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Abstract: This study enhances industrial quality control by automating defect detection using artificial vision and deep
learning techniques. It addresses the challenge of model drift, where variations in input data distribution
affect performance. To tackle this, the paper proposes a simpler, practical approach to unsupervised Domain
Adaptation (UDA) for object detection, focusing on industrial applicability. A technique based on the Faster
R-CNN architecture and a Maximum Mean Discrepancy (MMD) regularization method for feature alignment
is proposed. The study aims to detect data drift using state-of-the-art methods and evaluate the proposed UDA
technique’s effectiveness in improving surface defect detection. Results show that statistical tests effectively
identify variations, enabling timely adaptations. The proposed UDA method achieved mean Average Precision
(mAP50) improvements of 3.1% and 6.1% under vibration and noise scenarios, respectively, and a significant
17.8% improvement for conditions with particles, advancing existing methods in the literature.

1 INTRODUCTION

Industrial quality control is crucial for ensuring prod-
ucts meet market standards, particularly in manu-
facturing where high production quality is essential
for competitiveness. Recently, artificial intelligence
(AI) and computer vision technologies have been
adopted to automate defect detection, with deep learn-
ing (DL) proving effective for identifying surface de-
fects (Leiñena et al., 2024).

However, significant challenges arise in dynamic
industrial environments that can affect the accuracy
and robustness of AI models. DL models rely on
inference data being drawn from the same distribu-
tion as the training data. In these settings, variations
in lighting, sensor noise, movement of components,
and other factors can substantially alter image qual-
ity. This phenomenon, known as model drift or data
drift, occurs when the distribution of inference data
deviates from that of the training data, leading to per-
formance degradation in DL models.

Traditional methods to address drift typically in-
volve retraining models with new, often unannotated
data, which is costly and time-consuming. To com-
bat model drift, Unsupervised Domain Adaptation
(UDA) techniques have emerged, enabling models to
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adapt to new data distributions without the need for
extensive manual data annotation. This adaptabil-
ity is crucial in industrial settings, where maintaining
model performance over time ensures consistent qual-
ity control and reduces operational costs. This paper
specifically addresses object detection methods, cru-
cial for identifying and localizing defects in images,
with a focus on surface defects in metallic compo-
nents. By combining drift detection techniques with
UDA, we aim to not only identify when performance
degrades, but also enable the model to adapt and con-
tinue performing accurately under changing condi-
tions.

While UDA has been widely studied in other
fields, its application to object detection has been lim-
ited due to the complexity of this task. Object de-
tection not only requires classifying objects but also
accurately localizing them within the image, adding
an extra layer of difficulty compared to tasks like
image classification. Ensuring robust performance
across domains for both classification and localization
makes UDA for object detection particularly chal-
lenging. Current methods often become overly com-
plex, assuming that sophistication translates to better
performance.

However, recent studies suggest that simpler ap-
proaches can achieve performance comparable to
more complex, state-of-the-art techniques. One
promising method involves using regularizers to find
data representations that remain invariant across do-
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mains (Tzeng et al., 2014). Specifically, the Max-
imum Mean Discrepancy (MMD) (Gretton et al.,
2012) loss has been explored to minimize feature dis-
tribution distances during training, enhancing align-
ment and robustness against drift. Despite its appli-
cation in various contexts, MMD loss has not been
extensively utilized in UDA for object detection, par-
ticularly within the Faster R-CNN (Ren et al., 2015)
architecture.

This paper proposes implementing this method
as a simpler alternative to complex techniques, em-
phasizing practical applicability in industrial environ-
ments. This study aims to achieve two main objec-
tives: detecting data drift using state-of-the-art meth-
ods and evaluating the effectiveness of the proposed
UDA technique to enhance surface defect detection
in industrial environments. The simplicity and practi-
cality of this approach make it particularly suitable for
real-world industrial applications, where maintaining
performance without complex system redesigns is a
priority.

To conclude, the main contributions of this work
are:

• A comprehensive review of the state of the art in
image drift detection has been conducted, with
several approaches from different works imple-
mented. This enabled a comparative analysis of
these methods, specifically focused on a real in-
dustrial use case.

