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Abstract: In this paper, we tackle the problem of generating a multiple alignment of assembled genomes of individuals
of the same species. Of course, a (colinear) multiple alignment cannot capture structural variants such as
inversions or transpositions, but if these are relatively rare (as, for instance, in human or mouse genomes),
it makes sense to generate such a multiple alignment. In the following, it is assumed that each assembled
genome is composed of contigs. We will show that the combination of a well-known anchor-based method
with the technique of prefix-free parsing yields an approach that is able to generate multiple alignments on a
pangenomic scale, provided that large structural variants are rare. Furthermore, experiments with real world
data show that our software tool PANAMA (PANgenomic Anchor-based Multiple Alignment) significantly
outperforms current state-of-the art programs.

1 INTRODUCTION

A single linear reference is commonly used to repre-
sent the human genome in genomic studies and diag-
nostics. However, there are a lot of differences be-
tween the genomes of individuals of the same species
and a single reference is unable to cover them. (The
1000 Genomes Project Consortium, 2015) produced a
database that includes the genomes of 2504 different
humans and the differences between them. Includ-
ing common variations in the reference gives a more
accurate representation of the genomes of a species.
We call such a representation the pangenome of the
population. It should be pointed out that throughout
this paper we use the term “pangenome” in a narrower
sense. In a broader sense, the pangenome defines
the entire genomic repertoire of a given phylogenetic
clade, which may range from species to phylum and
beyond. Note that (Tettelin et al., 2005) coined the
term pangenome two decades ago; they evaluated the
composition of six strains of Streptococcus agalac-
tiae.

A pangenome is often constructed from a refer-
ence sequence and a VCF-file containing the varia-
tions. Since novel long read sequencing technolo-
gies allow for de novo assembly of many individu-
als of a species or population (Porubsky et al., 2021),
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high-quality assemblies are becoming widely avail-
able. In this paper, we tackle the problem of gen-
erating a multiple alignment of assembled genomes
of many individuals of the same species. Of course,
a (colinear) multiple alignment cannot capture struc-
tural variants such as inversions or transpositions, but
in many species these are relatively rare. (In future
work, we intend to combine our method with tech-
niques that detect such structural variants.) Up to now,
the computation of such a chromosome-scale multi-
ple alignment was not possible because no multiple
aligner was able to deal with such a volume of data
(cf. Section EXPERIMENTAL RESULTS).

(Höhl et al., 2002) presented MGA (Multiple
Genome Aligner), the first software-tool that was able
to compute a multiple alignment of closely related
genomes. However, MGA was limited to viruses and
strains of bacteria (Chain et al., 2003). MGA and
many other software-tools for aligning multiple ge-
nomic DNA sequences use an anchor-based method
that is composed of three phases:
1. computation of fragments (segments in the

genomes that are identical or very similar),
2. computation of a highest-scoring global chain of

colinear non-overlapping fragments: these are the
anchors that form the backbone of the alignment,

3. alignment of the regions between the anchors (ei-
ther by applying the same method recursively or
by applying a different multiple sequence align-
ment program).
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A recent tool that elaborates on this anchor-based
method is FMAlign2 (Zhang et al., 2024). How-
ever, FMAlign2 is still limited to datasets of a few
hundred million bases (cf. Section EXPERIMENTAL
RESULTS).

In this paper, we will show that it is possible
to generate a multiple alignment of a set of assem-
bled genomes (of the same species), where an assem-
bled genome is set of contigs. Our new method is
depicted in Figure 1. We combine MGA’s anchor-
based method with the technique of prefix-free pars-
ing (PFP), which was introduced by (Boucher et al.,
2019). This technique parses a DNA sequence (a
chromosome composed of contigs or a complete chro-
mosome) S into phrases, and two phrases have the
same identifier (meta-symbol) if and only if they are
identical on the base-level. Thus, the parse P is the
sequence of identifiers that gives S if each identifier
is replaced with its phrase. The main idea is to first
compute anchors on the parse P instead of computing
anchors on S, see Figure 1. Given m DNA sequences
from the same chromosome of different individuals
(e.g. chromosome 19 of 1000 different humans) as in-
put, our method uses the following phases, which are
explained in subsequent sections:

1. Compute the parses of the m sequences

2. On the parses, compute the backbone of the over-
all multiple alignment as follows:

(a) Compute the generalized suffix array
(b) Find multiMUMs (the fragments)
(c) Compute anchors by chaining multiMUMs

(d) Extend anchors on the base-level

3. Generate an alignment of the gaps1

(a) While there remains a large gap, apply
Phases 2a-2c to the gap and add the frag-
ments in the resulting chain as anchors (here,
multiMUMs may be partial)

(b) Generate an alignment of the remaining (small)
gaps using FMAlign2 and MAFFT (Nakamura
et al., 2018)

In this way, we are able to generate multiple
alignments on a pangenomic scale. It should be
pointed out that our new method can only be success-
ful if the chromosomes of individuals from the same
species are very similar DNA sequences; in particular
structural chromosomal rearrangements must be rare.
Therefore, our software tool PANAMA is a special
purpose multiple sequence alignment program. On

1For brevity, we will use the term ‘gap’ instead of ‘re-
gion between anchors’ from now on (it should not be con-
fused with a gap in an alignment).

