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While security is considered an essential aspect of the design and implementation of many systems, privacy
is often overlooked, especially in early planning phases. Although methodologies for the identification of
privacy threats have been proposed, the number of studies outlining their practical application is limited. As a
consequence, practical experience with these methods is sparse. This raises questions about their practicality
and applicability for the energy domain. As a first step towards the assessment of the practical properties, we
apply a lightweight version of the most prominent methodology, LINDDUN GO, to an intelligent charging
use case for local renewable energy communities that is based on load forecasting. We find that one of the
main advantages of LINDDUN GO is the completeness of the analysis, which was able to identify not only a
built-in privacy deficiency but also unforeseen privacy threats for the considered use case. However, we also
found that LINDDUN GO is not applicable for all privacy categories: Detectability was not assessable since
it required detailed information that was not contained in our data flow graph in the design phase. In contrast,

non-compliance was treated too generically, its intention is more to complete the list of important topics.

1 INTRODUCTION

The European Union aims to minimize carbon emis-
sions through a variety of measures. Two of them are
the introduction of smart metering and the possibility
of allowing distributed generation and distribution of
renewable energy.

Local, renewable energy communities (LECs) are
a concept in the field of smart grid and sustainable
energy, signifying a shift toward more distributed
and localized forms of energy generation, distribu-
tion, and consumption. Broadly defined, energy com-
munities are groups of individuals or organizations
collaborating to produce, consume and manage en-
ergy resources, typically with an emphasis on re-
newable sources. These communities can take var-
ious forms, from small-scale, neighborhood-focused
projects to larger collaborative initiatives involv-
ing multiple stakeholders (Bauwens, 2016; Walker,
2008). As part of the Clean Energy Package, the
European Commission has established a legal frame-
work for Energy Communities (Directorate-General
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for Energy, EC, 2019). The package defined two types
of energy communities (1) Citizen Energy Commu-
nities and (2) Renewable Energy Communities, with
different regulations and limitations (European Par-
liament and Council of the EU, 2018).

In Austria, local renewable energy communities
are registered associations that can freely trade elec-
tricity between their members. Financial benefits
arise from the avoidance of network tariffs as well as,
typically, a gap between feed-in and consumption tar-
iffs. For billing purposes, the smart meter data are for-
warded by the Distribution System Operator (DSO)
with a time resolution of 15 minutes. While these
data can only be obtained at the end of the day, smart
meter data of members can also be obtained through
a legally mandated customer interface in (i) a timely
manner and (ii) usually at a higher resolution (e.g. 5
second intervals'), depending on the respective DSO
and smart meter model. These two properties of en-
ergy communities might enable additional use cases.

However, this might come at the cost of privacy
which should, similarly to security, be considered al-
ready at the design phase. While many security threat

Uhttps://www.salzburgnetz.at/content/dam/salzburgnetz/
dokumente/stromnetz/Technische-Beschreibung-
Kundenschnittstelle.pdf
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modeling methods are available (Azam et al., 2023),
this is not the case for privacy, where LINDDUN
(Deng et al., 2011) is the commonly considered stan-
dard. Although LINDDUN is widely known, work
that demonstrates the practical application is rare:
LINDDUN is applied to a scenario in the automo-
tive domain in (Chah et al., 2023) and to a use case
that deploys the OSIA standard for a national iden-
tity management architecture in (Nweke et al., 2022).
This small number of examples of practical analysis
might be attributed to the high startup cost that re-
quires extensive privacy expertise and threat model-
ing expertise. The LINDDUN developers are aware
of this issue, so they developed a more lightweight
approach called LINDDUN GO (Wuyts et al., 2020).
The goal of this paper is to perform a first case
study that explores, whether this lightweight method-
ology is beneficial, especially for the energy domain,
thereby adding to the empirical studies called for in
(Wuyts et al., 2020).

More precisely, the goals are to determine (i) the
extent of information needed for such an analysis
and what knowledge is required from the analyst; (ii)
if the methodology is suitable to detect both previ-
ously considered and unconsidered privacy deficien-
cies; and finally (iii) if the methodology is suitable to
propose countermeasures. These questions are tack-
led by a case study, in which the additional capabil-
ities of LECs are used to support the use case of an
intelligent charging point.

