
HyperGraphOS: A Meta Operating System for Science and Engineering

Antonello Ceravola1 a, Frank Joublin1 b, Ahmed R. Sadik1 c, Bram Bolder1 d

and Juha-Pekka Tolvanen2 e

1Honda Research Institute Europe, Offenbach, Germany
2MetaCase, Jyväskylä, Finland

{antonello.ceravola, frank.joublin, ahmed.sadik, bram.bolder}@honda-ri.de, jpt@metacase.com

Keywords: Operating Systems, Agile Model-Based System Engineering, Graph-Based Modelling, Domain Specific
Languages, Artificial Intelligence.

Abstract: This paper presents HyperGraphOS, an innovative Operating System (OS) designed for the scientific and
engineering domains. It combines model-based engineering, graph modeling, data containers, and computa-
tional tools, offering users a dynamic workspace for creating and managing complex models represented as
customizable graphs. Using a web-based architecture, HyperGraphOS requires only a modern browser to or-
ganize knowledge, documents, and content into interconnected models. Domain-Specific Languages (DSLs)
drive workspace navigation, code generation, AI integration, and process organization. The platform’s models
function as both visual drawings and data structures, enabling dynamic modifications and inspection, both
interactively and programmatically. HyperGraphOS was evaluated across various domains, including virtual
avatars, robotic task planning using Large Language Models (LLMs), and meta-modeling for feature-based
code development. Results show significant improvements in flexibility, data management, computation, and
document handling. By bridging traditional OS functionality with innovative UX design to fulfill the needs
of modern applications, HyperGraphOS delivers enhanced productivity and efficiency. Its graph-based model
representation and integration with DSLs create a highly flexible, user-friendly environment, making it ideal
for a wide range of scientific and engineering contexts.

1 INTRODUCTION

Operating Systems (OSs) have evolved significantly
since the 1950s, when they were first developed for
general-purpose computers such as IBM’s 701 and
709, as illustrated in Figure 1. Initially, these systems
required manual intervention for executing programs
and lacked automation. The introduction of batch
processing in the 1950s, exemplified by IBM systems,
allowed sequences of jobs to be processed without hu-
man input. Time-sharing systems soon followed, en-
abling multiple users to interact with the same com-
puter simultaneously, as seen in MIT’s CTSS and
IBM’s System/360. At this same time, Teletypewrit-
ers (TTY) and the concept of file were introduced, fol-
lowed a few years later by the concept of hierarchical
folders in Multics. At the end of the 1960s, UNIX, de-

a https://orcid.org/0000-0002-1075-459X
b https://orcid.org/0000-0002-4421-1737
c https://orcid.org/0000-0001-8291-2211
d https://orcid.org/0009-0002-5595-2466
e https://orcid.org/0000-0002-6409-5972

veloped at Bell Labs, popularized these abstractions
and the concept of console which since then form the
foundation of modern OSs.

The rise of personal computers in the 1980s, along
with OSs like MS-DOS and Windows, brought com-
puting to individual users, and popularized the WIMP
(Windows, Icons, Menus, Pointer) paradigm devel-
oped and experimented in the 1970s. Graphical User
Interfaces (GUIs) further simplified interactions by
introducing these visual elements. In the 2000s, OSs
expanded to support mobile devices and cloud-based
platforms like iOS, Android, and Chrome OS, while
still relying on core UNIX-based abstractions. De-
spite advances in security, processing power, and in-
terface design, general-purpose OSs remain limited in
addressing the specific needs of specific users, which
demand more advanced data manipulation and model
integration tools.

This research introduces HyperGraphOS, a web-
based OS designed specifically for scientific and en-
gineering contexts. The OS is publicly available
on GitHub (HRI-EU, 2024a), enabling researchers

64
Ceravola, A., Joublin, F., Sadik, A. R., Bolder, B. and Tolvanen, J.-P.
HyperGraphOS: A Meta Operating System for Science and Engineering.
DOI: 10.5220/0013164900003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 64-74
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



Figure 1: Historical Influences leading to the development of HypergraphOS.

and developers to contribute and extend its capabil-
ities. HyperGraphOS leverages DSLs and graph-
based models to provide a flexible and efficient en-
vironment for managing complex data and models,
addressing the limitations of current general-purpose
OSs. Integrating advanced technologies such as Ar-
tificial Intelligence (AI) and Large Language Mod-
els (LLMs), HyperGraphOS allows dynamic interac-
tion with data, both interactively and programmati-
cally. The system’s unique design offers infinitely
connected WorkSpaces (i.e., workspace)(HRI-EU,
2024b), customizeable semantics, and visual data rep-
resentations, addressing the limitations of traditional
OSs in specialized domains. HyperGraphOS is built
on a minimal kernel with fractal design principles
(Lorenz, 2002)(Blair et al., 2009)(Ediz, 2009), ensur-
ing extensibility and adaptability.