Input sequences
S1 = atcaagtcgtat
S2 = caagtcgtatcgt
S3 = atcaagtcgtgcgt

Parses
P1 = ABCA
P2 = BCAC
P3 = ABCD
Dictionary

A = at
B = caagt

C = cgt
D = gcgt

dM
BC
BC
BC

dM
A
AC
D

Anchor
A

A

PFP multiMUMs

Figure 1: First, the parses of the input sequences will be
calculated. Then anchors are determined within the parses.

the other hand, there is an urgent need for such a pro-
gram (Liao et al., 2023). Experiments with real world
data show that our program PANAMA outperforms
current state-of-the art programs.

2 PREFIX-FREE PARSING

Prefix-free parsing is a technique invented by
(Boucher et al., 2019). In the simple version used
here, it uses a rolling hash (a hash function where
the input is hashed in a window that moves through
the input) to divide a string S into substrings, which
form the dictionary D. The name prefix-free parsing
is justified by the property that no suffix of a string
from D is a proper prefix of a suffix of any other
string from D (but this property does not play a role
in our context). In the following more detailed ex-
planation, we assume the reader to be familiar with
the Karp-Rabin-Algorithm, see e.g. (Cormen et al.,
1990). This algorithm uses a sliding window of fixed
size w and a hash function KR. For every position i
in S, it computes the hash value KR(Wi) of the sub-
string Wi = S[i..i+w− 1]. Since the hash value of
Wi+1 can be computed in constant time from the pre-
vious hash value, the parsing algorithm takes only lin-
ear time. Given a fixed number p (called modulus2),
the string Wi is called a trigger string if and only if
KR(Wi) mod p = 0. In a left-to-right scan of S, the
parsing algorithm breaks S into substrings so that each
substring ends with a trigger string (and contains no
other trigger string). This gives the dictionary D and
the parse P. In P, phrases (elements of D) are rep-
resented by their lexicographic rank. More precisely,
the phrases are ordered lexicographically and every
phrase is identified with its rank in the sorted dictio-
nary (i.e., the ranks serve as meta-symbols). Conse-
quently, the parse P is the sequence of numbers that
gives the string S if each number is replaced with its
phrase from D. In the example of Figure 1, the win-

2In the Karp-Rabin-Algorithm, the modulus is a prime
number, but this is not required in our context.
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dow size is w = 1, ‘t’ is used as trigger string, and
upper case letters are used as meta-symbols.

3 PRELIMINARIES (FOR
COMPUTING multiMUMs)

Let S be a string of length n on an ordered alphabet Σ.
For 1 ≤ i ≤ n, S[i] denotes the character at position i
in S. For i≤ j, S[i.. j] denotes the substring of S start-
ing with the character at position i and ending with
the character at position j. Furthermore, Si denotes
the i-th suffix S[i..n] of S.

The suffix array SA of the string S is an array
of integers in the range 1 to n specifying the lexico-
graphic ordering of the n suffixes of S, that is, it sat-
isfies SSA[1] < SSA[2] < · · · < SSA[n]. The suffix array
can be built in linear time; we refer to the overview
article of (Puglisi et al., 2007) for suffix array con-
struction algorithms and to (Olbrich et al., 2024) for
newer developments.

Let S be a string of length n having the sentinel
character $ at the end (and nowhere else). We assume
that $ is smaller than any other character. The Bur-
rows and Wheeler transform (Burrows and Wheeler,
1994) converts S into the string BWT[1..n] defined
by BWT[i] = S[SA[i]−1] for all i with SA[i] ̸= 1 and
BWT[i] = $ otherwise.

The suffix array SA is often enhanced with the
so-called LCP-array containing the lengths of longest
common prefixes between consecutive suffixes in SA.
Formally, the LCP-array is an array so that LCP[1] =
−1 = LCP[n+ 1] and LCP[i] = |lcp(SSA[i−1],SSA[i])|
for 2≤ i≤ n, where lcp(u,v) denotes the longest com-
mon prefix between two strings u and v. Like the
suffix array, the LCP-array can be computed in linear
time (Kasai et al., 2001). (Abouelhoda et al., 2004)
introduced the concept of lcp-intervals. An interval
[i.. j], where 1≤ i < j ≤ n, in the LCP-array is called
an lcp-interval of lcp-value ℓ (denoted by ℓ-[i.. j]) if

• LCP[i]< ℓ,
• LCP[k]≥ ℓ for all k with i+1≤ k ≤ j,
• LCP[k] = ℓ for at least one k with i+1≤ k ≤ j,
• LCP[ j+1]< ℓ.

(Abouelhoda et al., 2004) showed that there is a one-
to-one correspondence between the set of all lcp-
intervals and the set of all internal nodes of the suf-
fix tree of S (we assume a basic knowledge of suf-
fix trees). Consequently, there are at most n− 1 lcp-
intervals for a string of length n.