• We propose a simpler yet effective approach to en-
hance UDA methods for object detection in indus-
trial environments by minimizing the feature dis-
tribution discrepancy between source and target
domains. This method improves the model’s gen-
eralization without requiring complex redesigns.
A regularizer based on Maximum Mean Discrep-
ancy (MMD) is implemented to align feature dis-
tributions.

• Proposed method has been compared with, and
shown to outperform, one of the leading state-of-
the-art approaches.

• Given the difficulty in obtaining a database con-
taining industrial images with drift, a simulated
dataset was created to reflect various scenarios
that could arise in an industrial environment.

2 RELATED WORK

2.1 Object Detection

Object detection is a computer vision field focused
on identifying and localizing specific objects within

images or videos. This involves two primary ob-
jectives: classifying the presence of objects and ac-
curately determining their locations, typically repre-
sented by bounding boxes. Early methods relied on
handcrafted features like Histograms of Oriented Gra-
dients (HOG) (Dalal and Triggs, 2005) and Haar-
like features (Lienhart and Maydt, 2002), often com-
bined with classifiers such as Support Vector Ma-
chines (SVM) (Malisiewicz et al., 2011) or techniques
like Sliding Windows (Sudowe and Leibe, 2011).

However, these methods struggled with com-
plex patterns and variability in real-world images.
The introduction of Convolutional Neural Networks
(CNNs) revolutionized object detection by automati-
cally learning hierarchical features from raw images,
eliminating the need for handcrafted features and sig-
nificantly improving detection accuracy and robust-
ness. While CNNs excelled in classification tasks,
the R-CNN (Region-based Convolutional Neural Net-
works) (Girshick et al., 2014) architecture marked a
significant advancement by introducing a two-stage
detection method: generating region proposals (ROIs)
in the first stage and classifying them with a CNN in
the second. This approach evolved into more sophisti-
cated networks like Faster R-CNN (Ren et al., 2015),
which integrates region proposal networks (RPNs)
for end-to-end detection, achieving state-of-the-art re-
sults.

In contrast, single-stage detection methods
streamline the process by integrating detection and
localization into one step, improving processing
efficiency. Networks such as SSD (Single Shot
MultiBox Detector) (Liu et al., 2016) and YOLO
(You Only Look Once) (Redmon et al., 2016) divide
the input image into a grid of cells, predicting multi-
ple bounding boxes and their associated classification
probabilities simultaneously.

2.2 Model Drift

Traditional approaches relied on statistical tests, such
as the Kolmogorov-Smirnov test (Massey Jr, 1951)
and the Chi-square test (Pearson, 1900), which com-
pare distributions between training and new data.
While these statistical tests are still popular for de-
tecting data drift, they struggle with high-dimensional
data due to the curse of dimensionality, which makes
it harder to detect subtle shifts in distributions (Hastie
et al., 2009). As AI models, particularly in com-
puter vision, often work with high-dimensional fea-
tures, newer methods are required to effectively iden-
tify drift in such data.

Recent advances like Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2012) provide powerful

Handling Drift in Industrial Defect Detection Through MMD-Based Domain Adaptation

421



tools for comparing distributions without requiring la-
belled data, making them ideal for unsupervised drift
detection in industrial applications. Similarly, adver-
sarial approaches (Rabanser et al., 2019), where a do-
main classifier discriminates between source and tar-
get data, offer a flexible method for identifying and
addressing drift in high-dimensional feature spaces.

Additionally, recent methods such as (Greco et al.,
2024) contribute to improving drift detection, while
the survey by (Hinder et al., 2023) provides a com-
prehensive review of the state-of-the-art approaches
in this field.

2.3 Unsupervised Domain Adaptation
for Object Detection

UDA relies on fully labeled instances in the source
domain while having no labels for the target domain.
This approach is particularly relevant in real-world
scenarios where new data often lacks annotations.
UDA has been widely researched for tasks like clas-
sification (Saito et al., 2018) and semantic segmenta-
tion (Toldo et al., 2020). Unlike image classification,
which only requires assigning a label to an entire im-
age, object detection involves both classification and
localization, making the task more complex. Domain
adaptation for object detection must ensure that both
the feature extraction and the bounding box predic-
tion generalize well across domains, adding another
layer of difficulty compared to tasks like image clas-
sification or segmentation.