This paper is not intended to cover all the char-
acteristics of HyperGraphOS but rather aims to give
a first impression of it. For a more extensive and
comprehensive analysis, several other articles are in
preparation, each focusing on a different perspective.
The rest of this paper is organized as follows: Sec-
tion 2 outlines the evolution of OSs, Section 3 details
the main concept behind HyperGraphOS, and Section
4 explores its architecture and core features. Sec-
tion 5 presents case studies demonstrating its practi-
cal application, and the paper concludes by compar-
ing HyperGraphOS to existing systems, highlighting
its unique contributions and potential future develop-
ments.

2 BACKGROUND

OSs can be defined from several perspectives. How-
ever, their primary function is to manage and allocate
hardware resources such as memory, processors, and
input/output devices, to ensure efficient interactions
between users and applications (Tanenbaum, 2009;
Silberschatz et al., 2013). An OS abstracts the un-
derlying hardware and resources, providing a user-
friendly interface and offering basic services that fa-
cilitate interactions for both users and programs.

OSs are generally divided into two categories:
general-purpose and special-purpose OSs (Bullynck,
2018). This paper focuses on general-purpose OSs
like Windows, Linux, and macOS, designed for
broad use and enabling users to organize documents
and applications without requiring specific techni-
cal expertise. These systems are widely employed
in various environments, from households to pro-
fessional and technical settings, where they support
tasks such as document management, billing, and
software development. However, general-purpose
OSs often fall short when addressing specific do-
main needs. General-purpose OSs rely exclusively
on applications to solve the domain-specific needs of
users. For example, household users may find the file
and folder structure cumbersome, while profession-
als may struggle to relate documents like bills and or-
ders without relying on billing applications. Techni-
cal users may face challenges in organizing their work
environments due to limited project-specific support

HyperGraphOS: A Meta Operating System for Science and Engineering

65



in traditional OSs unless they turn to project manage-
ment applications. The challenge here is that these
applications are vendor-dependent and create a zoo of
problems (e.g., file formats, compatibility, interoper-
ability) when integration of multiple tools is needed.
These problems can all be solved through the use of
”glue” applications (e.g., converters) that increase us-
age complexity in unnecessary ways (accidental com-
plexity (Brooks, 1987)).

From Model-Based System Engineering (MBSE)
perspective (David et al., 2023)(Tolvanen and Kelly,
2016), OSs can be seen as applications that provide
specific DSLs for users to model their tasks and in-
teractions. MBSE focuses in the creation of abstract
models that represent system architecture, behavior,
and interactions leaving aside implementation details
(Tolvanen and Kelly, 2016). OSs can be analyzed
through their DSLs, which facilitate user interaction,
program execution, and hardware management. We
decompose OS-DSLs in three level of abstractions:
Low-level OS-DSL such as peripheral APIs, allow
OEMs to create new devices for computers. Mid-level
OS DSLs, such as programming APIs, enable devel-
opers to build applications without directly manag-
ing hardware. High-level DSLs define elements like
files, folders, and windows, enabling visual organiza-
tion and interaction with the system. In this paper,
High-level OS-DSL are our primary focus.

Files and folders are represented visually on the
desktop, a limited space defined by the screen area
and have attributes like names, sizes, and creation
dates, while windows display application content and
include attributes such as size, position, and title.
This abstraction simplifies user interaction by hiding
the underlying complexity. However, traditional OS-
DSLs come with several limitations. Desktops intro-
duced in the 1970s followed a working environment
metaphor and were extended in the 1990s by the con-
cept of virtual desktops. Although they provide space
for organizing files, they are restricted by the phys-
ical screen size, and the icons often lack sufficient
visual clarity for smooth navigation. Furthermore,
the desktop layout does not persist after a system re-
boot, requiring users to manually restore their appli-
cation layouts—a problem recently mitigated in Win-
dows through tools like PowerToy App Layout (Mi-
crosoft, 2024). While files and folders are effective
for document organization, they often create incon-
sistencies due to limited modeling degrees (e.g user-
defined naming con- ventions and lack of flexibil-
ity in organizing dependencies between files). Con-
sequently, handling large volumes of files becomes
challenging without advanced organizational tools.

The application-centric nature of traditional OSs

presents several challenges. Data re-usability across
different applications often requires tedious or com-
plex conversions, and frequent context switching be-
tween applications. Resource management is also
handled independently by applications, often result-
ing in redundant or inefficient use of data storage. The
heavy reliance on GUIs further limits automation and
seamless integration with advanced systems, as many
embedded high-level OS-DSLs are not designed for
easy programmability (MacOS is an exception here
(Inc., 2024) as well as Atlassian Workflow Automa-
tion (Atlassian, 2024)). This limits the ability to auto-
mate tasks or integrate with external systems.

In MBSE terms, interacting with an OS through its
graphical interface is analogous to modeling. Users
create ”models” of their desired content and actions
through the UI, which the OS interprets and executes,
updating the system state accordingly. OS-DSLs ab-
stract underlying complexity, enabling users to focus
on tasks without having to deal with low-level system
management.