Let S1,S2, . . . ,Sm be strings of sizes n1,n2, . . . ,nm,
respectively. We are interested in the lexicographic
order of all suffixes

S1
1, . . . ,S

1
n1
,S2

1, . . . ,S
2
n2
, . . . ,Sm

1 , . . . ,S
m
nm

of these strings. Note that two suffixes S j
p and Sk

q with
j ̸= k may coincide, i.e., S j

p = Sk
q is possible. (In this

case, it is natural to demand that the suffix with the
smaller superscript shall appear before the suffix with
the larger superscript.) Because the strings may share
identical suffixes, we use m pairwise distinct char-
acters #1,#2, . . . ,#m to tell the suffixes apart. To be
precise, for each j with 1 ≤ j ≤ m, we obtain the
string S j# j of length n j + 1 by appending the special
character # j to S j. This ensures that each suffix can
uniquely be assigned to one of the m strings: if the
suffix ends with # j, then it belongs to S j. If we assume
that #1 < #2 < · · · < #m and that all other characters
in the alphabet Σ are larger than these symbols, then
the suffixes of the strings S1#1,S2#2, . . . ,Sm#m are not
only pairwise distinct, but we also have S j

p# j < Sk
q#k

if and only if either S j
p < Sk

q or S j
p = Sk

q and j < k. In
the following, we tacitly assume that every string S j

(1≤ j ≤ m) is terminated with the character # j, so its
size is n j +1.

The generalized suffix array (GSA) of the strings
S1,S2, . . . ,Sm consists of two arrays of size n = m+
∑

m
j=1 n j, the document array DA and the array SA,

having the following properties:

• For every suffix S j
k, there is an index i so that j =

DA[i] and k = SA[i].

• SDA[i]
SA[i] < SDA[i+1]

SA[i+1] for all i with 1≤ i≤ n−1.

In other words, the arrays DA and SA specify the lexi-
cographic order of all the suffixes of the m strings. An
example can be found in (the two rightmost columns
of) Figure 2, which also shows the corresponding
LCP-array and BWT. We will call the combination
of the GSA with the LCP-array the enhanced GSA of
S1,S2, . . . ,Sm. (Louza et al., 2017) have shown that
the (enhanced) GSA can be constructed in O(n) time
with only one special character instead of the m spe-
cial characters #1,#2, . . . ,#m (this is advantageous be-
cause it keeps the alphabet small). However, it is con-
ceptually easier to use m special characters instead of
one.

4 COMPUTATION OF multiMUMs

In order to determine anchors (on the parse-level
or on the base-level), we must first compute frag-
ments and then a highest-scoring global chain of col-
inear non-overlapping fragments. MGA (Höhl et al.,
2002) as well as FMAlign2 (Zhang et al., 2024) use
multiMEMs as fragments, but like parsnp (Treangen
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i LCP BWT SDA[i]
SA[i] DA SA

1 −1 A #1 1 5
2 0 C #2 2 5
3 0 D #3 3 5
4 0 C A#1 1 4
5 1 #1 ABCA#1 1 1
6 2 #3 ABCD#3 3 1
7 1 C AC#2 2 3
8 0 A BCA#1 1 2
9 3 #2 BCAC#2 2 1

10 2 A BCD#3 3 2
11 0 A C#2 2 4
12 1 B CA#1 1 3
13 2 B CAC#2 2 2
14 1 B CD#3 3 3
15 0 C D#3 3 4
16 −1

Figure 2: The GSA of the strings S1 = ABCA#1, S2 =
BCAC#2, and S3 =ABCD#3 (derived from the parses of Fig-
ure 1) consists of the two arrays DA and SA. The enhanced
GSA includes the corresponding LCP-array (note that the
BWT can easily be computed on the fly).

et al., 2014) we use multiMUMs instead. This is
because the explanation of how multiMUMs can be
computed is much easier to understand and prelimi-
nary experiments showed that multiMUMs are equally
good. Roughly speaking, a multiMUM is a string
ω occurring exactly once in each of the sequences
S1, . . . ,Sm with the property that ω cannot simulta-
neously be extended in all sequences (on either end)
without incurring a mismatch. The formal definition
reads as follows.
Definition 1. A multiple exact match in the se-
quences S1, . . . ,Sm is an (m+1)-tuple (ℓ, p1, . . . , pm)
with ℓ > 0 and 1 ≤ pk ≤ nk − ℓ+ 1 (1 ≤ k ≤ m)
so that Si[pi..pi + ℓ− 1] = S j[p j..p j + ℓ− 1] for all
i, j ∈ {1, . . . ,m}. In words, the length ℓ substrings
of S1, . . . ,Sm starting at the positions p1, . . . , pm coin-
cide. A multiple exact match is left-maximal if for at
least one pair (i, j) we have Si[pi−1] ̸= S j[p j−1] (for
k ∈ {1, . . . ,m}, we define Sk[pk−1] = #k if pk = 1, see
the definition of the BWT). It is right-maximal if for
at least one pair (i, j) we have Si[pi + ℓ] ̸= S j[p j + ℓ].
A multiple exact match is maximal if it is left-maximal
and right-maximal. A multiple maximal exact match
is also called multiMEM. A multiMEM (ℓ, p1, . . . , pm)
is a multiMUM (multiple maximal unique match) if for
all i with 1≤ i≤m the string Si[pi..pi + ℓ−1] occurs
exactly once in the sequence Si.

If there is a long multiMUM (ℓ, p1, . . . , pm)
in the sequences S1, . . . ,Sm, then it is very
likely that the identical substrings S1[p1..p1 + ℓ−
1], . . . ,Sm[pm..pm + ℓ−1] appear one below the other

in a multiple alignment of S1, . . . ,Sm. In other words,
the multiMUM serves as a potential anchor. The next
lemma tells us how multiMUMs can efficiently be
computed.

