can-
not be used to train Rdmy. To correct a training set
of Rdmy, we first construct an image generator us-
ing the framework of Generative Adversarial Network
(GAN) (Goodfellow et al., 2014a), where D is used
as a training set for the GAN. After constructing the
GAN, we use its generator G to generate n synthetic
different face images {x(i) = G

(
z(i)

)
| i = 1, · · · , n}

by drawing random vectors z(i) from a normal dis-
tribution N (0, σ2I). Furthermore, we also draw m
additional random vectors {z(i)

l | l = 1, · · · , m} from
another normal distribution N(z(i), σ̃2I) for each z(i)

to generate a synthetic face image x(i)l = G
(
z
(i)
l

)
. Af-

ter that, we use Ddmy = {x(i)l | i = 1, · · · , n, l =
1, · · · , m} as a training set for Rdmy. In the above
procedure, we use very small σ̃2, namely σ̃2 ≪ σ2,
which makes x(i)l quite similar to x(i) for all l. This

property can force Rdmy to output a high confidence
score only for the neighbors of x(i). Note that we use
{x(i)l } instead of a single image x(i) because the larger
number of training images can stabilize the training
process of Rdmy.

The loss function L for training Rdmy is as follows:

L = ∑
x(i)l ∈Ddmy

CE
(
Rdmy(x

(i)
l ),v(i)) , (4)

where CE is the cross-entropy loss function and v(i)

is the n-dimensional one-hot vector whose i-th dimen-
sion is 1.

4.3 Qualitative Insights of Proposed
Method

This section provides qualitative insights about the
reason why the proposed method works well. Fig. 3
shows the relationship between the confidence score
of R′ and the MIA result. Since only a narrow range
of synthetic images are used to train Rdmy, its confi-
dence score forms a sharp peak in the image space and
becomes almost 1/n for most images, particularly for
real face images. In contrast, real face images of the
k̂-th individual have a wide variety of lighting con-
ditions, facial expressions, face orientations, and so
on. Hence, the confidence score of RT becomes high
in a relatively wide area. Owing to these properties,
the confidence score of R′ becomes almost the same
as that of RT except for the neighbor of the desig-
nated synthetic images. This realizes the relationship
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Figure 3: Relationship between confidence score, misrecognition area, and MIA result in image space.

of Formula (3). As a result, misrecognition could oc-
cur only in a limited range in the image space X and
the recognition accuracy of R′ is maintained. Besides,
the MIA result is led to the global maximum of the
confidence score of R′, which is located in not the real
image side but the synthetic image side, as shown in
Formula (2). This allows us to protect the real face
images of the k̂-th individual.

5 EXPERIMENTS

5.1 Experimental Setup

We conducted an experiment to evaluate the effective-
ness of the proposed method. In this experiment, we
constructed a face identification system as the vic-
tim model RT , using VGGFace2 dataset (Cao et al.,
2018).

VGGFace2 is a famous face image dataset con-
taining more than 3 million images of 9131 indi-
viduals. Among these images, we selected 85640
(=2141×40) images of 2141 individuals and used
them to train RT . These images were also used to
train a GAN generator, which is needed to construct
a dummy model Rdmy and a combined model R′ in
the proposed method, as mentioned in Section 4.2.
The network structures of the GAN generator and its
counterpart discriminator are shown in Fig. 4. To
increase the performance of the GAN, we employed
two techniques named Adaptive Discriminator Aug-
mentation (Karras et al., 2020) and Minibatch Dis-
crimination (Salimans et al., 2016) in this experiment.
The visual quality of the images generated by our
GAN was 114.46 in terms of Frechet Inception Dis-
tance, abbreviated as FID (Heusel et al., 2017). Fur-
thermore, we trained another face recognition model

(a) Generator

(b) Discriminator

Figure 4: The network structures of GAN generator and
discriminator.

RE using 86680 (=2167×40) images of 2167 individ-
uals in VGGFace2 for evaluating the MIA success
rate. Note that the images of only 27 out of these
2167 individuals were also included in the training set
of RT and used as the target individual IDs of MIA.
The remaining 2140 individuals were totally different
from the training set of RT . The network structures
of RT and RE are the same as those used in Khos-
ravy’s study (Khosravy et al., 2022). Rdmy has the
same structure as RT . We further used Large Margin
Cosine Loss (Wang et al., 2018) as a loss function for
training RT , RE , and Rdmy to increase their recogni-
tion performance. The two hyper-parameters σ2 and
σ̃2, which are needed to prepare Ddmy, were set as
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Figure 5: Success rate of MIA against combined model R′ and its recognition accuracy with various α.

σ2 = 1 and σ̃2 = 0.0625, respectively.
Using the above RE , we evaluated the success rate

of MIA as follows. First, we carried out Khosravy’s
MIA method to the combined model R′ by specify-
ing one of the 27 individuals as a target ID. We re-
peated this process 3 times and got 3 resultant images
for each individual. As mentioned in Section 3, Khos-
ravy’s method requires an auxiliary dataset to train the
image generator F . We employed CelebA dataset for
this purpose (Liu et al., 2015). Next, we input each
resultant image into RE and got the output confidence
score vector. If the top-5 highest dimension of the
confidence score vector includes the specified target
ID, we judged the MIA process succeeded. Finally,
we measured the percentage of the number of suc-
ceeding processes to the total number of MIA trials,
which was regarded as the success rate. On the other
hand, for evaluating the recognition accuracy of the
combined model R′, we selected other 270 (=10×27)
images of the 27 individuals from VGGFace2 as a test
set. These 27 individuals are identical to those used
as the target IDs in MIA trials.