This paper is organized as follows: Section 2
provides basic background information about threat
modeling and analysis using LINDDUN and the
LINDDUN GO card deck. Section 3 describes the
process of its practical application using the concrete
example of an electric vehicle (EV) charging use case
within an LEC. This includes the required modeling
of the use case, the identification of threats and the
derived countermeasures. Section 4 discusses the ful-
fillment of the goals and gives an overview of possible
future activities.

2 BACKGROUND

Threat modeling is a process to identify and priori-
tize threats and vulnerabilities to an analyzed system,
originating from software development (Shostack,
2014a). The most well-known methodology is
STRIDE (Shostack, 2014a), see (Azam et al., 2023)
for a survey. Inspired by STRIDE, LINDDUN was
developed to model privacy threats (Deng et al.,
2011). Both techniques are model-driven and based
on data flow diagram (DFD) modeling of the system-

Entity Trust Boundary

Data Flow
Process Data e
Store

Figure 1: The elements used in DFDs.

under-investigation. A DFD is a graph constructed
with the following elements: processes, data stores,
entities, data flows and trust boundaries, see Figure
1. Trust boundaries divide the system into areas with
varying levels of trust. Data flows that cross trust
boundaries require special attention, as each of them
represents a potential attack surface or entry point for
security and possible transfer of sensible information
for privacy. Based on the DFD, both STRIDE and
LINDDUN first perform a threat analysis and then try
to find countermeasures.

2.1 Privacy Threat Analysis with
LINDDUN

LINDDUN utilizes DFDs as input and employs a sys-
tematic approach in which the individual components
of a system, as well as the entirety of the system,
are analyzed. The acronym LINDDUN represents the
seven different types of privacy threats considered?:
Linking (L): associating data items or user actions
to learn more about an individual or group. Identi-
fying (I): learning the identity of an individual. So
LINDDUN distinguishes between threats in the con-
text of identified data (where there is an explicit link),
and identifiable data (where the link can for example
be derived based on a pseudonym). Non-repudiation
(Nr): being able to attribute a claim to an individual.
As examples of this evidence include log files or dig-
ital signatures, non-repudiation is incompatible with
common security means. Detecting (De): deducing
the involvement of an individual through observation.
Data Disclosure (Dd): excessively collecting, stor-
ing, processing or sharing personal data. Unaware-
ness & Unintervenability (U): insufficiently inform-
ing, involving or empowering individuals in the pro-
cessing of personal data. Non-compliance (Nc): de-
viating from security and data management best prac-
tices, standards and legislation.

(Wuyts et al., 2014) carry out an empirical exami-
nation of the LINDDUN methodology. Through three
empirical user studies, the results of different groups
of students are compared with a reference solution.
They found, that correctness rate is satisfactory while
its completeness rate could use some improvements.
This underlines the importance of showing use cases
in which the method is demonstrated and described in
detail.

Zhttps://linddun.org/threats/
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2.2 The LINDDUN GO Card Deck

While the original version of LINDDUN provides a
systematic and extensive assessment of a system’s de-
sign, it has two main drawbacks: the analyst needs
extensive privacy expertise and also experience with
the threat modeling process itself. In order to enable
a more wide-spread adoption of system privacy as-
sessments in practice, a lightweight LINDDUN GO
version has been created with the goal of reducing the
initial effort to start privacy threat modeling (Wuyts
et al., 2020). This was achieved by replacing the 100
leaf node threat tree of LINDDUN with 35 threat type
cards, at a slight reduction of thoroughness. In addi-
tion, hotspots (as areas of the system from which a
threat can originate) were introduced.

LINDDUN GO’s modeling approach is akin to a
card game, but it should not be mistaken for an actual
game. It is intended to be performed by a group of
participants, ideally comprising domain experts, sys-
tem architects, developers, legal experts and data pro-
tection and information security officers. They use a
basic representation of the system under analysis, as
well as the card deck as a basis (example card see fig-
ure 2). Each card describes the hotspot, some elicita-
tion questions to determine if the threat applies, an
overall description, examples illustrating the threat,
consequences demonstrating the importance of the
threat and additional information. The participants in
turn pick threat cards from a randomized deck and
openly put them on the table. Subsequently, the ap-
plicability of the illustrated privacy threat with regard
to the system or its users is assessed. For each listed
hotspot, the given elicitation questions are carefully
considered. If the threat is applicable for a given
hotspot, it is documented accordingly. All players ac-
tively participate in this task; the higher their num-
ber, the smaller the odds of threats being overlooked.
When no new threats are discovered, the next player
draws a new card and the routine is repeated, until all
cards (and thereby all threats) have been accounted
for. This process typically takes several hours.

