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Abstract: We present a novel real-time framework for the detection, instance segmentation, and tracking of soccer play-
ers in video footage. Our method, called ReST, is designed to overcome challenges posed by complex player
interactions and occlusions. This is achieved by enhancing video frames by incorporating motion vectors ob-
tained using the Scharr filter and frame differencing. This provides additional shape cues over RGB frames
that are not considered in traditional approaches. We use the Generalized Efficient Layer Aggregation Net-
work (GELAN), combining the best qualities of CSPDarknet53 and ELAN as a robust backbone for instance
segmentation and tracking. We evaluate our method rigorously on both publicly available and our proprietary
(SoccerPro) datasets to validate its performance across diverse soccer video contexts. We train our model
concurrently on multiple datasets, thereby improving generalization and reducing dataset bias. Our results
demonstrate an impressive 97% accuracy on the DFL Bundesliga Data Shootout, 98% on SoccerNet-Tracking,
and 99% on the SoccerPro dataset. These findings underscore the framework’s efficacy and practical relevance
for advancing real-time soccer video analysis.

1 INTRODUCTION

Soccer player tracking is essential for coaches, an-
alysts, and sports scientists. By analyzing player
movements, teams gain insights into performance,
strategy, and overall game dynamics. Advanced
tracking systems provide detailed analysis of player
positioning, speed, acceleration, and distance cov-
ered, which are crucial for optimizing training pro-
grams, enhancing strategic decision-making, and
improving player performance (Bialkowski et al.,
2014b). Recent technological advancements have en-
abled the collection of high-resolution spatial and
temporal data. Systems like GPS trackers, optical
tracking systems, and wearables have revolutionized
player movement monitoring and analysis (Baysal
and Duygulu, 2016; Csanalosi et al., 2020). Player
tracking aids in performance analysis and plays a vital

a https://orcid.org/0000-0001-8447-2686
b https://orcid.org/0000-0003-2363-4586
c https://orcid.org/0000-0002-8197-4696
d https://orcid.org/0000-0002-2778-2802
e https://orcid.org/0000-0003-2752-3525
f https://orcid.org/0000-0002-0546-2816

role in injury prevention and rehabilitation by identi-
fying risky movement patterns and managing work-
loads (Ehrmann et al., 2016; Khaustov and Moz-
govoy, 2020). Motion vectors, a crucial component of
video compression technologies, represent the motion
of pixel blocks between consecutive frames in a video
sequence (Xu et al., 2016; Furht et al., 1997; ITU-T,

Figure 1: Comparison of HOTA (top row) and MOTA (bot-
tom row) for both the MOT17 (left column) and MOT20
(right column) datasets (X-axis: IDF1; see Sec. 4.3 for a
description of these metrics) with the state-of-the-art (OC-
Sort (Cao et al., 2023), ByteTrack (Zhang et al., 2022), BoT-
Sort (Aharon et al., 2022), StrongSort (Du et al., 2023),
and MotionTrack (Qin et al., 2023). Our method, ReST,
achieves superior performance for all metrics.
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2021). By estimating object motion in a video, mo-
tion vectors enable efficient compression by predict-
ing object movement from one frame to another.

In soccer player tracking, motion vectors can en-
hance tracking accuracy and efficiency. Traditional
methods often rely on visual features or markers,
which can be computationally intensive and prone to
errors, especially in occluded or crowded scenes. Mo-
tion vectors offer a robust alternative by leveraging in-
herent motion information in video sequences, allow-
ing for more accurate real-time player tracking (Ma-
jeed et al., 2024). Instance segmentation, a criti-
cal task in computer vision, involves identifying and
delineating each object instance within an image or
video frame (He et al., 2017). In sports analytics, in-
stance segmentation plays a pivotal role by enabling
precise localization and tracking of individual players
amidst occlusion and complex interactions (Kirillov
et al., 2019).

In this paper, we introduce a novel real-time
Recognition, Segmentation, and Tracking (ReST) ap-
proach that uses enhanced motion vector instance seg-
mentation to achieve high-precision tracking of soc-
cer players. Our approach leverages advanced mo-
tion vector analysis to enhance player identification
and tracking accuracy, particularly in challenging sce-
narios such as occlusions and crowded environments.
By combining recognition, segmentation, and track-
ing in a unified framework, our method ensures that
each player’s position and identity are continuously
monitored and updated with high precision. Further-
more, we address computational complexity by de-
veloping efficient algorithms for real-time analysis on
standard hardware (Manafifard et al., 2017). Addi-
tionally, our system scales to large datasets and mul-
tiple players and integrates diverse data sources into
a unified framework for comprehensive player move-
ment analysis (Wehbe et al., 2014; Naik et al., 2022;
Diop et al., 2022). Our unified framework, ReST,
adds the following to the existing literature.

1. Motion vector instance segmentation—our novel
approach provides accurate and dependable
player tracking under challenging conditions
(e.g., camera movement, zoom, partial occlu-
sions).

2. SoccerPro—a new dataset featuring 1,495 soc-
cer match mp4 videos with annotations with four
classes for both consecutive and random frames.

3. ReST architecture—a new framework minimizing
computational complexity and facilitating highly
accurate real-time analysis on consumer hard-
ware.

4. Scalability— Our system copes with large-scale

datasets and multiple players effectively while de-
livering consistent and dependable performance.

5. Multimodality— Our unified framework uses
multiple data sources, enabling a comprehensive
understanding of player movement and enhancing
tracking performance.