5.2 Results and Discussions

We evaluated the success rate of MIA against R′ and
its recognition accuracy, varying the value of weight
controlling coefficient α in Formula (1) from 0 to 1
with a step size of 0.01. The result is shown in Fig. 5.

In Fig. 5, R′ maintains a face recognition accu-
racy of more than 95% even when we reduce the co-
efficient α to 0.25. We verified that this is almost the
same as the recognition accuracy of the original RT ,
95.8%. This indicates that the dummy model Rdmy re-
turns a low confidence score for real face images, as

we expected in Section 4. At the same time, it also
can be seen from Fig. 5 that the success rate of MIA
against R′ goes up to 80% when α = 1, which means
R′ = RT , while it significantly drops when α < 0.7.
This indicates that the MIA result can be successfully
led to synthetic images owing to Rdmy’s property of
outputting a high confidence score only for a limited
range of synthetic images. In the case of α = 0.25
(the lowest α that can maintain high recognition ac-
curacy), the success rate of MIA is at most 27%. This
means that the attackers would fail to reconstruct the
face of the target individual in 3 out of 4 MIA trials;
they cannot have confidence in the resultant images
of MIA. These experimental results demonstrate the
effectiveness of the proposed method.

Fig. 6 shows an example of MIA results with var-
ious α for 10 out of the 27 target individuals. For
comparison, this figure includes the real face images
of the 10 individuals used to train RT and the syn-
thetic images used to train Rdmy. It can be seen from
Fig. 6 that the MIA results with large α are similar
to the real face of the target individual while those
with smaller α tend to be similar to the synthetic im-
ages. However, for the individuals of ID:2, ID:7, and
ID:8, their MIA results do not drastically differ from
the real face images even in the case of α = 0.2. We
guess that the reason for this phenomenon is as fol-
lows. A GAN generator sometimes generates some-
what distorted face images due to its unstable train-
ing process, as the synthetic image of ID:2. Since
the distorted images do not look so real, a powerful
MIA method tends to avoid reconstructing them. This
is why the results of MIA against R′ are not neces-
sarily similar to the synthetic images. As previously
mentioned, the performance of our trained GAN was
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Figure 6: Example of MIA results with various α for 10 target individuals.

114.46 in terms of FID, which is not so high and
might tend to cause the above problem. A possible
solution to cope with this problem is using a more
sophisticated image generation technique such as a
denoising diffusion probabilistic model (DDPM) (Ho
et al., 2020) instead of GAN. This will be addressed
in our future work. In addition, it is also an impor-
tant future task to examine how the visual quality of
the synthetic images affects the defense performance
of the proposed method. As above, low-quality syn-
thetic images are not desirable. However, synthetic
images with too high quality might also be undesir-
able since they are indistinguishable from real ones,
and therefore the property of Rdmy might become too
close to that of RT . Thus, it is important to find the
optimal quality of the synthetic images.

Based on the current experimental results, we con-
clude that α = 0.25 is the best choice. However, this
is not necessarily the case with any other recognition
models. The optimal value of α might depend on the
victim model’s network structure, its training strategy,
the number and the kinds of classes it covers, and so
on. We will examine the impact of these factors on the
defense performance of the proposed method in our
future work. At the same time, we think that we have

to focus on a more practical face recognition model as
the victim model RT . As mentioned above, the recog-
nition accuracy of RT was 95.8% in this experiment,
which is not sufficient for practical use. Thus, we will
focus on a victim model with an accuracy of more
than 99% and examine whether the MIA risk for such
a practical face recognition model can also be reduced
by the proposed method or not.

Besides, we believe that it is desirable to further
decrease the success rate of MIA to more securely
prevent the leakage of privacy-sensitive information
like the face. To achieve this, we will investigate a
more sophisticated method of combining RT and Rdmy
rather than just parallelly connecting them.

6 CONCLUSION

In this paper, we proposed a method to defend against
MIA without degrading the recognition accuracy of
the victim model. In the proposed method, we in-
troduce a dummy model trained with GAN-generated
synthetic images and parallelly combine it with the
victim model. Then the combined model is released
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to the public instead of the victim model. The key
point of the proposed method is to force the dummy
model to output a high confidence score only for the
limited range of synthetic images and a low confi-
dence score for real images. Owing to this property,
the proposed method can maintain the recognition ac-
curacy. We experimentally confirmed that the pro-
posed method reduces the success rate of MIA to less
than 30% while maintaining the recognition accuracy
of more than 95%.

In our future work, we will examine the relation-
ship between the characteristics of the victim model
and the hyper-parameter α, which controls the com-
bination weights for the victim model and the dummy
model, to realize a method for easily finding the best
choice of the α. At that time, we will focus on more
practical (or accurate) victim models. It is also an
important future work to extend the proposed method
using DDPM instead of GAN to further reduce the
risk of MIA.

Furthermore, we need to experimentally examine
the robustness of the proposed method against vari-
ous MIA attack methods other than Khosravy’s one.
Particularly, when an attacker knows the presence of
the proposed defense method, he might exploit a set
of face images morphed between real and synthetic
faces to conduct MIA, using a sophisticated morphing
method such as (Schardong et al., 2024). The robust-
ness against such an attack is interesting and should
be examined in the future.

This study is partially supported by JST CREST
Grant (JPMJCR20D3).
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