As work on LINDDUN GO is ongoing, the ver-
sions available at linddun.org are updated occasion-
ally. The version applied in this paper is the latest
GO-version which is available in digital form on the
homepage (version v240118 at the time of writing).
There is also a set of physical cards available from
Agile Stationery?. While no version information for
a purchase of the physical set made in 2023 was pro-
vided, the authors assume that this represents the orig-

3https://agilestationery.com/collections/threat-
modeling/products/linddun-go-privacy-threat-modeling-
cards
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User requests can be linked because
they contain a unique identifier.

? Is there an identifier (unique in system/session) or dataset?

? s there other data associated with that identifier?

? Is there previous data with the same identifier to which new data can
be linked?

Q@ Using an email address as an identifier enables the linking of all
activities to the same individual, even across multiple services.

Q An IP address can be used to link multiple visits to the same individual.

Q All product views in a web shop are linked to the same user because
they are logged in.

Unique identifiers facilitate the
linking of new data items to a

user profile, accumulating growing
amounts of personal data associated
with this profile. This can later lead
to ‘ldentifying’ threats.

@ Linking is especially easy
for authenticated users,
as all requests in the
same session are linked.

L1 LINDDUN

Figure 2: LINDDUN GO Card L1: Linked User Data.

inal but now outdated version of LINDDUN GO, as
it exhibits notable differences compared to the digital
version. Despite having performed the analysis with
both versions, only the results from the digital version
are described. The currently available physical card
deck is titled 2024 version”, so it is assumed that the
physical and digital versions are now identical.

3 PRACTICAL APPLICATION OF
LINDDUN GO

This section describes the practical application of
LINDDUN GO. It is structured according to the three
main steps: first the system is modeled as a DFD, then
the card game is applied, and finally countermeasures
are derived.

The result might be subjective and depend on the
knowledge of the analysts. Therefore, a brief descrip-
tion of the analysis team is added: No team member
has previous experience with LINDDUN or STRIDE,
which is not ideal but may be representative of other
analysis teams. The team consists of three people
who share the following expertise among them: two
computer scientists with common knowledge about
systems engineering, two with domain knowledge
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about energy systems and one with knowledge about
privacy-enhancing technologies. One of the mem-
bers also has a background in software development
as well as in business management. The preparation
of the analysis resembles a practical scenario: it con-
sisted of reading the instructions of the game and the
included information about the definitions of the cat-
egories.

3.1 Description of Use Case Intelligent
Charging Point

Due to the a rising number of EVs and high loads dur-
ing charging, charging will have an increasing impact
on the power grid. Consequently, self-consumption
maximization within LECs using intelligent charging
points will play an important role. Other performance
criteria like Fairness, Quality of Service and Quality
of Experience as discussed in (Danner and de Meer,
2021) need to be taken into account as well. In this
work, we would further like to add the privacy per-
spective.

In this context, the use case of an intelligent shared
charging station should serve as a basic test case, to
see how well LINDDUN is able to identify associated
privacy threats. The intention of the use case is to pro-
vide a forecast of future net production and consump-
tion to the intelligent charging point which enables it
to create an optimal charging schedule. For exam-
ple, based on this information a household can iden-
tify times where less energy will be consumed within
the LEC and therefore can be bought cheaper from
the LEC than from the normal energy provider. Note
that the forecast needs fine-grained metering data, i.e.,
net production and consumption, provided in a timely
manner which is not possible with the data obtained
from the DSO which is only available at the end of a
day.

As the suitability of the methodology to detect ex-
isting privacy deficiencies should be investigated, two
scenarios of this use case are created. In the first, ex-
ternal forecasting scenario, the LEC does not have any
forecasting capabilities, see Figure 3 for a first, intu-
itive description. Therefore, forecasting is done by
an external forecasting provider to whom the data are
forwarded. This scenario is considered less private
because the data needed for learning the prediction is
sent to an external service provider. It has also been
chosen such that privacy could be improved by data
minimization, i.e., by only providing spatially aggre-
gated metering data to the external forecasting ser-
vice. In the second scenario (LEC forecasting), the
forecasting can be the done within the LEC (Figure
4). As the LEC is considered more trustworthy than

the external party, this scenario is expected to be more
private. Although this latter scenario is more private,
it is less likely, as in Austria a LEC is only a regis-
tered, non-profit association that likely lacks the tools
and competence to produce accurate forecasts.
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Figure 3: Scenariol: Intelligent EV-charging with external
forecasting.
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Figure 4: Scenario2: Intelligent EV-charging with internal
forecasting.