2 RELATED WORK

2.1 Segmentation

Video instance segmentation was pioneered with the
introduction of the YouTube-VIS dataset (Yang et al.,
2019). This dataset comprises 2,883 high-resolution
YouTube videos annotated with a 40-category label
set and 131k high-quality instance masks. Later
benchmark data sets such as BURST (Athar et al.,
2023) have contributed significantly to object detec-
tion, segmentation, and tracking in complex scenes.
This has led to mask-free video instance segmen-
tation (Ke et al., 2023) using only bounding boxes
for object delineation. The latter method has been
validated on benchmark datasets like YouTube-VIS
2019/2021, OVIS, and BDD100K MOTS, narrowing
the gap between fully and weakly supervised video
instance segmentation methods.

Aiming at improving memory efficiency, the gen-
eralized framework GenVIS (Heo et al., 2022; Heo
et al., 2023) achieves state-of-the-art performance on
challenging benchmarks without relying on complex
architectures or additional post-processing. GenVIS
uses an innovative learning strategy that involves a
query-based training pipeline for sequential learning
with novel target label assignment methods. Deep-
SportLab (Ghasemzadeh et al., 2021) is a comprehen-
sive framework for automated sports analytics, pro-
duction, and broadcast. The framework addresses
tasks such as ball localization, pose prediction, and
instance mask segmentation of players in team sports
scenes, significantly advancing the field of sports
video analysis.

2.2 Tracking

Traditional player tracking methods in soccer relied
predominantly on visual features and markers. They
employ cameras to capture player movements and use
computer vision for analysis (Mazzeo et al., 2008).
One of the earliest and most widely used approaches
involves using multiple fixed cameras around the sta-
dium. Systems like ProZone and TRACAB combine
data from several cameras to create a 3D reconstruc-
tion of the playing field and to track players (Cintia
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et al., 2015; Linke et al., 2020). Despite their effec-
tiveness, these methods often struggle with occlusion
(players blocking each other from the cameras’ view).
Furthermore, the need for real-time image processing
can make them computationally expensive (Zhang,
2012).

Computer vision-based techniques for object de-
tection and tracking involve several key steps. Back-
ground subtraction analyzes differences between con-
secutive frames to separate moving objects (players)
from the static background. Popular algorithms in-
clude Gaussian Mixture Models (GMMs) and Ker-
nel Density Estimation (KDE) (Stauffer and Grim-
son, 1999; Zivkovic, 2004). Once identified, mov-
ing objects are segmented from the background to
obtain clean player silhouettes using thresholding,
morphological operations, graph-cut algorithms, etc.
Features like color, texture, and shape are extracted
from segmented player regions to distinguish individ-
ual players and track their motion across frames (Co-
maniciu et al., 2003). Various tracking algorithms,
such as Kalman filters, particle filters, and mean-
shift trackers, estimate player positions and trajec-
tories based on the extracted features (Yilmaz et al.,
2006).

Marker-based systems, on the other hand, rely on
markers designed for easy detection that are worn by
the players. These markers provide clear reference
points, thus making the methods more accurate. How-
ever, they can be intrusive and less practical in pro-
fessional settings where players may find the markers
cumbersome (Rudovic et al., 2018). Despite advance-
ments, these traditional methods face significant chal-
lenges, particularly with respect to scalability, com-
putational complexity, and integration with other data
sources like GPS and wearable sensors (Bialkowski
et al., 2014b).

2.3 Motion Vector Analysis

Recent advances in motion vector extraction have
shown significant potential for improving player
tracking systems. Motion vectors, a crucial compo-
nent of video compression technologies (e.g., H.264
and H.265), represent the motion of pixels or pixel
blocks between consecutive frames. This enables
efficient compression by predicting object move-
ment (ITU-T, 2021; Furht et al., 1997). Motion vector
frames add discontinuities or edges around moving
objects in video sequences, data that is not necessarily
available in traditional RGB frames. This information
helps in resolving occlusions if objects do not move
at the same speed. As a result, using a combination of
motion vectors and RGB can enhance tracking accu-

racy (Alvar and Bajić, 2018; Kale et al., 2015).
Recent advances also include deep learning tech-

niques for predicting and exploiting motion vectors.
Convolutional Neural Networks (CNNs) have been
applied to motion estimation tasks, achieving state-
of-the-art performance by learning complex motion
patterns from large video datasets (Ilg et al., 2017).
Optical flow techniques, which estimate the apparent
motion of pixels between consecutive frames, have
improved with deep learning-based methods, achiev-
ing high accuracy and real-time performance (Ran-
jan and Black, 2017). Techniques for refining mo-
tion vectors to improve accuracy and reduce errors
often utilize additional information like object seg-
mentation or edge detection (Shah et al., 2021). (Liu
et al., 2023; Naik and Hashmi, 2023) presented a
deep learning-based real-time soccer player tracking
framework that combines motion vectors with visual
features, achieving state-of-the-art performance.

2.4 Sports Analytics

Advanced player tracking systems have broad appli-
cations in sports analytics, offering detailed insights
into player performance, team strategies, and game
dynamics. This data is crucial for optimizing train-
ing programs, making tactical decisions, and enhanc-
ing player performance (Bialkowski et al., 2014b).
Player tracking data helps analyze movements, speed,
acceleration, and other performance metrics, aiding
coaches and analysts in evaluating player strengths
and weaknesses and identifying areas for improve-
ment (Kamble et al., 2019). Tracking data is also used
to analyze team formations, player positioning, and
passing patterns, helping coaches understand team
play and develop counter-strategies (Bialkowski et al.,
2014a). Moreover, tracking data monitors player
workloads and identifies potential injury risks, assist-
ing coaches and medical staff in managing training
and preventing injuries (Christopher and Benjamin-
Damon, 2021).

Extending beyond professional sports, monitoring
is increasingly used in youth and amateur sports to
improve performance. Integrating multi-source data,
including video, GPS, and wearable sensors, allows
for comprehensive analysis of the physical condi-
tion of players, contributing to a holistic approach to
sports analytics (Murr et al., 2018).
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Figure 2: (a) Dataset creation pipeline from the given videos. (b) Annotating and labelling of the data set, step-by-step.