3 HyperGraphOS CONCEPT

HyperGraphOS (HRI-EU, 2024b), as shown in Fig. 2
is designed to redefine how users interact with com-
puters and digital information systems. By leverag-
ing DSLs, HyperGraphOS transforms traditional file
management into an interconnected web of informa-
tion. The basic graphical elements used to create vi-
sual DSL are nodes and links. Nodes within the sys-
tem represent files, documents, and data, which are
customizable, annotatable, and maintainable. These
nodes visually represent data while encapsulating
both content and visual aspects, in a concept similar
to Unix symbolic links. Nodes can represent various
semantics such as programs, numbers, images, and
text, while links define relationships like dependen-
cies, causal connections, and interactions.

The Meta-model allows for the creation of nodes
(such as code, documents, and images) and links
(such as utilization, realization, and dependency) for
users to organize and visualize their data in flexible
and dynamic ways. This architecture promotes seam-
less interaction with various data formats, which are
handled by corresponding editors and viewers.

At the heart of HyperGraphOS is the concept of
OmniSpace, an infinite network of workspaces, which
can be configured with different DSLs, for instance,
with DataFlow DSL, Execution DSL, or Code Gener-
ation DSL. These DSLs can be used by a developer to
model an application which can be executed in-place,
on a batch or deployed to a target computer. Exe-

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

66



Figure 2: a) HyperGraphOS operation concept. b) Basic DSL for navigation and file manipulation.

cution DSL utilizes the Customized DSLs Library,
which includes specialized DSLs such as the Basic
DSL (Fig. 2b) for navigation and file manipulation,
User Interface DSL, Animation DSL, or AI DSL, pro-
viding a rich set of meta-models to developers for
their modeling processes.

The Meta-DSL (a specialized DSL to create new
DSL) components within HyperGraphOS provides
a framework for the development of meta-models,
which can be used in different forms, like De-
sign Graphs, Implementation Graphs, and Analysis
Graphs. These models use the nodes and links pro-
vided by the meta-model, allowing the system to tai-
lor the representation of information to the specific
needs of the users. HyperGraphOS offers the capa-
bility to define DSLs using Meta-DSLs (notice the
recursion here), which are implemented within a set
of workspaces for creating and deploying domain-
specific languages (a meta-meta model for the cre-
ation of DSL is also available to users).

HyperGraphOS operates as distributed
workspaces, where users can group documents
visually using container nodes, links, and workspace
hyperlinks. Workspaces serve as virtual environ-
ments for organizing data and applications. They
are infinite, flexible, and capable of preserving
the state (both model and applications/windows)
and navigation history of tasks. Workspaces can
also span across multiple storage solutions such as
local storage, cloud services, and remote devices.
Off-the-shelf Software Toolbox, which includes tools
such as LLMs, Text Editors, and Search Engines,
are seamlessly integrated into HyperGraphOS. These
tools are utilized by the workspace’s Control Engines
and Meta-model to provide advanced capabilities,
such as content creation, search functionalities, and
programmatic manipulation.

HyperGraphOS incorporates cutting-edge tech-
nologies like an integrated JavaScript-based shell for
testing and manipulating nodes and links program-

matically. Additionally, a robust search engine and
AI integration provide on-demand assistance within
documents. Despite its rich set of capabilities, Hyper-
GraphOS maintains a minimalistic design and system
footprint, ensuring intuitive interaction and ease of
use. The concept of applications, in HyperGraphOS,
is re-imagined as modular constructs, moving away
from the monolithic executable model of traditional
OSs. The set of Featured-Based Code Generation
Systems allows for automatic code generation based
on models, templates (HRI-EU, 2024b), annotations,
... something that further streamlines software devel-
opment processes.

Although this is still in development, we strive
to implement collaborative features, enabling multi-
disciplinary teams to work together using integrated
tools for real-time editing, version control, and inter-
active annotations.

4 SYSTEM ARCHITECTURE

HyperGraphOS is built on a modular architecture as
shown in Fig. 3. The architecture is composed of
five main modules: a Kernel Interface, a Back-end,
Front-ends, External Cloud Services, and Data man-
agement. These modules work together to provide
a flexible, distributed, and scalable system that rede-
fines traditional file management and work organiza-
tion. At the core of HyperGraphOS is the Kernel In-
terface, which manages the hardware abstraction and
rendering of the user interface. The Rendering En-
gine within this module ensures seamless graphical
interaction, while the OS Kernel interfaces with es-
sential hardware resources like CPU, memory, and
input/output devices. Additionally, the File System
plays a crucial role in managing data storage and re-
trieval, interfacing with the back-end for efficient data
processing and handling of user workspaces.