The survey (Oza et al., 2023) categorizes exist-
ing UDA for object detection methods into different
types. Adversarial feature learning aligns learned fea-
tures across domains by training two competing mod-
els: a generator (feature extractor) and a discrimina-
tor (domain classifier). The generator minimizes the
task loss (e.g., object detection) while trying to con-
fuse the discriminator, which is trained to differentiate
domains. By doing so, the generator learns domain-
invariant features. DA-Faster (Chen et al., 2018) was
one of the first to apply this adversarial approach
proposed in (Ganin and Lempitsky, 2015) within the
Faster R-CNN framework, pioneering UDA for ob-
ject detection and influencing many subsequent works
(Chen et al., 2021).

On the other hand, mean-teacher methods (Cai
et al., 2019) use a teacher-student model to leverage
labeled source data and unlabeled target data, with the
teacher providing pseudo-labels and the student im-
proving performance by aligning with the teacher’s
predictions. Image-to-Image Translation methods
have also been explored aiming to translate images
from one domain to another and create intermediate

images between domains to reduce the gap. For ex-
ample, (Arruda et al., 2019) employs a strategy based
on this to adapt the model from detecting daytime
scenes to nighttime scenes. Pseudo-label based self-
training methods are also popular as they generate
pseudo-labels for unlabeled target data using model
predictions and then retrain the model with both la-
beled source data and these pseudo-labels to boost
performance (Kim et al., 2019).

3 MATERIALS AND METHODS

In this section, the materials and methods used in this
study are detailed. First, the dataset employed for the
experimentation is presented. Next, the process fol-
lowed for drift detection is described. Finally, the pro-
posed domain adaptation architecture is explained in
detail.

3.1 Datasets

In the manufacturing industry, obtaining high-quality
data is a persistent challenge due to strict privacy
and confidentiality around production processes. This
limitation restricts access to diverse datasets and com-
plicates the capture of variations or drift, which are
essential for developing robust models.

Collecting drift data in highly optimized manufac-
turing environments is particularly difficult, as pro-
duction plants aim to minimize variations and main-
tain strict control over operational variables. Conse-
quently, while some types of drift may occur, they are
infrequent and inadequately documented for creating
comprehensive datasets.

Variations in manufacturing can arise from several
factors. Changes in lighting due to fluctuations in nat-
ural or artificial sources can alter product appearance.
Sensor failures or machine vibrations may introduce
noise into images, while the movement of parts or
cameras can lead to blurriness. Dust and dirt particles
in the environment can obstruct visibility and distort
image characteristics.

Given the challenges in obtaining real data that
captures these variations, synthetic drift conditions
have been simulated using the original data. To sim-
ulate drift conditions, we employed traditional data
augmentation techniques, introducing variations such
as changes in brightness, particles, noise, and vibra-
tion. These augmentations were carefully chosen to
reflect real-world industrial scenarios. Ensuring that
the synthetic data mimics true industrial drift con-
ditions is essential for the robustness of the domain
adaptation method. Figure 1 shows a sample of the
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different sets that were simulated from the original
images.

(a) Original

(b) Brightness (c) Vibration

(d) Noise (e) Particles

Figure 1: Sample of synthetic data for different scenarios
based on an original image.

The original dataset comprises 625 images anno-
tated by domain experts, supplemented by an addi-
tional 625 unannotated images to form specific sets
for each drift scenario. As this study focuses on an
unsupervised problem, labels for evaluating domain
adaptation methods are not available. To facilitate a
fair assessment, the original test images were used to
create the drift test sets, ensuring consistent annota-
tions across all sets. This approach prevents potential
bias from unbalanced test datasets. The final dataset
is composed of 200 images, half of which contain
surface defects. This balance between defective and
non-defective images ensures that the model can ef-
fectively learn to differentiate between the two classes
under varying drift conditions, reducing the risk of
class imbalance affecting performance. Table 1 shows
the described distribution.

Table 1: Datasets distribution. All drift sets contain the
same number of samples.