Lemma 2. There is a one-to-one correspondence be-
tween the set of all multiMUMs and the set of all lcp-
intervals ℓ-[lb..rb] in the enhanced GSA of S1, . . . ,Sm

satisfying

(1) rb− lb+1 = m.
(2) DA[i] ̸=DA[ j] for all pairs (i, j) with lb≤ i < j≤

rb.
(3) BWT[i] ̸= BWT[ j] for at least one pair (i, j) with

lb≤ i < j ≤ rb.

Proof. Let ℓ-[lb..rb] be an lcp-interval satisfying the
three conditions. By conditions (1) and (2), we have
{DA[k] | 1 ≤ k ≤ m} = {1, . . . ,m}. That is, the m
suffixes in [lb..rb] belong to m different strings. Let
i1, . . . , im be the permutation of the indices lb, lb +
1, . . . ,rb so that DA[ik] = k for 1≤ k≤m. Define pk =
SA[ik] for 1≤ k ≤ m. We claim that (ℓ, p1, . . . , pm) is
a multiMUM. By the definition of an lcp-interval, the
length ℓ string ω = Sk[pk..pk + ℓ− 1] is a common
prefix of the suffixes in [lb..rb]. It follows that ω oc-
curs exactly once in each of the strings S1, . . . ,Sm and
that (ℓ, p1, . . . , pm) is a multiple exact match. By con-
dition (3), it is left-maximal. Since there is at least
one index q in [lb..rb] so that LCP[q] = ℓ (definition
of lcp-interval), it is also right-maximal. In summary,
(ℓ, p1, . . . , pm) is a multiMUM.
Conversely, let (ℓ, p1, . . . , pm) be a multiMUM. That
is, the string ω= Sk[pk..pk+ℓ−1] (1≤ k≤m) occurs
exactly once in each sequence S1, . . . ,Sm. In combina-
tion with the right-maximality this implies that there
is an lcp-interval ℓ-[lb..rb] that contains exactly the
suffixes S1

p1
, . . . ,Sm

pm . This lcp-interval satisfies condi-
tions (1) and (2). It also satisfies condition (3) because
(ℓ, p1, . . . , pm) is left-maximal.

According to the preceding lemma we can com-
pute multiMUMs as follows: Enumerate all lcp-
intervals and for each lcp-interval ℓ-[lb..rb] of size m
check whether the m indices in [lb..rb] satisfy condi-
tions (2) and (3). In the example of Figure 2, 2-[8..10]
is the only lcp-interval of size 3. This interval fulfills
conditions (2) and (3) and hence it corresponds to the
multiMUM (2,2,1,2), which is the anchor in Figure 1.

It is well known that all lcp-intervals can be enu-
merated in O(n) (Abouelhoda et al., 2004; Kasai
et al., 2001). The enumeration algorithm is shown
in Appendix 8. An alternative method for computing
multiMUMs can be found in (Ohlebusch and Kurtz,
2008). It works by (a) separately streaming each
string S j (2≤ j ≤ m) against the suffix tree of S1 and
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Step 1: multiMUM finding
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III
III
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I
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I

I
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I
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II
II
II

III
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III

IV
IV

IV

IV
IV

IV

Figure 3: Schematic constructing of our backbone. Step 1
runs on the parse, while Step 3 is done on the base-level.
Note that the situation of multiMUM V is highly unlikely
to occur (especially on the parse-level) and would likely
indicate a transposition. This case is included solely to ex-
haustively display the reasons why a multiMUM may not be
included in the chain. Note that the Steps 1–3 here corre-
spond to Phases 2b–2d (see Introduction).

(b) combining the pairwise exact matches to multiple
exact matches. In fact, the method described in (Ohle-
busch and Kurtz, 2008) computes rare multiMEMs,
but it yields multiMUMs if the rareness-thresholds are
all set to 1.

5 FRAGMENT-CHAINING AND
EXTENSION OF ANCHORS

To find anchors, one must find a highest-scoring
global chain of colinear non-overlapping fragments.
In our context, a fragment f is a multiMUM
(ℓ, p1, . . . , pm). We associate a weight with each frag-
ment, denoted by f .weight. If f is a multiMUM on
the base-level, then we set f .weight = ℓ. If f is a
multiMUM on the parse-level, then f .weight is the
number of bases that are obtained by replacing the
identifiers (meta-symbols) in Sk[pk..pk + ℓ− 1] with
their phrases from the dictionary.

Roughly speaking, two fragments f and f ′ are col-
inear if their order is the same in all of the sequences.
In Step 1 of Figure 3, for example, the fragments I
and II are colinear, but II and V are not. Two frag-
ments overlap if their segments overlap in one of the
sequences (in Figure 3, the fragments I and VI are
overlapping, while I and II are non-overlapping).

We define a binary relation ≪ on the set of frag-
ments so that f ≪ f ′ if and only if f and f ′ are colin-
ear and non-overlapping.
Definition 3. Let f = (ℓ, p1, . . . , pm) and f ′ =
(ℓ′, p′1, . . . , p′m) be two fragments. We define f ≪ f ′

if and only if pk + ℓ−1 < p′k for all k with 1≤ k≤m.
We then say that f precedes f ′.