The Back-end acts as an intermediary between the

HyperGraphOS: A Meta Operating System for Science and Engineering

67



Figure 3: HyperGraphOS software architecture.

front-end and the kernel, built on JavaScript Engine
components and Server-Side Scripts that handle data
requests, workspace management, and batch execu-
tion. This module processes user requests, manages
workspace files as JSON objects, and ensures that
data is stored or retrieved from the file system. More-
over, the back-end is responsible for interacting with
External Cloud Services, enabling integration with lo-
cal or cloud-based APIs like OpenAI for AI tasks (Ca-
mara et al., 2023), Cloud Storage for scalable data
handling, and Security Services for managing data
protection and privacy.

The Front-end of HyperGraphOS operates
through a browser interface, where users interact
with workspace via a graphical canvas powered by
user DSLs, JavaScript Libraries and GoJS (one of
the most complete graphical libraries available in the
web domain (Northwoods, 2022)). This dynamic
interface allows users to manipulate visually the
content of workspaces, using graphs to represent
nodes, and links. Each workspace is stored as a JSON
object, allowing light and flexible storage (Nurseitov
et al., 2009)(Zunke and D’Souza, 2014) and intuitive
management of files and documents. Easy access
of its content is possible through a visual inspector
or in a programmatic way. The front-end ensures
that users have a streamlined, ”zero-setup” usability,
and interactive experience, directly connected to the
back-end for data requests and processing.

The External Cloud Services module integrates
key functionalities that extend the capabilities of Hy-
perGraphOS. Through cloud-based APIs, the system
interacts with external tools for data processing, se-
curity management, and AI-driven features. Services
like OpenAI API provide powerful machine learning
and natural language processing capabilities used for
code generation (Sadik et al., 2023) or dataflow ap-
plications, while Cloud Storage offers scalable and
distributed storage solutions, ensuring the system can
handle an increasing number of workspaces as user
needs grow. The Security Services API guaran-

tees user data protection, ensuring privacy and com-
pliance with security standards while maintaining a
lightweight system architecture.

Data management in HyperGraphOS is stream-
lined through a custom organization of files and di-
rectories on the server side, bypassing for now the
need for traditional databases. This approach sim-
plifies data architecture while ensuring flexibility in
managing workspaces. However, as HyperGraphOS
evolves, further enhancements may be required to ac-
commodate more complex data management needs.

Scalability is inherently managed through the
distributed handling of JSON files that represent
workspaces. This ensures that the system can effi-
ciently manage multiple nodes or workspaces without
the need for extensive infrastructure, enabling Hyper-
GraphOS to scale seamlessly as users create and man-
age more complex environments. Security and pri-
vacy are handled through external services, allowing
HyperGraphOS to maintain a lightweight architecture
without sacrificing user data protection. By outsourc-
ing security management to specialized services, the
system remains streamlined, ensuring robust data pro-
tection without adding unnecessary complexity to the
core architecture.

HyperGraphOS also provides robust integration
capabilities through its own APIs, allowing program-
matic navigation and modification of workspace mod-
els, with models represented in a dual way as a vi-
sual drawing and as a JSON object. JSON format
has been chosen for its native integration in Javascript
and its relative lightweight encoding (Nurseitov et al.,
2009)(Zunke and D’Souza, 2014). Besides JSON,
some dedicated user interface and DSLs make use
of the YAML format (Eriksson and Hallberg, 2011)
for its compactness, readability and user friendliness.
Both the front-end and back-end offer libraries that
support users in defining code generators for their ap-
plications, making integration with external tools and
systems straightforward and seamless.

This modular and distributed architecture, com-

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

68



bined with the flexibility offered by JSON-based
workspace management, allows HyperGraphOS to
deliver a scalable solution for modern computing
needs. It offers a new approach to manage digital in-
formation by extending high-level OS-DSLs, blend-
ing the simplicity of user-friendly design with the
power of advanced, customizable back-end services.

5 CASE STUDIES

In this section, three case studies are presented to
demonstrate the practical application of various sys-
tem modeling and artificial intelligence methodolo-
gies using HyperGraphOS. Each case study highlights
the significant contribution that HyperGraphOS pro-
vides in the creation of a multi-agent robotic task exe-
cution system, a meta-model for system architectures
in research applications, and a dialog management
system. The first two will be briefly presented, and
the last one will be explored in greater detail.
Case Study 1: Multi-Agent Robotic Task Planning
and Execution.

In this case study, HyperGraphOS is used to de-
velop a robotic control system based on multi-agent
task planning and execution (Joublin et al., 2024b).
The system integrates natural language processing
with task and motion planning using a hierarchical
architecture built with OpenAI’s LLMs. The Co-
PAL (Cognitive Planning and Learning) system al-
lows the robot to perform complex tasks in the real
world, such as preparing pizza and stacking cubes.
This is achieved by incorporating replanning feed-
back loops. The model, defined using the dataflow
DSL, integrates components allowing ROS (Quigley
et al., 2009) communication with the robotic system.
The research and development of CoPAL with Hy-
perGraphOS demonstrates the flexibility of modeling,
executing, debugging, and testing complex data flow
models that generate tasks for a humanoid robot in the
real world. The core development of the multi-agent
system, including the DSL, took only a single week,
allowing most of the time to be spent on evaluation
and experiments with the model.