Set Original
Images

Original
Labels

Drift
Images

Drift
Labels

Train 625 625 625 0
Test 200 200 200 200

3.2 Drift Detectors

Figure 2 illustrates a common pipeline for detecting
drift in high-dimensional data, proposed in (Rabanser
et al., 2019). In this process, both the original ref-
erence data Zre f and the test data Z are subjected to
the same dimensionality reduction. Afterward, a two-
sample statistical test is applied to determine whether
drift is present.

3.2.1 Dimension Reduction

Given an input dataset X∈RN×d , where N is the num-
ber of observations and d is the number of dimen-
sions, the goal is to reduce the dimensionality from
d to K, where K ≪ d. This involves transforming the
original dataset X into a new dataset X̂ with a reduced
dimension, preserving the essential structure and fea-
tures while simplifying analysis. There exist several
approaches to dimensionality reduction. One com-
mon type is linear projections such a PCA (Principal
Component Analysis), which involve applying a pro-
jection or transformation matrix R to the dataset X ,
such that X̂ = XR. This linear transformation reposi-
tions data points into a lower-dimensional space using
linear combinations of the original variables, aiming
to preserve the structure and relationships of the origi-
nal data. Another approach is to use nonlinear projec-
tions such as t-SNE (t-Distributed Stochastic Neigh-
bor Embedding).

However, in recent years, autoencoders have been
used for image dimensionality reduction (Wang et al.,
2016). An autoencoder consists of an encoding func-
tion φ : X 7→ H that maps the input data to a lower-
dimensional latent space H , and a decoding function
ψ : H 7→ X that attempts to reconstruct the original
data from this latent representation. Training involves
learning φ and ψ to minimize reconstruction error.
However, (Rabanser et al., 2019) suggests that even
randomly initialized (untrained) autoencoders can be
used for dimensionality reduction with the goal of
detecting drift. Autoencoders, even when not fully
trained, have shown promise for dimensionality re-
duction in high-dimensional datasets like images. The
advantage of using an untrained autoencoder is that it
avoids overfitting to specific features in the data, pro-
viding a more general reduction technique that can ef-
fectively support drift detection across different con-
ditions. In this work, the approach of using an un-
trained autoencoder is employed to reduce the dimen-
sionality of the data as part of the preprocessing for
drift detection techniques.

3.2.2 Two-Sample Tests

Following the dimensionality reduction process using
untrained autoencoders, a two-sample test is applied,
which is a type of statistical test that compares two
independent datasets to determine whether they come
from the same distribution or if there are significant
differences between them. The null hypothesis H0
states that the observed and expected (or reference)
data come from the same distribution, while the al-
ternative hypothesis H1 asserts that they do not. If
the p-value associated with the statistical test is suffi-
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Figure 2: Pipeline for the drift detection process on images.

ciently small (typically less than a predefined signifi-
cance level, such as 0.05), the null hypothesis can be
rejected. This suggests that there is enough evidence
to conclude that the observed and expected data do
not come from the same distribution, indicating a drift
in the data.

There are various tests available, but one of the
most commonly used in the literature is the non-
parametric univariate Kolmogorov-Smirnov (KS) test
(Massey Jr, 1951). This test compares the empiri-
cal cumulative distribution functions (ECDFs) of both
samples and calculates the maximum distance be-
tween them. The KS statistic is defined as:

KS = max
x

|Fs(x)−Ft(x)| (1)

where Fs and Ft are the ECDFs of the source and tar-
get data, respectively.

Another widely recognized test is Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012),
a statistical measure used to assess the difference
between two probability distributions by compar-
ing their mean embeddings in a reproducing kernel
Hilbert space (RKHS). Specifically, the MMD is de-
fined as:

MMD2(P,Q) = EP[k(x,x)]−2EP,Q[k(x,y)]+EQ[k(y,y)]
(2)

where P and Q are the two distributions being com-
pared, x and y are random samples drawn from dis-
tributions P and Q, respectively, and k(x,y) is a ker-
nel function that measures the similarity between the
transformed features of the samples. The expecta-
tion operator E computes the average values of the
kernel functions. A smaller MMD value indicates
greater similarity between the two distributions, while
a larger value suggests a significant difference.

3.2.3 Learned Drift Detectors

The option of reducing dimensionality and applying
statistical tests can be suitable in many cases, but in
more complex situations, this approach may be in-
sufficient. A more advanced alternative is the use
of learned drift detectors. Unlike traditional methods
that rely on statistical tests or direct comparison of
features between two datasets, learned drift detectors
use machine learning techniques to identify patterns

and relationships in the data, detecting significant de-
viations in these patterns.