3 METHODOLOGY

3.1 Dataset Acquisition

For this study, we combine three datasets geared
towards the multiple object tracking (MOT) task: the
complete DFL-Bundesliga Data Shootout (Deutsche
Fussball Liga (DFL), 2022), complete SoccerNet-
Tracking (Deliège et al., 2021; Cioppa et al.,
2022)), and our own, curated SoccerPro dataset.
These datasets provide a diverse and comprehensive
collection of soccer game videos, ensuring the
robustness and generalizability of our method. The
details of these datasets are given below and in Tab. 1.

DFL-Bundesliga Data Shootout. 37.55GB of mp4
videos acquired from the German National Football
Association and the Deutsche Fußball Liga (DFL).
It also includes csv metadata, totalling 246 files split
into clips, test, and training sets (Deutsche Fussball
Liga (DFL), 2022).

SoccerNet-Tracking. 187.8GB of videos from ma-
jor European leagues, featuring 12 full soccer games
captured at 1080p/25fps, from which 200 30-second
clips were derived, along with tracking data (Deliège
et al., 2021; Cioppa et al., 2022)). In total, it con-
sists of 500 videos of the Premier League (Eng-
land), UEFA Champions League, Ligue-1 (France),
Bundesliga (Germany), Serie-A (Italy), and LaLiga
(Spain).

Table 1: Benchmark datasets and SoccerPro (ours).

Source Clips Duration Games

DFL 200 30s 9
SoccerNet-Tracking 201 50m 12

SoccerPro 1,459 50m 47

Total 1,860 1,385h 68

SoccerPro. Our dataset is the largest of the three at
4.7TB. It comprises 1,459 videos from various Eu-
ropean leagues, captured at 720p to 1280p and 30
or 50fps. It includes 47 full games (13 captured at
720p/50fps, 17 at 1080p/30fps, and 17 at 720p/30fps).

3.2 Annotation and Labeling

We extracted frames from videos using a Python
script. We then split frames into two batches, con-
secutive frames and non-consecutive frames, the lat-
ter with a randomized offset. In each batch, we fur-
ther organize the data in three perspective categories:
nearfield, midfield, and widefield (cf. Fig. 2a). Next,
we utilized Roboflow’s smart polygon (single click)
feature to annotate and label our proprietary Soccer-
Pro dataset and the two benchmark datasets. We also
annotated a subset of each dataset by manually label-
ing the frames to create ground truth data for our su-
pervised training pipeline (cf. Fig. 2b). Each player
in a frame was annotated by a bounding box and an
instance mask, providing the detailed spatial informa-
tion necessary for instance segmentation. These pre-
processing steps ensure that the input data is of high
quality and suitable for our instance segmentation and
tracking model.

3.3 Architecture

Our architecture consists of three components,
dubbed Backbone, Neck, and Head. The Backbone
is dedicated to image processing, data augmentation,
and extracting feature maps from the input data. The
Neck uses a path aggregation network (PAN) to re-
duce the feature maps at different scales. The Head
incorporates the motion vectors and performs in-
stance segmentation and tracking. Finally, our frame-
work also uses both coarse- and fine-grained motion
information extracted using a DenseNet operating on
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Figure 3: The ReST architecture consists of three components. The Backbone extracts features from input frames. The
Neck uses a Path Aggregation Network (PAN) to reduce the feature maps at different backbone feature maps, labeled
{C4,C5,C6,C7} and pyramid feature maps, labeled {P4,P5,P6,P7} with indices denoting the corresponding scale. The
Head incorporates the motion vectors to perform motion compensation, instance segmentation and tracking. We use four
segmentation heads with different dimensions, namely 152×152, 76×76, 38×38, and 19×19.

frame differences and a deep optical flow network, re-
spectively.

3.3.1 Backbone and Preprocessing

Our preprocessing pipeline involves several key steps
to prepare the data for training, including the inte-
gration of motion vectors for enhanced instance seg-
mentation and tracking. We use the Generalized Ef-
ficient Layer Aggregation Network (GELAN), com-
bining the best qualities of CSPDarknet53 and ELAN
as a robust backbone for instance segmentation and
tracking. We begin by extracting frames and motion
vectors from the video data using the mv-extractor
tool (Bommes et al., 2020). It decodes H.264 and
H.265 video frames to RGB images, frame types,
and time stamps. It also extracts the motion vectors.
We then clean the extracted data by removing corrupt
frames, checking for missing data, and correcting in-
consistencies. At the same time, we synchronize the
frames with their corresponding motion vectors. This
is done by aligning the timestamps of the motion vec-
tors to ensure that they correctly map to their respec-
tive objects. As we demonstrate in our results, the
integration of motion vectors significantly enhances
our model’s ability to distinguish between players and
track their movements accurately, even in challenging
scenarios with partial occlusion.

Afterwards, we resize the processed images to
640×640 pixels with three color channels and store
them on disk. Likewise, motion vectors are stored on
disk but are reserved for the later head component. At
this stage, we also compute normalization coefficients
in order for the images and motion vectors to be on a
consistent scale across different datasets.

3.3.2 Neck—Feature Pyramid Network

The extracted features are then forwarded to the Neck
stage for feature fusion, specifically to the Path Ag-
gregation Network (PANet). We use Feature Pyramid
Networks (FPN) (Lin et al., 2017) to construct a
multi-level feature pyramid that enables the accurate

representation of objects at varying scales. For
tasks where recognizing objects at different scales is
crucial, the hierarchical nature of FPNs is particularly
useful. In our scenario, this corresponds to players
at various distances from the camera. By combining
low-resolution, semantically strong features with
high-resolution, semantically weak features, FPNs
support the detection of small objects with (in our
case) four different backbone feature maps, labeled
{C4,C5,C6,C7} and pyramid feature maps, labeled
{P4,P5,P6,P7} in Fig. 3, while maintaining accurate
localization of larger objects. FPNs are typically
built on top of a standard CNN, such as a ResNet,
and consist of two main pathways, bottom-up and
top-down.