In continuation of this work, HypergraphOS is
now used for creating LLM-based multiagent system
(MAS) architectures. A DSL for agents, multi-agent
dialogue arbitration, working rooms and LLM acces-
sible tools are currently the subject of implementa-
tion and research. This has been successfully demon-
strated by flexible multi-party dialog generation and
their analysis using a method also implemented on
HypergraphOS (Ebubechukwu et al., 2025).

Figure 4: Rule DSL Elements : A) Graphical representation
of a rule defined by its auto-generated ID (107), its condi-
tions and its actions. The gray box is just a comment used
to explain the rule. B) Possible state of a Miron (an abstrac-
tion used to equally recognize and generate sentences) that
can be used as part of a condition. C) Possible state of a
variable that can be used as part of a condition. D) Possible
conditions and actions on internal states. Link visual aspect
is automatically determined by the connected nodes.

Case Study 2: Modeling Research Projects with
Thebes DSL.

This case study addresses the challenge of man-
aging dynamic research projects using Thebes, a
lightweight DSL tailored for modeling research
projects within HyperGraphOS. Thebes facilitates
rapid prototyping and incremental design, enabling
seamless integration with existing tools via code gen-
eration. Applied to projects like the tabletop robot
Haru (Gomez et al., 2018) and the CoPAL system
(Joublin et al., 2024b), Thebes significantly improved
collaboration and adaptability. HyperGraphOS pro-
vided support for creating the metamodel in about 30
minutes and implementing the model integrity check-
ers and code generation in JavaScript in about three
days.
Case Study 3: Virtual Receptionist for Visitor Reg-
istration.

This case study focuses on the development of a
virtual receptionist system used for visitor registration
at a research institute (Joublin et al., 2024a). The sys-
tem, initially developed before the widespread adop-
tion of LLMs, utilized a recursive neural network to
define a behavior engine for the AI-driven reception-
ist. This research explored the challenges of creat-
ing dialogue systems capable of interacting with users
through natural language or speech. Traditional di-
alogue systems often face several issues, including
the need for extensive training data and difficulties in
defining reward functions. They also struggle with
limited control and explainability.

To address these challenges, the team designed
a neural behavior engine inspired by neurobiology
and neuropsychology, which incorporated concepts
such as mirror neurons and multi-modal embodiment.
This engine facilitated mixed-initiative dialog and ac-
tion generation. The system was successfully im-

HyperGraphOS: A Meta Operating System for Science and Engineering

69



Figure 5: Miron DSL elements: A) Graphical representa-
tion of a Miron defined by a modality, a name, a type (inner
or outer), templates, named entities (slots) and associated
data (data slots). B) Example of different Miron modalities.
Modalities were used to control speech output and motion
and expression of a virtual avatar. C) Grammar fields defin-
ing alternative verbal expressions.

plemented as a virtual receptionist in a semi-public
space, demonstrating its capability to manage real-
world interactions with users.

HyperGraphOS played a pivotal role in two key
aspects of the system’s development:

• HyperGraphOS was used to define a DSL for the
behavior engine together with a code generator.
The DSL was created in 3 days and the code gen-
erator in one week. The DSL is based on a clock-
based architecture model created in a dedicated
workspace, and the generated code integrated into
a target JavaScript module for the avatar recep-
tionist system.

• HyperGraphOS was also employed to design a
Dialog DSL (Fig. 4 and 5) based on parallel state
flow. The DSL and the code generation (Fig. 6)
has been created in about two weeks. The model,
implemented in a workspace, consisted of 4246
nodes and 3890 links, which generate JavaScript
files such as dictionaries (4033 generated lines),
weights for the recurrent network (4659 generated
lines), and NLP intents (2410 generated lines).
Average code generation time (from reading the
model to generating all files) was less than 3 sec-
onds on a 12th Gen Intel Core i7-12700H laptop.

To illustrate the development of a DSL and the pro-
cess of code generation in HyperGraphOS, this case
study focuses on the creation of the Dialog DSL
(Fig. 9). This case study followed the complete DSL
creation process in HyperGraphOS to define a specific
DSL. The first step involved defining a meta-meta-
model to determine the visual representation of each
DSL element. HyperGraphOS supports this phase
with JavaScript functions leveraging the GoJS model
concept. Once the meta-meta-model was established,
the meta-model for the Dialog DSL was defined,
which can be visually designed within a workspace

Figure 6: Avatar Receptionist Network Modeling Process.

Figure 7: Example of Avatar Dialog Network source tem-
plate. Comments like ’//[# command #] represent code gen-
eration commands, while comments like ’//: ...’ represent
command parameters.

using HyperGraphOS’s dedicated DSL for building
DSLs. During this stage, the elements of the Dialog
DSL were specified along with their attributes and se-
mantics (see Fig. 4 and 5). HyperGraphOS automat-
ically adds the user-defined DSL to a system palette
for easy access.