The article (Lopez-Paz and Oquab, 2016) pro-
poses a classifier for two-sample tests that estimates
the accuracy of a binary classifier using the refer-
ence and test datasets. If the accuracy is significantly
higher than a predefined p-value, the null hypothesis
H0 is not rejected.

Another relevant method is the Learned Kernel
(Liu et al., 2020), which detects drift adaptively in
data streams. This approach learns a weighted kernel
that captures differences between two data distribu-
tions by measuring the discrepancy between samples.
It is an extension of the Maximum Mean Discrepancy
(MMD), where the kernel is learned. The function of
the learnable kernel is defined as follows:

k(z,zre f ) = (1− ε)ka(Φ(z),Φ(zre f ))+ εkb(z,zre f ),
(3)

where Φ is a learnable projection, ka and kb are
kernel characteristics, and ε > 0 is a small constant.

3.3 Faster R-CNN

Faster R-CNN is a state-of-the-art object detection
framework that improves upon its predecessors by in-
tegrating a Region Proposal Network (RPN) to gen-
erate high-quality region proposals. The architecture
consists of two main components: the RPN, which is
responsible for proposing candidate object bounding
boxes, and a Fast R-CNN detector that classifies these
proposals and refines their coordinates. By sharing
convolutional features between the RPN and the de-
tection network, Faster R-CNN achieves significant
improvements in both speed and accuracy, making it
well-suited for real-time applications.

The loss function used in Faster R-CNN com-
prises two main components: the classification loss
and the bounding box regression loss, both calculated
in the RPN and detection network components. The
total loss L is defined as follows:

LFaster R-CNN = LRPN
cls +LRPN

reg +LDet
cls +LDet

reg , (4)

where Lcls is the classification loss, typically com-
puted using softmax cross-entropy for the predicted
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class labels, and Lreg is the bounding box regression
loss, which measures the accuracy of the predicted
bounding box coordinates. The bounding box regres-
sion loss is often formulated as a smooth L1 loss.

Faster R-CNN serves as the backbone architec-
ture in the majority of works that incorporate domain
adaptation modules for object detection, due to its
flexible and modular design, which facilitates the in-
tegration of adaptation techniques aimed at improving
performance across different domains.

3.4 MMD-Based Domain Adaptation
for Improved Object Detection
Under Drift in Industrial
Applications

The MMD regularizer is used to align the learned fea-
tures so that they are as similar as possible between
the source and target domains. The idea is that if the
model performs well on the original data, ensuring
that the feature distributions of the last convolutional
layer are aligned will allow the model to transfer its
knowledge to the new domain, making it domain-
invariant. This strategy operates on the premise that
minimizing the discrepancy between feature distri-
butions across domains enhances the model’s ability
to generalize in diverse conditions without requiring
complex redesigns, thereby facilitating a simpler im-
plementation in industrial environments.

The MMD regularizer adds a penalty to the loss
function objective to reduce model complexity and
improve its generalization ability. This is achieved by
imposing additional constraints during training, en-
couraging the model to learn more robust and general-
izable representations, while minimizing the discrep-
ancy between the feature distributions of the source
and target domains.

The loss computed in the regularizer module is
then added to the total loss of Faster R-CNN, which
is calculated based on the original images:

Ltot = LFaster R-CNN(Xs,y)+λMMD2(Xs,Xt), (5)

where LFaster R-CNN(Xs,y) represents the total loss
of the Faster R-CNN architecture on the source la-
beled data (Xs) and the ground truth labels (y).
MMD2(Xs,Xt) denotes the distance between the
source data (Xs) and the target data (Xt). Finally, λ

is a new hyperparameter that controls the intensity of
the domain confusion.

This process is illustrated in Figure 3. The dia-
gram represents the proposed method and highlights
the implementation of the regularizer in the last con-

volutional layer of the backbone, as these features are
the most abstract and representative of the content.