3.2 Creation of a DFD

LINDDUN provides no instructions on how to create
a suitable DFD. While we expected a DFD containing
Data Flows between entities, we did not anticipate —
before the study of the method — that we also need a
description of the associated processes. However, de-
spite that lack of instructions, we found that the coarse
modeling of the DFD is rather straightforward: for
example, it was clear where to introduce and locate
processes. As an example, the DFD for the external
forecasting scenario is shown in black and white in
Figure 5. Note that for brevity, Figure 5 also contains
some components, marked green, that are introduced
as countermeasures in Section 3.4. The red data flows
are the ones that were identified as most important for
the privacy analysis. Further note that in the internal
scenario, no external party is needed (compare Figure
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4). Thus, also the red data flow between the Com-
munity Energy Management System (CEMS) and the
External forecasting provider does not exist.

Some aspects of this modeling were less obvious.
The concept of a trust boundary stems from the secu-
rity domain where it is used to separate different kinds
of privileges like for example “read” or “write”. In the
case at hand, we decided to introduce three levels of
trust which are separated by two trust boundaries. The
highest trust level is clearly within a household. The
next level consists of the LEC which is more trust-
worthy than external parties. This can be justified
by an additional consideration of the billing use case.
As in the billing use case the LEC gets meter data
with a certain time granularity anyway, we deduce
that the LEC is assumed to be trustworthy enough to
get, store and process such meter data. By contrast,
external parties have the lowest trust level and are not
allowed to get these data. In addition, the exact kind
of data transmitted is not exactly clear. We decided
that in the external scenario, the CEMS just forwards
the data without changes. This includes the identifiers
of the smart meters which is especially important for
the Linking threat.

3.3 Application of LINDDUN GO

Assumptions: Al: As part of a critical infrastructure,
the smart metering system is assumed to have security
measures in place: All users are authenticated. A2:
As described in Section 3.2 the LEC is trustworthy
enough to get and store meter data in the same time
granularity as for billing, which is not true for the ex-
ternal forecasting provider. The outer trust boundaries
of the DFD in Figure 5 indicate this trust. A3: As
the information collected also needs to be usable for
billing, it is assumed that some kind of identifier is
contained in data sent between Member Energy Man-
agement System (EMS) and Community EMS. It is
assumed, that this data is simply forwarded to the ex-
ternal forecasting provider.

Linking: In the internal forecasting scenario, the
following threats were found: Threat L1 (Linked User
Requests) is found due to the link between the Com-
munity EMS and the Member EMS (marked in red in
Figure 5); L4 (Linkable Dataset) as the LEC Database
stores linkable user data; LS (Profiling Users) since
consumption data has been shown to reveal private
user patterns. However, as long as the time gran-
ularity is not finer than the one for the billing use
case, this is not considered a problem. For the exter-
nal scenario, these threats originate from the link be-
tween the Community EMS and the external forecast-
ing provider as well as the data storage there. Because
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the forecasting provider is not considered trustworthy
enough to have this kind of smart meter data (outer
trust boundaries in the DFD), these threats are consid-
ered a problem for the external scenario and marked
bold in Table 1. So, as expected at least one category
was found where the external scenario is worse than
the internal scenario.

Table 1: Summary of threats found using LINDDUN GO,
named by card number for the scenarios where forcasting is
done by the LEC and an external service provider, respec-
tively. Threats that are a problem are printed in bold. The
question mark “?” stands for unclear.

Category \ scenario internal \ scenario external

L L1,L4,L5 L1,L4,L5

I 11,14,15 11,14,1I5
Nr Nrl,...,Nr4 Nrl,...,Nr4
De unassessable unassessable
Dd DD1, DD4 DD1, DD4
U U1,U3,U4?,U5 U1,U3,U42,U5
Nc Ncl,...,Nc4 Ncl,...,Nc4

Identification: Table 1 shows that the found Iden-
tification threats have the same card numbers as the
Linking threats. This does not happen by accident.
The five Identifiability cards are structured the same
way as the Linkability cards, so I1 corresponds to L1
and so on. This makes sense, as these two concepts
are closely related. Since the sent data contains the
identifiers (assumption A3), the analysis for Linka-
bility also applies to identifiability, leading to the cor-
responding threats.