Currently, HyperGraphOS offers two primary ap-
proaches for defining DSLs: 1) a full process that
involves creating both the meta-meta-model (using
JavaScript and GoJS) and the meta-model (drawn in
workspace), and 2) a light process, where users define
a meta-model by parameterizing a DSL creation tool
within workspaces. Additional methods for defining
DSLs are under exploration and will be addressed in
future publications.

For code generation in the Dialog Model created
for this application, one of HyperGraphOS’s template
engines was used. HyperGraphOS provides several
template generators, which can be extended by users.
The process involves the following steps: first, a tar-
get example file is required, serving as a running ex-

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

70



Figure 8: Code generation model for the Dialog Model.

ample of the code to be generated. The example file
is then transformed into a template by adding annota-
tions as comments (see Fig.7). Next, the code gener-
ation logic is defined in a model (see Fig.8), where it
is implemented.

The system demonstrated robustness in real-time
scenarios, effectively managing dialog states and
context, and seamlessly switching between different
modalities (e.g., speech or text interaction, or a com-
bination of both, including telephony) while grace-
fully handling errors. The use of DSLs for behavior
and engine modeling facilitated scalability and main-
tainability, ensuring ease of maintenance throughout
the development and testing process. In particular,
the code generation of rules produced files describ-
ing neural network weights, which drastically stream-
lined the creation process that would have been too
complex and error prone manually.

6 DISCUSSION, CONCLUSION,
AND FUTURE WORK

6.1 Discussion

HyperGraphOS marks a major advancement in OSs,
tailored for complex applications. Leveraging a web-
based architecture and DSLs, HyperGraphOS offers
an adaptive and robust platform for managing com-
plex models and data. This section compares Hyper-
GraphOS to other state-of-the-art systems and high-
lights its unique contributions.

In comparison to systems like PlantUML (Correia
et al., 2024) and Graphviz (Gansner, 2009), which are
widely used for static diagram creation and visualiza-
tion, HyperGraphOS distinguishes itself by enabling
dynamic interactions with graph models. The ability
to manipulate nodes and links programmatically us-
ing JavaScript and navigate virtually OmniSpaces sets
HyperGraphOS apart from traditional graph modeling
tools.

When compared to DSL-centric systems like
MetaEdit+ (Tolvanen and Kelly, 2016), JetBrains

MPS (Pech et al., 2013), and Eclipse Xtext (Herrera,
2014), HyperGraphOS provides a more intuitive and
accessible interface due to its web-based architecture
and extensive use of the visual workspace. Its sim-
plicity in creating and adapting DSLs enables rapid
prototyping and incremental development, which is
especially beneficial for dynamic research projects.

HyperGraphOS and WebGME (Maróti et al.,
2014) represent two distinct approaches to graph-
based and meta-modeling environments. WebGME
excels in its collaborative, web-based infrastruc-
ture designed to create and manage Domain-Specific
Modeling Languages (DSMLs), featuring scalable
version control and prototypical inheritance to unify
metamodeling and modeling. HyperGraphOS, in con-
trast, operates as a meta-operating system that inte-
grates graph-based structures with Domain-Specific
Languages (DSLs) and advanced AI capabilities. Its
workspace design allows for infinite, interconnected
workspaces, enabling design-time execution. While
WebGME focuses on multi-paradigm modeling with
rigorous collaboration mechanisms, HyperGraphOS
stands out with its dynamic execution environment
and adaptability for rapidly evolving interdisciplinary
applications.

HyperGraphOS and jjodel (Di Rocco et al., 2023)
both aim to enhance model-driven engineering by
simplifying complexity and providing advanced mod-
eling capabilities, yet their approaches differ signif-
icantly. Jjodel is a cloud-based reflective model-
ing framework designed for simplicity and real-time
collaboration. It emphasizes accessibility with intu-
itive syntax customization and geometry-based nota-
tion, particularly beneficial in technical domains like
railways. HyperGraphOS, on the other hand, intro-
duces a unique meta-operating system architecture,
supporting complex workflows through a network
of workspaces and seamless integration of AI-driven
modeling and execution tools. While jjodel focuses
on educational and lightweight collaborative mod-
eling, HyperGraphOS targets interdisciplinary and
computationally intensive scenarios.

Sirius Web (Giraudet et al., 2024) is a web-based
language workbench tailored for developing graphi-
cal Domain-Specific Modeling Languages (DSMLs)
and their environments. Built on the lessons from Sir-
ius Desktop, Sirius Web supports collaborative mod-
eling, offers predefined representation types such as
diagrams and Gantt charts, and provides both low-
code and API-driven interfaces for studio creation.
While HyperGraphOS excels in versatility and in-
tegration for complex, adaptive systems through its
graph-based and AI-augmented architecture, Sirius
Web specializes in facilitating the development and

HyperGraphOS: A Meta Operating System for Science and Engineering

71



Figure 9: View of the full Dialog Model for the Avatar Receptionist. The code generation model shown in figure 8 is in the
center top of this model.

deployment of graphical DSMLs with a strong em-
phasis on user experience and streamlined workflows.