During training, for each mini-batch,
MMD2(Xs,Xt) loss is computed between the
feature maps of the last convolutional layer for Xs
and Xt , while the LFaster R-CNN(Xs,y) loss is computed
only on the labeled source data Xs Both losses are
then combined using the hyperparameter λ, which
balances the supervised learning and domain align-
ment. The network weights are then updated based
on the total loss using the SGD optimizer.

Figure 3: Proposed Faster R-CNN architecture with MMD
regulizer.

4 RESULTS

This section details the experiments conducted to
evaluate state-of-the-art models for drift detection in
images and to compare the performance of the pro-
posed methods against the DA-Faster architecture,
which is a leading approach in object detection. The
experiments aim to assess how well these methods
can detect drift and enhance model performance in
various scenarios. Furthermore, visualization tech-
niques will be introduced to provide deeper insights
into the results and to illustrate the impact of the pro-
posed methods on the overall detection process.

4.1 Drift Detection

In this study, we compared four drift detection
methods: the Kolmogorov-Smirnov test, MMD, a
classifier-based detector, and the Learned Kernel
method. Each method has different strengths: statisti-
cal tests like KS are simple and efficient, while meth-
ods like the Learned Kernel offer more advanced de-
tection capabilities in high-dimensional and evolving
data streams, making them more suitable for complex
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industrial applications.
The input image dimension is 128×320, and the

dimensionality reduction is performed using an un-
trained autoencoder or feature extractor consisting of
three convolutional layers with 64, 128, and 512 fil-
ters, respectively, each using a kernel size of 4×4, a
stride of 2, and ReLU activation. The output of the
convolutional layers is flattened and passed through a
dense layer that reduces the representation to a single
feature. This compact representation is specifically
designed to enable the application of two-sample test
methods for drift detection.

Table 2 presents the results for each drift detection
method across the generated datasets. It also high-
lights the lowest execution times for each dataset, in-
dicating the fastest method.

Table 2: Results for each detector of drift in the different
sets.

Original Brightness Vibration Noise Particles
KS
p-value 0.45 0.03 0.03 0.04 0.03
Drift? No Yes Yes Yes Yes
Time 1.791 1.808 1.804 1.874 1.817

MMD
p-value 0.57 0.01 0.04 0.03 0.04
Drift? No Yes Yes Yes Yes
Time 2.189 2.204 2.133 2.135 2.153

Classifier
p-value 0.81 0.00 0.01 0.01 0.01
Drift? No Yes Yes Yes Yes
Time 15.891 15.667 15.642 15.576 15.856

Learned Kernel
p-value 0.89 0.00 0.01 0.00 0.01
Drift? No Yes Yes Yes Yes
Time 1.712 1.604 1.571 1.507 1.740

A lower p-value indicates stronger evidence
against the null hypothesis that the datasets come
from the same distribution. Therefore, in terms
of drift detection effectiveness, the Learned Ker-
nel method consistently outperformed all other tech-
niques across the datasets, achieving the lowest p-
values. This demonstrates its capacity to adapt to drift
conditions effectively, making it the most reliable op-
tion for pseudo real-time industrial applications. Ad-
ditionally, the runtime of each method was evaluated,
confirming that all are generally suitable for produc-
tion requirements, except for the classifier, which re-
quires more time to process the data.

Additionally, the robustness of detections was
evaluated in pseudo-real-time by processing images
as small data streams, typical in dynamic industrial
scenarios. The evaluation of drift detection in pseudo-
real time, illustrated in Figure 4, is particularly cru-
cial in industrial settings where timely identification

of changes can prevent defects and maintain product
quality.

In the figure, each point represents a sample from
the data stream, with green points indicating origi-
nal samples that are consistent with the training data
and red points representing samples that exhibit drift.
The horizontal red line marks the p-value threshold
for detecting drift. In this case, the model used is the
Learned Kernel, which effectively identifies changes
by ensuring that the green points remain above the
line, indicating that there is no drift. Conversely, the
red points fall below the threshold, demonstrating the
model’s ability to successfully detect deviations in
pseudo-real-time.

Figure 4: Drift detection in pseudo-real time using the
Learned Kernel method in data streams. The green points
represent original samples and red points indicates samples
with drift.