Bottom-Up Pathway. The forward pass of the back-
bone network (e.g., ResNet) generates feature maps
at multiple scales by applying a series of convolu-
tional and downsampling layers. As we move deeper
into the network, the spatial resolution of the feature
maps decreases while the semantic richness increases.

Top-Down Pathway. Starting from the highest-level
feature map (lowest resolution), this pathway progres-
sively upsamples. At each level, the upsampled fea-
ture map is combined with the corresponding feature
map from the bottom-up pathway using lateral con-
nections, which are represented by 1×1 convolutions.
The process to obtain the feature map Pl at level l of
the pyramid can be formalized as follows.

Pl = Upsample(Pl+1)+Conv1×1(Cl). (1)

Here, the feature map at the higher pyramid level l+1
is upsampled and then combined with the correspond-
ing feature map from the bottom-up pathway.

This fusion of high-level semantics with fine spa-
tial details creates a set of feature maps with im-
proved resolution and semantic content at each scale.
The merged bottom-up and top-down feature maps
are further processed by 3×3 convolutions to gen-
erate the final output feature maps. In our case, we
repeat this process for four levels, resulting in fea-
ture maps P4,P5,P6,P7, with indices indicating scale.
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Since these maps allow us to detect objects across a
range of sizes in a single forward pass, they make our
network more efficient and accurate.

3.3.3 Head—Instance Segmentation

The instance segmentation head is a crucial compo-
nent designed to generate pixel-wise masks for each
detected object in an image. Pixel-wise masks are
particularly important in overlap scenarios which
are not well described by simple bounding boxes.
The architecture of the head can be broken into the
following sequence.

Input Features. The instance segmentation head
receives feature maps from the Feature Pyramid Net-
work (FPN) that contain rich multi-scale information
about objects of various sizes and appearances.

Mask Prediction. The core of the segmentation
head consists of several convolutional layers that are
applied to the feature maps. These layers progres-
sively refine the spatial resolution while retaining the
semantic information necessary for accurate mask
prediction. Typically, a 4×4 deconvolution layer is
employed to upsample the lower-resolution features,
followed by a series of 3×3 convolutional layers.
The output is a set of binary masks, where each mask
corresponds to a single detected object.

Objectness and Class-Specific Masks. The segmen-
tation head is designed to predict both the objectness
score and the class-specific binary masks. During the
training phase, the model learns to generate masks
that are associated with specific object classes. This
approach ensures that the masks not only delineate
the object’s boundaries but also correspond to the
correct class label, enhancing the accuracy of instance
segmentation.

RoIAlign. To maintain spatial alignment between
the predicted masks and the input image, we uti-
lize the Region of Interest Align (RoIAlign) opera-
tion. RoIAlign extracts fixed-size feature maps cor-
responding to each proposed region of interest (RoI)
from the feature pyramid. This operation ensures that
the mask predictions are accurately aligned with the
original image, avoiding the misalignment issues that
arise from quantization in RoIPooling.

The RoIalign in our framework leverages the
rich multi-scale features provided by the FPN. This
enables our framework to make precise mark predic-
tions through convolutional layers and class-specific
segmentations. It also ensures spatial accuracy. The
instance segmentation head, therefore, provides a
solid foundation for accurate object discrimination.

However, since the hierarchy levels in the FPN are of
different resolution, the following high-quality image
reconstruction step is required to make the best use
of the information stored in the FPN.

Image Reconstruction. The downsampled feature
maps in the FPN require adequate upsampling in or-
der to match the resolution of other levels in the same
pyramid. For this task, we use deconvolution layers
and residual learning to recover and enhance details
lost during downsampling. First, the feature maps
{FMl}L

l=1 are upsampled through deconvolution lay-
ers, which restore spatial resolution by progressively
enlarging the feature maps. Using weights Wl and bi-
ases bl , this can be formalized as:

F̂Ml = FMl ⋆
T Wl +bl , (2)

where ⋆T denotes the transposed convolution oper-
ation, acting as a pseudo-inverse of the convolution
⋆. This process increases spatial dimensions and en-
hances feature detail, contributing to finer reconstruc-
tion.
Residual learning is then applied to each level l to en-
hance fine details by adding prior feature information.
The reconstruction Rl at level l is computed as:

Rl = FMl +F (FMl−1,Wr) , (3)

where F (·) represents the residual function (e.g., a
convolution operation) with weights Wr, and Rl is the
output feature map with added detail from the previ-
ous layer FMl−1. This approach allows for efficient
gradient flow and enhances reconstruction by miti-
gating information loss through downsampling. This
combination of upsampling and residual addition en-
ables the model to accurately reconstruct images with
preserved structural details and minimise information
loss.
Frame Differencing. To capture motion across
video frames and effectively isolate moving objects
from static backgrounds, we employ a combina-
tion of frame differencing and optical flow tech-
niques. This framework is applied across various
field perspectives—nearfield, midfield, and widefield
(cf. Fig. 2a)—to handle different spatial and tempo-
ral resolutions. We compute frame differences be-
tween consecutive and non-consecutive frames with
different temporal offsets to detect motion over short
and long time scales. The difference between frames
highlights areas of movement, which typically corre-
spond to players or other dynamic elements on the
field. For consecutive frames, the frame difference
∆t,t−1 between frames It and It−1 is calculated as the
absolute difference in pixel intensities,

∆t,t−1 = |It − It−1|. (4)
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Figure 4: Motion vectors provide additional edge cues. Top row: relatively static scenarios from the SoccerNet-Tracking
repository dataset shot with a professional PTZ camera at 1080p (frame ID 5dc4fe12 00083). Bottom row: dynamic camera
from our SoccerPro dataset, 720p and likely to be recorded on a mobile phone. In each row, left to right: RGB image, Scharr
edges of the RGB image, color-coded motion vectors, and edges of the motion vectors.