Non-repudiation has been denoted by the LIND-
DUN inventors themselves as a “category that only
applies to some niche privacy applications (like
whistle-blowing or e-voting systems), and not to the
smart grid system” (Wuyts et al., 2014). The rea-
soning for the system at hand is the following: first,
for billing purposes any form of plausible deniabil-
ity should be avoided. In addition, for critical infras-
tructure security and its repudiation requirement must
have a higher priority. Therefore, non-repudiation of
service usage (Nrl), of sending (N12), of receipt (N13)
and of storage (Nr4) cannot be fulfilled, but this is not
a problem for both scenarios. Since no documents
with hidden data or metadata are sent, Nr5 is not a
threat.

Detectability: The questions in this threat cat-
egory require detailed knowledge about the system:
status messages (informational, warnings, errors) for
Del (detectable users) and De4 (detectable records),
observability of communication for De2 (detectable
service usage) and side effects of the system like
traces left behind by deleted applications for De3 (de-
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Figure 5: DFD for the external EV charging use case scenario. Red arrows are critical for the threat analysis, green parts

denote privacy countermeasures.

tectable events). Therefore, this part of the threat
analysis is considered as unassessable in the design
phase based on a DFD such as the one shown here.
Data Disclosure: We found threat DD1 (exces-
sive sensitive is collected) as smart meter data have
been shown to be sensitive with higher time resolu-
tion and aggregated data would suffice. As no sys-
tem exists that deletes stored data, threat DD4 (data
is stored longer than necessary) is also found for both
scenarios: The system acquires more data than strictly
needed for its functionality. Threat DD5 (Personal
data is shared with more services or external parties
than necessary) is not considered a threat. In the in-
ternal scenario this is clear. In contrast, in the external
scenario, an external party gets personal data, but this
data is needed to fulfill the forecasting task.
Unawareness: Since the current design of both
systems does not provide a means to ensure aware-
ness, it is tempting to consider all of these as threats.
However, a strict analysis shows only Ul (lacking in-
formation about data processing and collection pur-
pose), U5 (the ability to rectify or erase personal data)
and U3 (insufficient privacy controls) as relevant for
both scenarios, noting that no control of the time gran-
ularity is provided as modeled in the DFD. Threat U2
is ruled out, since users do have data that includes
personal information of other users. For U2, the ex-
amples provided were especially helpful in clarifying

the nature of the threat. The evaluation of threat U4
(access to personal data) is not completely clear in
this context: one might consider it as a non-threat be-
cause the user has access to their data in its database
with highest resolution and can therefore use it; in ad-
dition, rectification and erasure is treated by card U3.
However, one might also consider it as a threat be-
cause a user can not directly access their data stored
in the community EMS or at the forecasting provider.

Non-Compliance is not in any way tackled by a
simple DFD as modeled in Figure 5. Therefore, we
considered all occurring threats because needed pro-
cesses are missing: Ncl (non-compliance with pri-
vacy regulations like GDPR for processing of per-
sonal data), Nc2 (non-compliance with privacy stan-
dards and best practices), Nc3 (improper data lifecy-
cle management). While Nc4 is also considered a
threat, it is fundamentally different because it covers
best practices and standards of data security measures
and processes. The LINDDUN creators are aware of
this and write in the additional information section of
card Nc4 that one should “consider complementary
methods like security threat modeling”.
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3.4 Derived Countermeasures

Linking and Identification threats were identified
for both scenarios but they are only a problem for the
external scenario (first two lines in Table 1). These
problematic threats are caused by sending the fine-
grained meter-data to the external forecasting service.
They could be mitigated by performing the forecast-
ing inside the energy community, which results in the
internal scenario. However, this might not be appli-
cable since the energy community might not have the
capabilities to create accurate forecasts. The second
mitigation strategy introduces a process that spatially
aggregates the meter data before sending them to the
external forecasting service (marked in green in the
DFD in Figure 5). This works because (i) the forecast
should also work with aggregated data and (ii) data
aggregation considerably enhances privacy. Note that
there are many other options for mitigation such as
federated learning and reducing the temporal resolu-
tion of the data, but a detailed evaluation and compar-
ison of all of them is beyond the scope of this docu-
ment.