A chain C of colinear non-overlapping fragments
(‘chain’ for short) is a sequence of fragments
f1, f2, . . . , f j so that fi≪ fi+1 for all i with 1≤ i < j.
The score of C is score(C) = ∑

j
i=1 fi.weight.

Given m weighted fragments, the global fragment-
chaining problem is to determine a chain of high-
est score (called optimal global chain in the follow-
ing) starting at the origin 0 and ending at termi-
nus t. (The origin 0 = (0,0, . . . ,0) and the terminus
t= (0,n1+1, . . . ,nm+1) are artificial fragments with
weight 0. Note that 0≪ f ≪ t for every fragment f
with f ̸= 0 and f ̸= t.)

Let f ′.score be defined as the maximum score of
all chains starting at 0 and ending at f ′. Then f ′.score
can be expressed by the recurrence: 0.score = 0 and

f ′.score = f ′.weight+max{ f .score | f ≪ f ′}

A dynamic programming algorithm based on this re-
currence takes O(mk2) time to compute an optimal
global chain, where k is the number of fragments.

We can use the fact that we expect an optimal
global chain to contain almost all of the fragments to
reduce the expected time complexity to O(k logk +
mk): We sort the fragments by increasing position in
e.g. the first sequence and process them in this order.
Moreover, we maintain the already processed frag-
ments in an array sorted by score. For each fragment
f ′ we search for its predecessor of highest score as
follows: We consider the already processed fragments
(starting with the one with the highest score yet) and
pick the first fragment which is actually a predecessor
of f ′. For almost all fragments, the number of other
fragments checked will be one and the fragment will
be inserted at the end of the array. Of course, this
heuristic does not reduce the worst case time com-
plexity, but it works very well in our context.

The fragments (multiMUMs) in an optimal global
chain on the parse-level are the initial anchors of
the multiple alignment of the m sequences. Such
an anchor (a multiMUM of the parses) cannot be ex-
tended on the parse-level, but in most cases it can
be extended on the base-level. This is because the
phrases corresponding to two different meta-symbols
may share a common suffix (so that a left extension
on the base-level may be possible) or prefix (ditto for
a right extension). If we replace each meta-symbol in
a multiMUM on the parse-level with its corresponding
phrase from the dictionary, then we obtain a multi-
ple exact match on the base-level. We simultaneously
extend it base-by-base to the left (and right, respec-
tively) in each of the m sequences until a mismatch
occurs. Since such a mismatch is most likely a SNP,
we try to further extend it by the same procedure.
This iterative extension ends when less than 10 bases
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match exactly (simultaneously in all of the sequences)
beyond one mismatch. This is illustrated in Step 3 of
Figure 3: The anchors I, II, and IV are extended on
the base-level (anchor I is extended twice to the left).
After this extension step, we have the final anchors
(the backbone) of the overall multiple alignment.

6 GENERATING ALIGNMENTS
OF THE GAPS

After the computation of the anchors, we need to
fill the gaps between them. (Note that this can triv-
ially be parallelized because the alignments of two
gaps are independent of each other.) For small gaps,
we can simply use another multiple-sequence aligner
(we use FMAlign2 (Zhang et al., 2024) and MAFFT
(Nakamura et al., 2018)). However, when there are
large gaps, e.g. because the sequences are incomplete,
those other programs take very long to run.

For this reason, we try to fill the gaps using par-
tial multiMUMs. A partial multiMUM is a multiMUM
of a non-empty subset S of the sequences. For con-
venience, we denote it by (ℓ, p1, . . . , pm), where pi is
the position of the multiMUM in sequence i if this se-
quence is in S and pi = ⊥ otherwise (where ⊥ is a
special value indicating absence). We say the partial
multiMUM occurs in sequence i if and only if pi ̸=⊥,
and for all i ∈ {1, . . . ,m} with pi ̸= ⊥ it is required
that the string Si[pi..pi + ℓ−1] occurs exactly once in
Si. 3

In what follows, we describe our process of com-
pleting the alignment (Phase 3 in the Introduction) in
the six steps that are visualized in Figure 4. The Steps
1–5 correspond to Phase 3a and Step 6 equals Phase
3b.

Step 1: Find Partial multiMUMs. The first step is
to find partial multiMUMs. By definition, this can
be achieved using a trivial modification (replacing
rb− lb+ 1 = m with rb− lb+ 1 ≤ m in Lemma 2)
of the algorithm for finding multiMUMs. If the gap
is sufficiently large, we work on the parse-level, oth-
erwise we work on the base-level. If a previous at-
tempt on the parse-level of this gap did not yield any
new anchors, we also switch to the base-level. For

3Note that this definition does not require the converse
to be true (i.e. if the string Si[pi..pi + ℓ− 1] occurs exactly
once in sequence i, the partial multiMUM must not neces-
sarily occur in sequence i). This is because our algorithm
for chaining partial multiMUMs may discard the occurrence
of a partial multiMUM in a sequence in order to increase the
overall score of the chain (although this is unlikely).