∆t,t−1 highlights motion areas, allowing the identifi-
cation of moving players.

To capture movement over longer intervals or var-
ious perspectives, we extend this method to com-
pute differences between non-consecutive frames It
and It−k, where k ∈ N is a variable temporal offset
adjusted to the target perspective (e.g., nearfield for
close action, widefield for more global play).

∆t,t−k = |It − It−k|. (5)

1: Procedure Draw MV(F, MV, Minst, Otrack)
2: if |MV |> 0 then
3: Nmv← shape(MV)[0]
4: for mv in split(MV, Nmv) do
5: start← (mv[0,3],mv[0,4])
6: end← (mv[0,5],mv[0,6])
7: cv2.arrowedLine(F,start,end,\

(0,0,255),1,cv2.LINE AA,0,0.1)
8: end for
9: end if

10: for each instance segment M ∈Minst do
11: Overlay M on F with a unique color
12: end for
13: for each object O ∈ Otrack do
14: Track O across frames; update position
15: Draw bounding box or contour \

around O on F
16: end for
17: return F

Algorithm 1: Our approach to draw overlay motion vec-
tors using OpenCV2 to analyze instance segmentation and
tracking results. F: current frame, MV: motion vectors,
Minst: object instances, Otrack: tracked objects.

This multi-scale differencing framework provides
comprehensive motion information across different
spatial and temporal resolutions, enhancing object
tracking and distinguishing dynamic elements from
static backgrounds.

Fine-grained Motion Estimation. To further en-
hance the accuracy of motion estimation, we incor-
porate a state-of-the-art optical flow algorithm based
on deep learning, called RAFT (Recurrent All-Pairs
Field Transforms) (Teed and Deng, 2020). Optical
flow provides dense, pixel-wise motion estimation by
analyzing frame-to-frame displacements, thereby of-
fering precise motion tracking beyond the limitations
of frame differencing. For each pair of frames It and
It−k, the optical flow field ot,t−k is computed as

Ot,t−k = OpticalFlow(It , It−k), (6)

where the optical flow algorithm estimates the
displacement vector (direction and magnitude) for
every pixel between the two frames. This provides a
fine-grained understanding of player movements and
ball trajectories. By combining frame differencing
and optical flow, our method provides a robust
framework for detecting and tracking motion across
different temporal and spatial scales. This hybrid
approach enables accurate motion estimation for both
short-term dynamic actions and long-term strategic
movements on the soccer field.

Motion Vectors. Building upon the motion detec-
tion established through frame differencing and op-
tical flow, we employ Bommes’ motion vector ex-
traction technique (Bommes et al., 2020). This tech-
nique determines the motion vectors between consec-
utive and non-consecutive (nearfield, midfield, wide-
field) frames, providing essential data for subsequent
analysis. We then decode the frames into RGB im-
ages, incorporating motion vectors, frame types, and
timestamps using H.264 and H.265 codecs, known for
their high compression rates, superior image quality,
and broad compatibility. By leveraging object motion
captured in these vectors, we enhance the accuracy
of both predicted bounding boxes and instance seg-
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Figure 5: Input Frame shows the initial frame; Frame Dif-
ferencing highlights motion areas; Motion Detected marks
active regions with bounding boxes; Motion Computed il-
lustrates direction and magnitude with vectors; Tracking
with Instance Segmentation differentiates moving objects.

ments, particularly in scenarios involving partial oc-
clusion among players.

To analyze the extracted motion vectors, we plot
individual frames with object instance segmentation
and motion vectors overlayed. Our approach to do
so is outlined in Algorithm 1. To this end, we use
OpenCV2 functionality and use either bounding
boxes or contours to highlight the individual objects
(players, ball, referees, etc.).

Rationale for using Motion Vectors. In our pipeline,
we utilize the Scharr filter (Schar, 2000), a variant of
the Sobel operator optimized for rotational invariance,
to enhance the delineation of soccer players by detect-
ing motion vector discontinuities under the assump-
tion that player movement produces prominent mo-
tion edges against a static background. In particular,
as can be seen in Fig. 4, motion edges do not neces-
sarily coincide with RGB edges, providing additional
information–that is not readily available from RGB-
only–to help with object segmentation. We believe
these additional shape cues to be essential for precise
instance segmentation of players. Particularly, for a
widefield, fixed-camera scenario, static regions yield
negligible motion vector magnitudes, enabling clear
foreground-background separation.

Tracking. Our tracking pipeline leverages a modi-
fied version of the BoT-SORT tracker (Aharon et al.,
2022) to enhance motion tracking performance, em-
bedding capabilities, and Intersection over Union
(IoU) metrics. To process frame differences into mo-
tion estimates, we use a DenseNet with motion vec-
tors estimated at object centroids for motion compen-
sation during tracking, as shown in Fig. 5. Further-
more, per-pixel motion vectors based on an optical
flow network (Teed and Deng, 2020) are combined
with RGB images to facilitate our simultaneous de-
tection, segmentation, and tracking processes.

4 EXPERIMENTS

We evaluated our proposed methodology using two
benchmark datasets and a curated, proprietary dataset,
SoccerPro. We use a model provided by Torchvi-
sion that was specifically pre-trained on the COCO
dataset. We retrained the model concurrently on all
three datasets, keeping hyperparameters consistent
throughout the training process.