Detection is unassessable in the current stage of
modeling of the system. Therefore no countermea-
sures can directly be stated. However, the analysis
process is still useful, since LINDDUN GO empha-
sizes to have an eye on details about handling of warn-
ings or errors in a later stage.

Data Disclosure: The two found threats DD1 and
DD4 would require spatial aggregation directly dur-
ing collection of measurements. The corresponding
countermeasures are privacy-preserving aggregation
protocols. These protocols, which are typically based
on masking or the usage of additively homomorphic
cryptosystems, are not easy to achieve in practice
(Kursawe et al., 2011; Erkin et al., 2013; Li et al.,
2010), which underscored the need to consider pri-
vacy already in the design phase. Note that spatial
aggregation is also beneficial for DD5, although this
was not considered a threat.

Unawareness needs to be addressed by a new,
dedicated privacy module: the found threats can be
used as some sort of requirements documents. For
example, inform households about the processing of
data and involved parties (Ul), offer configuration
possibilities such as the choice of time resolution (U3)
or possibilities to correct/delete their stored data (U5).

Non-Compliance cards do not lead to such di-
rect countermeasures since they can not be evaluated
based on the DFD. We consider the Non-compliance
cards more as a list of topics that must be tackled
in addition to privacy. While this does not solve the
problem, it ensures completeness of the analysis. For
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security, one could consider utilizing the elevation of
privilege card game (Shostack, 2014b; Tgndel et al.,
2018) or using tools like ThreatGet (El Sadany et al.,
2019). As an illustrative example for security counter-
measures, the addition of a security module is roughly
demonstrated in Figure 5.

4 CONCLUSION AND OUTLOOK

In this paper, the practical applicability of the LIND-
DUN GO Card deck for privacy threat modeling for
LECs has been studied. The evaluation focused on
the identification of the information needed to con-
duct the privacy analysis, LINDDUN’s ability to de-
tect privacy threats and the derivation of countermea-
sures.

Information Needed and Required Knowledge
of the Analysts: Creating the DFD was relatively
straightforward, as a simple diagram of the use case
was already available and the team carrying out the
threat modeling had a profound understanding of the
use case. In contrast, in the first empirical study of
LINDDUN in (Wuyts et al., 2014), creating the DFD
is rated at medium difficulty by the participating stu-
dents, researchers and practitioners.

It turned out that for the practical analysis of the
card deck, a common and precise understanding of
the threat is important. The examples provided on the
cards are essential for this understanding. For exam-
ple, based solely on the general description, we may
have rated U2 as a privacy threat. However, the exam-
ples illustrate the concept more clearly, which led to
it being classified as not being a threat. The practical
analysis of the card deck was possible based on this
DFD for all but two categories: detectability required
more detailed information than contained in the DFD
and Non-compliance was also unassessable. How-
ever, in the latter case we consider this category more
as a way to reach completeness of important topics.

Detection of Threats: We tested LINDDUN GO
by considering an internal and external, less pri-
vate scenario of the use case. LINDDUN GO did
not find new, but the same threats in the external
scenario. However, the questions were formulated
in such a way, that the linkage and identification
threats were not considered as a problem in the in-
ternal scenario. Therefore, we consider it as suc-
cessful in detecting that the external scenario is less
private. The detection of unconsidered privacy de-
ficiencies is one of the main advantages of LIND-
DUN, as it aims at completeness. The methodol-
ogy yielded many unintended threats especially in the
Unawareness category, which likely stems from our
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more technology-oriented approach. This is a conse-
quence of the technology-oriented composition of the
analysis team. While LINDDUN GO’s methodology
in itself is clearly beneficial, our experience confirms
that diverse analysis teams are indeed desirable.

Derivation of countermeasures can not be done
using LINDDUN GO alone as it requires some deeper
privacy knowledge, for example about privacy en-
hancing technologies.

The present work is considered as a starting point
in a detailed evaluation of LINDDUN GO. In this
first step, experience is gained by a detailed analysis
of a single use case. In future work, we would like
to study the applicability on a broader variety of use
cases and also for more complex use cases. One such
example would consider flexibility provision, where
the system operates in a distributed way. This hap-
pens, for example, when reinforcement learning is
used for the determination of charging and discharg-
ing actions. Methodologically, we see the greatest po-
tential for improvement in the development of more
concrete Non-compliance cards (for example regard-
ing compatibility with GDPR), as those were rather
generic. We also intend to compare LINDDUN GO
to the more complex, regular version LINDDUN.
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