6.2 Conclusion

In this paper, we presented HyperGraphOS, a modern
DSL-based OS designed specifically for scientific and
engineering applications. Through the use of meta-
meta modelling, DSLs and graph-based model rep-
resentations, HyperGraphOS provides users with an
intuitive and flexible platform for creating, manipu-
lating, and visualizing complex models and data. Hy-
perGraphOS’s open-source nature invites further ex-
ploration and contributions from the community. The
tool is available as open-source software and can be
accessed at (HRI-EU, 2024a), where additional doc-
umentation and videos (HRI-EU, 2024b) and future
updates are posted.

The case studies in robotic task planning, dynamic
research projects, and virtual receptionist systems
demonstrate HyperGraphOS’s versatility and practi-
cal benefits. In comparing HyperGraphOS to other
state-of-the-art systems, its important contributions
were outlined, such as dynamic graph model inter-
action, openness in creating new DSLs, and inte-
gration with AI components. While HyperGraphOS
presents numerous advantages, it also opens up op-
portunities for further enhancements, particularly in
data handling, scalability, and facilitating collabora-

tion. Expanding these capabilities will be essential
as the system evolves to handle increasingly complex
and larger applications.

6.3 Future Work

Moving forward, there are several areas for improve-
ment in HyperGraphOS. While relying on external
services for security and privacy management of-
fers flexibility, future iterations could include robust,
built-in security measures to strengthen data protec-
tion. As the system scales to support larger and
more complex projects, enhancing performance while
maintaining a user experience quality will be essen-
tial.

HyperGraphOS has the potential to supports
AMDD by introducing AI-powered modeling that en-
hances productivity (Sadik et al., 2024). Users bene-
fit from AI-generated suggestions and improvements
during the code generation phase. Collaboration is
still under-developed, and functionalities to enable
multi-disciplinary teams to work together using in-
tegrated tools for real-time editing, version control,
and interactive annotations have been started. These
functions would help fostering synergy among team
members from various domains.

There is also significant potential in further ex-
ploring low-code development platforms and innova-
tion. For instance, a start-up like Thunkable (Thunk-

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

72



able, 2024) provides a no-code platform for design-
ing and creating mobile applications. Its drag-and-
drop interface and pre-built components allow users,
even without a development background, to create
fully functional iOS and Android. Another innovative
example is the Rabbit R1 (Technology, 2024), which
introduces an AI-driven OS designed to simplify in-
teractions with apps and services through voice com-
mands and AI-powered tools, positioning it as a
next-generation alternative to smartphones and smart
speakers. A drawback of workspace is its reliance
on large screens for comfortable use. One potential
mitigation could involve enabling the use of Hyper-
GraphOS in Virtual Reality settings. HyperGraphOS
shows great potential but requires further develop-
ment in several areas.

REFERENCES

Atlassian (2024). Workflow automation in agile
project management. https://www.atlassian.com/
agile/project-management/workflow-automation. Ac-
cessed: 22-Sep-2024.

Blair, G., Coupaye, T., and Stefani, J.-B. (2009).
Component-based architecture: the fractal initiative.
annals of telecommunications-annales des telecom-
munications, 64:1–4.

Brooks, F. P. (1987). No silver bullet: Essence and accident
of software engineering. Computer, 20(4):10–19.

Bullynck, M. (2018). What is an operating system? a his-
torical investigation (1954–1964). Reflections on pro-
gramming systems: Historical and philosophical as-
pects, pages 49–79.

Camara, J., Troya, J., Burgueno, L., and Vallecillo, A.
(2023). On the assessment of generative ai in model-
ing tasks: An experience report with chatgpt and uml.
Software and Systems Modeling, 22(3):781–793.

Correia, F. F., Ferreira, R., Queiroz, P. G., Nunes, H.,
Barra, M., and Figueiredo, D. (2024). Towards liv-
ing software architecture diagrams. arXiv preprint
arXiv:2407.17990.

David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi, F.,
Malavolta, I., Raschke, A., Steghofer, J., and Hebig,
R. (2023). Blended modeling in commercial and
open-source model-driven software engineering tools:
A systematic study. Software and Systems Modeling,
22(1):415–447.

Di Rocco, J., Di Ruscio, D., Di Salle, A., Di Vincenzo,
D., Pierantonio, A., and Tinella, G. (2023). Jjodel–
a reflective cloud-based modeling framework. In
2023 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Compan-
ion (MODELS-C), pages 55–59. IEEE.

Ebubechukwu, I., Ceravola, A., Joublin, F., and Tanti, M.
(2025). Automating dialogue evaluation: Llms vs
human judgment. In Proceedings of the 27th In-
ternational Conference on Human-Computer Interac-

tion (HCI International 2025), Gothenburg, Sweden.
Human-Computer Interaction International, Springer.
Accepted on December 9, 2024.