Step 1: find partial multiMUMs
I

III
II

III
III

III

IV
IV

Step 2: chaining
I

I
III

III
III

IV
IV

Step 3: minimap2
I

I
≈I

III
III

III

IV
IV

Step 4: splitting
I

I
≈I

III
III

III

IV
IV

Step 5: recurse into large gaps
I

I
≈I

III
III

III

IV
IVV

V
Step 6: align small gaps externally

I
I

≈I

III
III

III

IV
IVV

V

Figure 4: Schematic filling of a large gap. Note that it is
possible to find multiMUMs that span all sequences (such
as III) which were not discovered when considering all se-
quences. This can happen when the same string also ap-
pears somewhere outside the large gap, or because we com-
pute multiMUMs on the base-level instead of on the parse-
level.

algorithmic reasons (see below), we require each par-
tial multiMUM to occur in more than half of the se-
quences.

Step 2: Chain Partial multiMUMs. As in the com-
putation of the backbone, we chain the fragments
(partial multiMUMs). However, the weight of a frag-
ment must now also incorporate the number of se-
quences the fragment occurs in. As new weight, we
use the length of the fragment multiplied by the num-
ber of sequences it occurs in (i.e. the total number
of bases it covers, as does FMAlign2 (Zhang et al.,
2024)). Unfortunately, chaining partial fragments ap-
pears to be fundamentally more difficult than chaining
fragments occurring in all sequences. This is due to
the fact that the≪-relation on partial fragments is not
transitive anymore.4 To circumvent this issue, we use
a heuristic. Specifically, we select k sequences and
then chain only those partial multiMUMs occurring in
all of these k sequences. The selected sequences are
those with the most bases covered by the found partial
multiMUMs. We do this for all k ∈ {⌊m

2 ⌋+1, . . . ,m},

4All (polynomial-time) chaining algorithms known to
us rely on this transitivity.
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I
I

II
II

III

III

IV

IV

V
V

Figure 5: Since we require that each anchor occurs in more
than half of the sequences, they can be linearly ordered
(I ≪ II ≪ III ≪ IV ≪ V). Consider the gap in the sec-
ond sequence between II and V (marked red). The anchors
III and IV are between II and V in the linear order, thus we
try to map them (the string they represent) to this gap us-
ing minimap2. Similarly, we would try to map II to the gap
between I and III in the third sequence (marked blue), I to
the gap before II in the first sequence, and V to the third
sequence after IV.

and then choose the resulting chain with the most
bases covered. The restriction k > m

2 is required for
every pair of partial multiMUMs to be either incom-
patible (i.e. overlapping or not colinear) or compara-
ble with≪, and thus ensures that the anchors can be
totally ordered.

The partial multiMUMs in the resulting ‘sub-
chain’ may have had occurrences in the m− k other
sequences, which should of course not be discarded.
Thus, we add them to the chain with a simple vari-
ant of the well-known algorithm for the heaviest in-
creasing subsequence (HIS) (Jacobson and Vo, 1992).
Since the order of the partial multiMUMs in the sub-
chain is fixed, this can be done separately for each
sequence.

Step 3: Extend Partial Fragments with Minimap2.
After computing such a sub-chain, we try to extend
each resulting partial fragment to the sequences it
does not occur in using the long read mapper min-
imap2 (Li, 2021). This is illustrated in Figure 5.

Recall that the fragments are linearly ordered be-
cause each occurs in more than half the sequences.
Let those fragments be f1 ≪ ·· · ≪ fk. We consider
each gap in each sequence separately. For such a gap,
we determine the two fragments fi and f j (1≤ i< j≤
k) that bound it and try to map the fragments between
them ({ fi+1, . . . , f j−1}) to this gap using minimap2.
The matches reported by minimap2 are then chained
using the same HIS variant as above.

Now the fragments in the sub-chain are not
changed anymore and are considered anchors.

Steps 4–6: Complete Alignment. After adding the
new anchors, we again try to split the large gap into
smaller gaps, which are independent of each other.

If a resulting gap is sufficiently small, we use
FMAlign2 to align it, otherwise we recurse. It may
be the case that, after splitting, a gap still contains
some anchors. (This happens when anchors occur in
too few sequences and do not lead to a split.) These

anchors are kept, and we ensure that chains in lower
recursion levels are consistent with them.

If there is a sequence in a large gap that can-
not be aligned to the other sequences via (partial)
multiMUMs or minimap2, this gap cannot be split.
However, since we can assume that there is no match
anyway (because neither minimap2 nor we could find
one), we remove this sequence from this gap before
recursing and ‘align’ it immediately after the gap.
This is only done when there are anchors exceeding
a given length that span the other sequences.

7 EXPERIMENTAL RESULTS

We implemented our algorithm in an experimental
tool, called PANAMA, in C++. The source code is
publicly available.5 For the construction of enhanced
suffix arrays we used the SDSL-lite library (Gog
et al., 2014).

We evaluated our implementation on two datasets,
namely data from the 1000 Genomes Project6 (56
GiB) and data from the draft human pangenome ref-
erence7 (21 GiB) (Liao et al., 2023). The generated
alignments are publicly available.8

The first dataset stems from (Boucher et al., 2021)
and contains 1000 human haplotypes of chromosome
19. The sequences within this set all have a length of
about 59 million base pairs. It can be viewed as a set
of complete telomere-to-telomere assemblies (there is
no missing data).