4.1 Training

For training, we divide the data into three parts: 70%
for training, 20% for validation, and 10% for test-
ing. We perform randomized image augmentation, in-
cluding brightness and saturation adjustments within
a±25% range, rotation within±15%, combined with
the choice to perform 90◦ clockwise rotation and hor-
izontal flipping (cf. Fig. 2b).

We conducted all experiments on an Ubuntu 24.04
LTS machine equipped with 512GB of RAM, an
Xeon(R) Gold 6226R CPU, and an NVIDIA RTX
3090 GPU with 24GB of RAM. The entire model is
implemented in Python using the PyTorch framework.
We used the AdamW optimizer with a learning rate
scheduler (10−5 to 0.01), momentum of 0.6, and a
batch size of 8, and trained over 300 epochs.

4.2 Evaluation Metrics

We employ four primary metrics to evaluate the per-
formance of our instance segmentation model on both
benchmark and SoccerPro datasets: Accuracy, Pre-
cision, Recall, and Mean Average Precision (mAP).
The precision-recall curve (Fig. 6) is used to compre-
hensively assess our model’s performance. To thor-
oughly analyze our method, we computed the class-
based scores for each class, evaluating how effectively
the model detects and segments each class separately
(see Tab. 2). Additionally, we assessed the com-
bined output for all classes, determining the model’s
best performance across various classes to provide an
overall evaluation of detection and instance segmen-
tation capabilities.

4.3 Results

Our ReST framework significantly outperforms ex-
isting state-of-the-art methods in instance segmenta-
tion and tracking of soccer players. By leveraging
Bommes’ MV-Extractor technique, ReST enhances
precision and recall across various classes, particu-
larly the player class. This improvement is evidenced
by the substantially higher class-based scores attained

ReST: High-Precision Soccer Player Tracking via Motion Vector Segmentation

145



Figure 6: Precision-Recall curve for all (12) Instance Seg-
mentation models and their comparison with ReST (Ours)
on all three datasets.

by ReST, as demonstrated in Tab. 2. We also pro-
vide qualitative results in Fig. 7, showing segmenta-
tion and tracking results obtained on DFL-Bundesliga
Data Shootout and the SoccerNet-Tracking and Soc-
cerPro dataset using OC-SORT, ByteTrack and ReST
(ours). The results clearly demonstrate that ReST
(ours) performs better than the prior methods regard-
ing instance segmentation and tracking.

Our framework exhibits robust and accurate seg-
mentation of soccer players, excelling in challenging
scenarios such as occlusion and diverse player poses.
ReST’s generalization capabilities are remarkable, as
evidenced by its meticulous evaluation of benchmark
datasets (MOT17 and MOT20) and the SoccerPro
dataset. This ensures consistent and reliable perfor-
mance across diverse soccer tracking scenarios. In
terms of computational efficiency, ReST maintains
competitive real-time performance while achieving
superior accuracy. The inference speed of ReST is
commendable, especially considering its enhanced
tracking accuracy compared to recent SOTA trackers,
as shown in (Tab. 3). Furthermore, ReST demon-
strates exceptional tracking accuracy, outperforming
contemporary trackers in the following key metrics.
IDF1 (Identification F1) is the regular F1 metric
applied to identity accuracy.
MOTA (Multiple Object Tracking Accuracy
(MOTA). MOTA evaluates overall tracking perfor-
mance by considering false positives (FP), false
negatives (FN), and identity switches (IDSW).
MOTA is defined as 1− FN+FP+IDSW

GT , where GT is
the total number of ground truth objects.
HOTA (Higher Order Tracking Accuracy). This
metric integrates various tracking facets into a unified
metric, including localization and identity accuracy.
It comprehensively evaluates tracker performance
beyond traditional metrics like MOTA or IDF1.
HOTA is defined as Aass−Aloc−FP− IDSW. In this
context, Aass denotes Assignment Accuracy, measur-
ing the precision of bounding box assignments across
different intersection over union (IoU) thresholds.
Aloc represents localization accuracy, quantifying the
average distance between predicted and ground truth

Table 2: Analysis of class-based scores on YOLO (v5, v7,
v8, v9, and v11) and ReST (ours) on the combined datasets,
for instance segmentation and tracking. All models in this
table are variations of YOLO, except for ours. We report
mAP both measured on box50−95 and mask50−95.

Training Validation

mAP mAP
Model Class P R box mask P R box mask

v5s-seg

Pl
ay

er

0.61 0.84 0.75 0.33 0.57 0.81 0.69 0.30
v5m-seg 0.66 0.77 0.70 0.33 0.56 0.74 0.62 0.25
v7-seg 0.83 0.84 0.83 0.47 0.83 0.83 0.82 0.41
v8l-seg 0.77 0.82 0.74 0.38 0.76 0.80 0.74 0.29
v8x-seg 0.62 0.81 0.72 0.38 0.61 0.79 0.71 0.31
v9-c-seg 0.88 0.84 0.87 0.51 0.85 0.82 0.81 0.40
v11n-seg 0.70 0.80 0.72 0.37 0.77 0.77 0.76 0.32
v11s-seg 0.64 0.74 0.64 0.33 0.61 0.71 0.60 0.24
v11m-seg 0.68 0.80 0.70 0.35 0.67 0.77 0.69 0.29
v11l-seg 0.75 0.76 0.73 0.37 0.75 0.73 0.70 0.28

v11Xl-seg 0.69 0.69 0.67 0.32 0.65 0.66 0.65 0.25
ReST 0.97 0.87 0.89 0.54 0.93 0.85 0.83 0.41