Ediz, Ö. (2009). “improvising” architecture: A fractal based
approach. In Computation: the new realm of architec-
tural design: 27th eCAADe Conference proceedings,
pages 593–598.

Eriksson, M. and Hallberg, V. (2011). Comparison between
json and yaml for data serialization. The School of
Computer Science and Engineering Royal Institute of
Technology, pages 1–25.

Gansner, E. R. (2009). Drawing graphs with graphviz. Tech-
nical report, AT&T Bell Laboratories, Murray, Tech.
Rep, Tech. Rep.

Giraudet, T., Bats, M., Blouin, A., Combemale, B., and
David, P.-C. (2024). Sirius web: Insights in language
workbenches-an experience report. The Journal of
Object Technology.

Gomez, R., Szapiro, D., Galindo, K., and Nakamura, K.
(2018). Haru: Hardware design of an experimental
tabletop robot assistant. In Proceedings of the 2018
ACM/IEEE international conference on human-robot
interaction, pages 233–240.

Herrera, A. S.-B. (2014). Enhancing xtext for general pur-
pose languages. In MoDELS (Doctoral Symposium).

HRI-EU (2024a). Hypergraphos. https://github.com/
HRI-EU/hypergraphos. Accessed: 21-Oct-2024.

HRI-EU (2024b). Hypergraphos-documentation.
https://github.com/HRI-EU/hypergraphos/tree/main/
Documentation/Videos. Accessed: 22-Oct-2024.

Inc., A. (2024). Automator user guide for macos. https:
//support.apple.com/guide/automator/welcome/mac.
Accessed: 22-Sep-2024.

Joublin, F., Ceravola, A., and Sandu, C. (2024a). In-
troducing brain-like concepts to embodied hand-
crafted dialog management system. arXiv preprint
arXiv:2406.08996.

Joublin, F., Ceravola, A., Smirnov, P., Ocker, F.,
Deigmoeller, J., Belardinelli, A., Wang, C., Hasler, S.,
Tanneberg, D., and Gienger, M. (2024b). Copal: cor-
rective planning of robot actions with large language
models. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 8664–8670.
IEEE.

Lorenz, W. E. (2002). Fractals and fractal architecture. na.
Maróti, M., Kecskés, T., Kereskényi, R., Broll, B.,

Völgyesi, P., Jurácz, L., Levendovszky, T., and
Lédeczi, Á. (2014). Next generation (meta) modeling:
web-and cloud-based collaborative tool infrastructure.
MPM@ MoDELS, 1237:41–60.

Microsoft (2024). Powertoys for windows. https://learn.
microsoft.com/en-us/windows/powertoys/. Accessed:
22-Sep-2024.

Northwoods (2022). Gojs: Powerful diagrams for every
industry. https://gojs.net/latest/index.html. Accessed:
September 2024.

Nurseitov, N., Paulson, M., Reynolds, R., and Izurieta, C.
(2009). Comparison of json and xml data interchange
formats: a case study. Caine, 9:157–162.

HyperGraphOS: A Meta Operating System for Science and Engineering

73



Pech, V., Shatalin, A., and Voelter, M. (2013). Jetbrains
mps as a tool for extending java. In Proceedings of
the 2013 International Conference on Principles and
Practices of Programming on the Java Platform: Vir-
tual Machines, Languages, and Tools, pages 165–168.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A. Y., et al. (2009). Ros: an
open-source robot operating system. In ICRA work-
shop on open source software, volume 3, page 5.
Kobe, Japan.

Sadik, A. R., Brulin, S., and Olhofer, M. (2024). Coding
by design: Gpt-4 empowers agile model driven devel-
opment. In The International Conference on Model-
Based Software and Systems Engineering - MODEL-
SWARD 2024, pages 149–156.

Sadik, A. R., Ceravola, A., Joublin, F., and Patra, J. (2023).
Analysis of chatgpt on source code. arXiv preprint
arXiv:2306.00597.

Silberschatz, A., Galvin, P. B., and Gagne, G. (2013). Op-
erating system concepts essentials. Wiley Publishing.

Tanenbaum, A. (2009). Modern operating systems. Pearson
Education, Inc.,.

Technology, R. (2024). Rabbit r1 - ai-powered personal as-
sistant. https://www.rabbit.tech/rabbit-r1. Accessed:
22-Sep-2024.

Thunkable, I. (2024). Thunkable - no code app builder.
https://thunkable.com/. Accessed: 22-Sep-2024.

Tolvanen, J.-P. and Kelly, S. (2016). Model-driven devel-
opment challenges and solutions: Experiences with
domain-specific modelling in industry. In 2016 4th In-
ternational Conference on Model-Driven Engineering
and Software Development (MODELSWARD), pages
711–719. IEEE.

Zunke, S. and D’Souza, V. (2014). Json vs xml: A compar-
ative performance analysis of data exchange formats.
IJCSN International Journal of Computer Science and
Network, 3(4):257–261.

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

74