The second dataset contains the phased, diploid
assemblies of 47 genetically diverse humans. In or-
der to determine the ordering and orientation of the
contigs of the assemblies, we utilized the mapping
software gedmap (Büchler et al., 2023) as a long read
mapper. For each phased assembly A, we split each
contig cA of A into 500bp long reads and mapped
these to the reference genome hs37d5 including the
variants from the 1000 genome project (The 1000
Genomes Project Consortium, 2015). The resulting
alignments were chained and the best chain was used
to map cA to the reference. In most cases, the best
chain distinctly revealed the position and orientation
of cA relative to the reference. When a contig cA could
not be placed, it was excluded from further process-

5https://gitlab.com/qwerzuiop/panama
6http://dolomit.cs.tu-dortmund.de/tudocomp/chr19.10

00.fa.xz archived at https://www.uni-ulm.de/in/theo/resear
ch/seqana/panama

7https://s3-us-west-2.amazonaws.com/human-pange
nomics/index.html?prefix=working

8https://www.uni-ulm.de/in/theo/research/seqana/pana
ma
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Table 1: Wall clock time in minutes of the individual phases
for our two test sets and two PFP-moduli, and the maximum
RAM usage in GiB. The numbering of the phases refers to
the overview in the Introduction.

datasetmodulus c19100 c1920 c1100 c120

1: PFP 34 47 15 20
2: find backbone 28 125 9 35
3: align gaps 22 23 40 40

total 98 195 64 95
RAM 64 69 51 111

ing. We selected all contigs of A that were aligned to
chromosome 1 (the largest human chromosome) and
sorted them by their position. If necessary, we re-
placed them with their reverse complement. The con-
catenation of these ordered contigs (separated by spe-
cial symbols) was used as the (partial) DNA sequence
of chromosome 1 of assembly A. In our experiment,
we included all sequences (obtained in this way) that
covered at least 80% of chromosome 1, which was
the case for 92 out of the 94 assemblies. It is thus not
surprising that the lengths of the sequences in this set
range from 203 to 250 million base pairs. This means
that we allowed up to 20% missing data per sequence,
which is an additional challenge when generating the
alignment.

For filling the small gaps (at most 107 bases), we
used FMAlign2 (Zhang et al., 2024) with HAlign3
(Tang et al., 2022) as backend, and fell back to
MAFFT (Nakamura et al., 2018) in case FMAlign2
produced no output.9 We accepted a match from min-
imap2 when the reported MAPQ (‘mapping quality’)
value of the mapping was at least 30.10 Since the
modulus used in PFP for determining trigger strings
influences the expected length of the phrases, we eval-
uated our program PANAMA with different moduli
(20 and 100). The window size for the KR-hashing
was always 10, because it seems to not significantly
affect the properties of the parsing as long as it is suf-
ficiently large (Boucher et al., 2019). Note that a win-
dow size of 10 is also the default used in (Boucher
et al., 2019). The modulus for PFP in large gaps was
always 20.

All experiments were conducted on a Linux-6.5.0
machine with an AMD EPYC 7742 (64 cores, 128
threads) processor and 256GB of RAM. We com-
piled PANAMA with GCC 11.4.0 with optimiza-

9FMAlign2 crashes on some inputs. This affects mostly
simple cases, e.g. where all sequences are prefixes of the
same string.

10This corresponds to probability of the mapping being
wrong of at most 0.01%. Note that after accepting matches,
we still chain them.

tion flags -O3 -funroll-loops -march=native
-DNDEBUG. The reported wall clock time was mea-
sured with the utility GNU Time. The reported RAM
usage was calculated by measuring the maximum res-
ident system RAM usage during execution and sub-
tracting the resident system RAM usage before/after
execution.11 The results of our experiments can be
seen in Tables 1 and 2. By far the most memory hun-
gry phase is Phase 3, which invokes external aligners
in parallel (the external aligners are responsible for
most of the maximum RAM usage here). Therefore,
the memory usage of PANAMA could greatly be re-
duced by reducing the number of concurrent threads.

There is no data missing in the chromosome 19
dataset, thus the gaps in the backbone (i.e. after ex-
tension 2d) are small. Tables 1 and 2 show that
PANAMA can generate a high quality multiple align-
ment of 1000 haplotypes of chromosome 19 within
hours. (Of course, such a high quality alignment is
possible only if the input sequences are very similar,
which is the case here.)

In contrast, on the chromosome 1 dataset, the
number of bases per sequence varies greatly because
we had to use contigs instead of whole chromosomes.
This variance leads to large gaps in the backbone. In
particular, there is one large gap for which PANAMA
could not produce a reasonable alignment. This gap is
located around the centromere (Logsdon et al., 2024),
starting at around base 1.03 ·108 and ending at around
base 1.36 · 108.12 The centromere is known to be
particularly difficult to align as it is highly repetitive
(Logsdon et al., 2024). Since PANAMA was unable
to generate a reasonable alignment of the centromeric
region, the coverage is ‘only’ 81%, see Table 2.

Note that the suffix array construction algo-
rithms in the SDSL-lite library (DivSufSort and
qsufsort) are not the fastest ones that exist (see e.g.
(Olbrich et al., 2024) for a recent comparison) and
are not parallelized. Moreover, the library is gener-
ally focused on low memory usage instead of runtime.
Therefore, we conjecture that the performance (espe-
cially of Phase 2a ‘compute GSA’) of our implemen-
tation can be significantly improved.