v5s-seg

G
oa

lk
ee

pe
r 0.78 0.43 0.53 0.21 0.89 0.47 0.63 0.28

v5m-seg 0.99 0.44 0.75 0.32 0.99 0.50 0.74 0.37
v7-seg 0.99 0.79 0.88 0.40 0.99 0.79 0.88 0.39
v8l-seg 0.93 0.81 0.96 0.46 0.87 0.74 0.88 0.38
v8x-seg 0.93 0.77 0.87 0.46 0.93 0.77 0.83 0.42
v9-c-seg 0.93 0.79 0.84 0.47 0.92 0.78 0.90 0.44
v11n-seg 0.75 0.67 0.77 0.38 0.85 0.67 0.77 0.33
v11s-seg 0.72 0.72 0.87 0.42 0.79 0.81 0.91 0.41
v11m-seg 0.79 0.83 0.89 0.43 0.45 0.78 0.81 0.40
v11l-seg 0.99 0.82 0.86 0.44 0.90 0.72 0.80 0.41

v11Xl-seg 0.81 0.68 0.82 0.39 0.81 0.69 0.82 0.37
ReST 0.99 0.83 0.87 0.49 0.99 0.81 0.92 0.45

v5s-seg

R
ef

er
ee

0.85 0.46 0.56 0.31 0.76 0.42 0.49 0.22
v5m-seg 0.90 0.58 0.67 0.36 0.85 0.58 0.67 0.30
v7-seg 0.86 0.69 0.77 0.49 0.82 0.69 0.77 0.43
v8l-seg 0.69 0.69 0.72 0.34 0.61 0.58 0.64 0.28
v8x-seg 0.67 0.70 0.70 0.32 0.67 0.70 0.71 0.35
v9-c-seg 0.91 0.70 0.83 0.44 0.87 0.72 0.77 0.41
v11n-seg 0.81 0.66 0.77 0.42 0.84 0.65 0.73 0.36
v11s-seg 0.82 0.62 0.70 0.36 0.76 0.58 0.67 0.29
v11m-seg 0.84 0.73 0.72 0.41 0.81 0.69 0.66 0.34
v11l-seg 0.84 0.58 0.67 0.39 0.80 0.54 0.61 0.29

v11Xl-seg 0.74 0.65 0.70 0.43 0.74 0.66 0.73 0.35
ReST 0.92 0.72 0.88 0.51 0.90 0.74 0.81 0.47

v5s-seg

Fo
ot

ba
ll

0.36 0.35 0.30 0.10 0.31 0.30 0.24 0.12
v5m-seg 0.54 0.39 0.32 0.14 0.56 0.52 0.46 0.14
v7-seg 0.46 0.35 0.31 0.16 0.46 0.35 0.36 0.11
v8l-seg 0.47 0.35 0.30 0.10 0.36 0.26 0.22 0.09
v8x-seg 0.21 0.13 0.18 0.08 0.28 0.17 0.23 0.08
v9-c-seg 0.63 0.49 0.44 0.40 0.59 0.53 0.44 0.37
v11n-seg 0.53 0.26 0.30 0.13 0.73 0.26 0.34 0.14
v11s-seg 0.41 0.26 0.28 0.14 0.54 0.35 0.33 0.12
v11m-seg 0.36 0.22 0.26 0.11 0.44 0.26 0.30 0.11
v11l-seg 0.43 0.35 0.26 0.09 0.50 0.35 0.26 0.09

v11Xl-seg 0.63 0.18 0.25 0.13 0.62 0.18 0.28 0.13
ReST 0.63 0.51 0.47 0.41 0.61 0.48 0.44 0.39

bounding box centres. Finally, FP measures false
positives, and IDSW is a measure of ID switches.

Our results highlight the efficacy of ReST in accu-
rately tracking soccer players’ movements, which is
crucial for applications in sports analytics and player
performance analysis. The framework’s ability to
handle complex motion dynamics and partial occlu-
sions and its real-time processing capabilities make it
a valuable tool for enhancing the analysis and under-
standing of soccer games. Figure 8 shows the over-
all comparison of instance segmentation and tracking
with respect to their accuracies on previous versions
of You Only Look Once (YOLO) and ReST (ours).
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Table 3: Tracking Results on MOT17 Validation and MOT20 Training Datasets. Bold: best performance per column.

with Motion Vectors without Motion Vectors

MOT17 Validation MOT20 Training MOT17 Validation MOT20 Training

Tracker HOTA MOTA IDF1 fps HOTA MOTA IDF1 fps HOTA MOTA IDF1 fps HOTA MOTA IDF1 fps

Enhanced Motion:
OC-SORT1 61.3 76.2 75.1 23.4 60.2 74.5 76.3 19.7 54.7 74.6 69.7 19.3 52.4 73.1 69.3 17.6
MotionTrack2 64.7 79.5 78.7 13.2 63.4 77.4 78.2 9.7 58.2 72.9 68.6 8.4 57.4 72.2 67.8 8.2
Embedding:
StrongSORT3 − − − − − − − − 56.3 71.5 70.2 6.7 54.9 70.6 68.4 6.1
IoU only:
ByteTrack4 − − − − − − − − 57.7 75.6 69.3 14.4 57.3 74.5 68.7 12.7
BoT-SORT5 − − − − − − − − 61.6 76.2 74.7 7.6 61.3 75.4 74.3 5.3

ReST (Ours) 64.9 79.8 79.4 27.2 63.6 78.4 78.7 23.5 63.4 77.6 75.2 23.4 63.2 77.5 75.2 21.4
1 (Cao et al., 2023) 2 (Qin et al., 2023) 3 (Du et al., 2023) 4 (Zhang et al., 2022) 5 (Aharon et al., 2022)

Figure 7: Qualitative results: Obtained, for instance segmentation and tracking outputs generated by ReST (Ours) on DFL-
Bundesliga Data Shootout and the SoccerNet dataset using OC-SORT, ByteTrack and ReST (Ours). Up to down row: three
different camera scenarios. (1) nearfield, (2) midfield, (3) widefield. Cyan arrows indicate the localization, segmentation and
tracking errors. Our approach (last column) consistently provides better results in all three perspectives.