4.2 Domain Adaptation

A specific model was trained for each drift scenario
using the same configuration and hyperparameters.
Table 3 presents the mAP50 metric for our model
and the state-of-the-art DA-Faster model across each
dataset, along with initial results from the original
Faster R-CNN model for reference.

Table 3: mAP50 of each model in the different test sets.

Test Set Faster R-CNN DA-Faster Ours
Original 84.2 - -

Brightness 81.2 79.8 81.7
Vibration 76.6 76.0 79.7

Noise 74.1 79.0 80.2
Particles 45.6 42.1 63.4

The initial model shows strong performance on
the original dataset, achieving 84.2% in the mAP50
metric. However, in the various drift scenarios, its
performance is significantly affected. When adapting
with DA-Faster, an improvement is only observed in
the noisy scenario, with a +4.9% increase compared
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to the initial model.
In contrast, our proposed method consistently im-

proved the mAP50 metric across all drift scenarios.
Notably, it achieved enhancements of +6.1% in noisy
conditions and +17.8% in the presence of particles,
showcasing its ability to adapt effectively where DA-
Faster struggled, particularly in challenging environ-
ments.

Figure 6 shows examples of the detection results
before and after applying the proposed adaptation
method.

To further understand the effects of our domain
adaptation approach, we employed visualization tech-
niques such as t-SNE and Grad-CAM. The t-SNE vi-
sualizations (Figure 5) indicate that successful adap-
tation leads to more aligned features, reflecting the
model’s ability to generalize across domains. Addi-
tionally, Grad-CAM visualizations (Figure 7) illus-
trate how the model’s focus shifts correctly to relevant
areas after adaptation, enhancing its detection capa-
bilities in the presence of noise.

Initial Model Our Adapted Model

Figure 5: t-SNE on the features of the last convolutional
layer.

On the other hand, Grad-CAM (Gradient-
weighted Class Activation Mapping) was used to gen-
erate heatmaps that highlight the most important re-
gions in an image for the model’s predictions. Unlike
t-SNE, which offers a global feature distribution view,
Grad-CAM provides a localized interpretation of how
specific regions influence the network’s decision.

Figure 7 illustrates a component example where
the original model correctly focuses on defects. How-
ever, with added noise, the focus shifts incorrectly.
After adaptation, the model successfully refocuses on
the relevant areas for the new domain.

5 CONCLUSIONS

This study aimed to detect data drift using state-of-
the-art methods and evaluate the viability of UDA
for object detection techniques, including a proposed
MMD-based regularization method for the Faster R-

CNN architecture, for industrial deployment. The
proposed approach focuses on improving the model’s
generalization ability across varying conditions with-
out requiring complex redesigns or deep expertise in
advanced methods.

The results show that statistical tests were effec-
tive in detecting drift in images simulating industrial
conditions, making them suitable for production envi-
ronments by enabling timely adaptation. In terms of
DA, the proposed method outperformed DA-Faster in
scenarios with noise, vibration and particles, achiev-
ing a mAP50 improvement of 3.1%, 6.1% and 17.8%,
respectively. In contrast, DA-Faster only showed
marginal improvements and struggled to match per-
formance in other scenarios.

Controlling drift is crucial in industrial settings.
While effective detection methods exist, UDA for ob-
ject detection remains complex. Current UDA meth-
ods, though promising, are not always sufficient for
ensuring optimal performance across all industrial
scenarios. While the methods used here have shown
positive results, challenges may arise in real-world
applications, especially when dealing with more sub-
tle forms of drift, such as gradual changes in sensor
calibration or material properties. In such cases, the
methods employed may not perform as effectively,
and further adaptation or refinement could be neces-
sary to meet production-level requirements.

Moving forward, it would be beneficial to test the
proposed approach on public datasets. However, there
are limited publicly available datasets featuring in-
dustrial images with drift for UDA methods. Ad-
ditionally, future work could explore more complex
and diverse variations in datasets to better evaluate
generalization, investigate the application of the pro-
posed regularizer to other detection networks to as-
sess its generalization capacity, and conduct compar-
ative studies of domain adaptation techniques applied
to the same problem to provide broader insights.
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Figure 6: Example of the predictions made by different models on a component with noise.
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Figure 7: Example of Grad-CAM applied to an image affected by noise. The first row shows the original image, while the
second row displays the same image with added noise.
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