We also ran FMAlign2 (with HAlign3 as back-
end), HAlign3, and MAFFT v7.490 (all with 128

11Since FMAlign2 and PANAMA execute other external
programs, measuring RAM usage with e.g. GNU Time is
not sufficient.

12Since the reference genome is not part of our dataset,
the stated positions are estimated as the number of bases
preceding the gap. The start position of the gap varies by
less than 106 bases, but the number of bases per sequence in
this gap ranges from 1.2 ·107 to 5.7 ·107. The reported end
position is the start position plus the median of the number
of bases in the sequences in this gap.
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Table 2: Evaluation of the generated alignments: The number of anchors equals the number of multiMUMs in the chain
computed in Phase 2c. The number of extensions equals the number of left or right extension of anchors beyond a mismatching
column made in Phase 2d. This can also be seen as the number of potentially detected SNPs at this phase. Percent coverage is
the number of bases that are included in our alignment relative to the overall number of bases. Percent identity is the number
of 100% identity columns (i.e. columns without gaps in which all bases are identical) relative to the alignment length. The
centromeric region of chromosome 1 is included in all measurements but excluded from the computation of the identity.

datasetmodulus c19100 c1920 c1100 c120

# anchors 88788 305480 336206 640794
# extensions 335644 509986 661532 712606

coverage in %:
after 2c (chain) 19.01 49.30 23.28 49.27
after 2d (extend) 65.84 92.57 63.98 70.32
final alignment 100 100 81.38 81.38

identity in %: 97.93 98.15 75.93 75.90

Table 3: Results of FMAlign2, HAlign3, and PANAMA
(with PFP modulus 100) on a few haplotypes of chromo-
some 19. The given time is the wall clock time.
(a) FMAlign2 running on small sets of chromosome 19 hap-
lotypes.

#haplotypes 2 3 4 5 6 7

time (min) 36 78 123 167 216 270
RAM (GiB) 19 27 35 43 51 59

(b) HAlign3 running on small sets of chromosome 19 hap-
lotypes.

#haplotypes 2 4 16 24 26

time (min) 0.6 0.7 1.0 1.6 2.4
RAM (GiB) 10.0 12.2 26.5 32.2 32.5

(c) PANAMA running on small sets of chromosome 19 hap-
lotypes.

#haplotypes 2 4 16 24 26

time (min) 0.2 0.4 1.2 1.7 1.8
RAM (GiB) 0.4 0.5 0.8 1.0 1.2

threads and otherwise default options) on sets of chro-
mosome 19 haplotypes. The results are shown in
Table 3. FMAlign2 is able to compute the align-
ment of 3 to 6 haplotypes in the time PANAMA
requires for all 1000 (depending on the modulus
used), but is not suitable for the whole chromosome
19 dataset. On these datasets, HAlign3 is much
faster than FMAlign2 but still slower than PANAMA.
HAlign3 crashed on cases with more than 26 hap-
lotypes with a “NullPointerException”. MAFFT
already crashed on two chromosome 19 haplotypes
with a “TOO MANY SEGMENTS” error.

8 CONCLUSION AND FUTURE
WORK

The experiments showed that our tool PANAMA can
very efficiently generate a pangenomic-scale multiple
alignment of assembled genomes of the same species,
provided that structural variants seldomly occur. It
could be argued that in the presence of large-scale
chromosomal rearrangements, a (colinear) multiple
alignment of the chromosomes does not make sense
at all. In that case, a pangenome graph is a better rep-
resentation of the genomes (Baaijens et al., 2022).

We plan to extend our work in such a way that
it can deal with large-scale structural variants. Our
approach can be modified to address this very impor-
tant topic as follows: instead of computing a multiple
alignment, it should be possible to use the syntenic re-
gions as the backbone of a pangenome graph. In the
construction of the full pangenome graph, transposi-
tions and inversions can be detected. Moreover, pro-
grams for pangenome graph generation can be used
to deal with the remaining (relatively small) gaps be-
tween anchors.
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APPENDIX

A Enumeration of LCP-Intervals

(Kasai et al., 2001) presented a linear time algorithm
to simulate the bottom-up traversal of a suffix tree
with a suffix array and its LCP-array (which, given
the suffix array, can be constructed in linear time).
The following algorithm is a slight modification of
their algorithm TraverseWithArray, cf. (Abouelhoda
et al., 2004). It computes all lcp-intervals of the
LCP-array with the help of a stack. The elements
on the stack are lcp-intervals represented by tuples
⟨lcp, lb,rb⟩, where lcp is the lcp-value of the inter-
val, lb is its left boundary, and rb is its right bound-
ary. In Algorithm 1, push (pushes an element onto the
stack) and pop (pops an element from the stack and
returns that element) are the usual stack operations,
while top provides a pointer to the topmost element
of the stack. Furthermore, ⊥ stands for an undefined
value. We assume that array indexing starts at 1 and
that LCP[1] =−1 = LCP[n+1].

Function Enumerate(LCP):
push(⟨0,1,⊥⟩);
for k = 2→ n+1 do

lb← k−1;
while LCP[k]< top().lcp do

top().rb← k−1;
interval← pop();
report(interval);
lb← interval.lb;

end
if LCP[k]> top().lcp then

push(⟨LCP[k], lb,⊥⟩);
end

end
Algorithm 1: Given the LCP-array of a string of length n,
this algorithm enumerates all lcp-intervals.
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