Figure 8: Comparison of instance segmentation and track-
ing accuracies between YOLO (v5, v7, v8, v9, and v11) and
ReST.

5 CONCLUSION

This paper presents ReST, a novel real-time frame-
work for detection, instance segmentation, and track-
ing using motion vectors. The proposed system

leverages the Generalized Efficient Layer Aggrega-
tion Network (GELAN), combined with the strengths
of the CSPDarknet53 architecture as the backbone for
instance segmentation. Our framework is further en-
hanced by motion vectors obtained using a DenseNet
motion estimator on absolute frame differences and
fine-grained motion vectors based on a deep opti-
cal flow network. We demonstrated that integrating
motion vectors provides ReST with additional shape
cues that significantly improve the separation of fore-
ground and background, particularly in scenarios in-
volving partial occlusion of players. To rigorously
evaluate our model’s performance, we conducted ex-
tensive experiments comparing current and previous
versions of YOLO (v5, v7, v8, v9, and v11) with our
ReST model. Additionally, we assessed its perfor-
mance on both the validation set of MOT17 and the
training set of the MOT20 dataset. The results demon-
strated remarkable accuracy, with ReST achieving

ReST: High-Precision Soccer Player Tracking via Motion Vector Segmentation

147



97% on the DFL-Bundesliga Data Shootout, 98% on
the SoccerNet-Tracking dataset, and an impressive
99% on our custom SoccerPro dataset. Furthermore,
the model operates in real-time, achieving a tracking
rate of 50fps on an NVIDIA RTX 3090 GPU.

In the future, we will explore ReST’s capabilities
for additional applications, such as estimating play-
ers’ 3D positions from the predicted motion vectors as
well as estimates of speed and jump heights. We also
see value in exploring the usefulness of our frame-
work for other sports or even estimating events within
the crowd of spectators.
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Deliège, A., Cioppa, A., Giancola, S., Seikavandi, M. J.,
Dueholm, J. V., Nasrollahi, K., Ghanem, B., Moes-
lund, T. B., and Van Droogenbroeck, M. (2021).
Soccernet-v2: A dataset and benchmarks for holis-
tic understanding of broadcast soccer videos. In
IEEE/CVF conference on computer vision and pattern
recognition, pages 4508–4519.

Deutsche Fussball Liga (DFL) (2022). DFL-Bundesliga
data shootout dataset. accessed Jul 2023.

Diop, C.-A., Pelloux, B., Yu, X., Yi, W.-J., and Saniie, J.
(2022). Soccer player recognition using artificial in-
telligence and computer vision. In IEEE International
Conference on Electro Information Technology, pages
477–481.

Du, Y., Zhao, Z., Song, Y., Zhao, Y., Su, F., Gong, T., and
Meng, H. (2023). Strongsort: Make deepsort great
again. IEEE Transactions on Multimedia, 25:8725–
8737.

Ehrmann, F. E., Duncan, C. S., Sindhusake, D., Franzsen,
W. N., and Greene, D. A. (2016). GPS and injury pre-
vention in professional soccer. The Journal of Strength
& Conditioning Research, 30(2):360–367.

Furht, B., Greenberg, J., and Westwater, R. (1997). Mo-
tion Estimation Algorithms for Video Compression.
Springer.

Ghasemzadeh, S. A., Van Zandycke, G., Istasse, M., Syez,
N., Moshtaghpour, A., and De Vleeschouwer, C.
(2021). DeepSportLab: A framework for automated
sports analytics, production, and broadcast. In British
Machine Vision Conference, pages 1–14.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017).
Mask R-CNN. In IEEE International Conference on
Computer Vision, pages 2980–2988.

Heo, M., Hwang, S., Hyun, J., Kim, H., Oh, S. W., Lee,
J.-Y., and Kim, S. J. (2023). A generalized framework

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

148



for video instance segmentation. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 14623–14632.

Heo, M., Hwang, S., Oh, S. W., Lee, J.-Y., and Kim, S. J.
(2022). VITA: Video instance segmentation with tem-
poral attention. In Advances in Neural Information
Processing Systems, volume 35, pages 23109–23120.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A.,
and Brox, T. (2017). FlowNet 2.0: Evolution of opti-
cal flow estimation with deep networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2462–2470.

ITU-T (2021). Recommendation h.264 (08/21). accessed
Jul 2024.

Kale, K., Pawar, S., and Dhulekar, P. (2015). Moving object
tracking using optical flow and motion vector estima-
tion. In 4th International Conference on Reliability,
Infocom Technologies and Optimization, page #108.

Kamble, P. R., Keskar, A. G., and Bhurchandi, K. M.
(2019). Ball tracking in sports: a survey. Artificial
Intelligence Review, 52:1655–1705.

Ke, L., Danelljan, M., Ding, H., Tai, Y.-W., Tang, C.-K., and
Yu, F. (2023). Mask-free video instance segmenta-
tion. In 2023 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 22857–
22866.

Khaustov, V. and Mozgovoy, M. (2020). Recognizing
events in spatiotemporal soccer data. Applied Sci-
ences, 10(22):8046.

Kirillov, A., He, K., Girshick, R., and Dollár, P. (2019).
Panoptic segmentation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
9404–9413.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017). Feature pyramid networks
for object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2117–2125.

Linke, D., Link, D., and Lames, M. (2020). Football-
specific validity of tracab’s optical video tracking sys-
tems. PloS one, 15(3):#e0230179.
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