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Abstract: Ensuring the secure operation of infrastructure and devices throughout their lifecycle is crucial. This includes
secure key provisioning, certificate management, and software updates, all essential for effective device life-
cycle management. Despite the development and deployment of numerous architectures, minimizing the fi-
nancial strain associated with their administration remains a challenge. Although cloud-based approaches are
widely adopted, certain environments, such as industrial plants, cannot fully benefit from these solutions due
to limited network connectivity. Establishing connectivity for Public Key Infrastructure (PKI) or over-the-air
software updates in such settings can be particularly complex due to stringent security requirements. To ad-
dress this challenge, we propose a cost-effective solution using a microservice model to consolidate software
management, certificate management, and key provisioning in a single centralized location. This approach is
well-suited for environments with limited network connectivity. By adopting this framework, we ensure scal-
ability, flexibility, and streamlined management, providing an efficient solution to manage devices in diverse
environments.

1 INTRODUCTION

Ensuring the security of a device is an ongoing pro-
cess rather than a one-time effort. Although a de-
vice may initially be secure, it remains vulnerable to
emerging threats throughout its operational lifespan.
Device Lifecycle Management (DLM) encompasses
a comprehensive approach to safeguarding a device
from acquisition through to disposal.

Extensive research (Miettinen et al., 2018; Soos
et al., 2018; Gaudio et al., 2020; Howell et al., 2023)
has been conducted on various aspects of DLM. Ef-
fective DLM requires the implementation of various
security functions at different stages to maintain the
operational integrity of devices throughout their life-
cycle. For instance, key and credential management
is a critical security function as it facilitates authenti-
cation and secure communications. This includes key
provisioning, key management, and software updates.

Despite the imperative deployment of diverse se-
curity infrastructures, their implementation and main-
tenance pose significant challenges, particularly in
terms of cost and complexity. Establishing the neces-
sary hardware infrastructure, along with the ongoing

expenses for software upgrades and security patches
throughout the device’s lifespan, can be especially
onerous for startups or small businesses with limited
financial resources.

To address these challenges, various approaches
have been proposed. For instance, cloud-based PKI
has evolved beyond a mere research concept (Huang
et al., 2015); major providers such as Amazon,
Google, and Microsoft now offer robust PKI solu-
tions in the cloud. These services mitigate the need
for substantial upfront investments in software or
hardware licenses. Additionally, several researchers
(Dua et al., 2020; Schaerer et al., 2022) have pro-
posed blockchain-based distributed PKI infrastruc-
tures. However, concerns persist regarding the re-
liance on connected environments, particularly in set-
tings such as factory facilities, where access to cloud
services may be restricted due to heightened security
risks during the manufacturing stage, when devices
are particularly vulnerable.

In this paper, we present a design that provides
essential functions such as provisioning, certificate
management, and software management, specifically
tailored for small-scale environments, utilizing mi-
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croservice architectures (Hasselbring, 2016; Rossi
et al., 2020). We address the challenge of maintain-
ing security within a unified system and propose a
novel, cost-effective approach to enabling these func-
tions. We also present a case study demonstrating the
implementation of this design using several commer-
cially off-the-shelf (COTS) solutions. By integrating
these components into a microservice architecture, we
achieve rapid development and deployment of key
management functions, including key provisioning,
software update management, and certificate manage-
ment, while preserving security and providing flexi-
bility and scalability for future improvements. Fur-
thermore, we demonstrate how to facilitate the tran-
sition from small-scale information systems to large-
scale infrastructures by enabling the independent de-
ployment and scaling of microservices.

The structure of this paper is as follows: Section
2 and 3 discuss the problem definitions in Microser-
vice based Key Management Infrastructures. Section
4 presents our proposed model. Section 5 shows the
evaluation results with a case study of the design im-
plementation. Section 6 discusses the related work
and Section 7 concludes the paper.

2 KEY MANAGEMENT IN IoT
DEVICE LIFECYCLE

The concept of IoT Device Lifecycle Management
(IoT DLM) originates from the critical necessity to
ensure the operability of IoT devices throughout their
lifecycle. Although different terminologies are used
(Miettinen et al., 2018; Soos et al., 2018; Gaudio
et al., 2020; Howell et al., 2023), they generally en-
compass the stages from deployment to end-of-life,
which we categorize into Deployment, Operation,
and End-of-Life in this section.

Deployment represents the initial stage, involving
the Manufacturing or Production of devices, followed
by Provisioning and Configuration to prepare devices
for deployment. Operation encompasses the Mainte-
nance, Monitoring, and Software Updates required to
ensure devices remain functional and secure. End-of-
Life is the final stage, involving the Decommissioning
or Secure Disposal of the devices once they reach the
end of their lifecycle.

Ensuring device security throughout its lifecycle
is paramount, necessitating a holistic approach that
provides security functions across all stages. For ex-
ample, the National Institute of Standards and Tech-
nology (NIST) (Howell et al., 2023) publishes guide-
lines to secure the DLM of IoT in enterprises. Re-
searchers have repeatedly proposed enhancements to

these functions to enhance the security of critical in-
frastructures. For example, numerous approaches to
improve PKI have been suggested, such as distributed
PKI mechanisms (Schaerer et al., 2022) and hybrid
mechanisms incorporating identity-based cryptogra-
phy into PKI (Tan et al., 2015; Chia et al., 2021).
Software updates are crucial to keeping devices cur-
rent and secure (Kuppusamy et al., 2017; Al Blooshi
and Han, 2022), while provisioning methods are ac-
tively being studied (Kwon et al., 2018; Kohnhäuser
et al., 2021).

From a key and credential management perspec-
tive, it is essential to provide appropriate key man-
agement infrastructures tailored to each stage of the
IoT device lifecycle. As depicted in Fig.1, we iden-
tify the security functions related to key management
throughout the lifecycle.

2.1 Key Provisioning in Deployment

When a device is manufactured, it may not contain
any secret to establish an initial secure operation yet.
To enable secure communication, provisioning the se-
cret keys or credentials to the blank device is required.
Provisioning Function is a critical process that pro-
visions cryptographic keys to devices during the de-
ployment stage. Usually, key provisioning is per-
formed in the factory, which is disconnected from the
network.

2.2 Software Updates in Operation

Vulnerabilities in software could affect the security of
key management. Resolving known vulnerabilities in
a timely manner is a critical requirement to enable se-
cure key management. Software Update Functions
ensure the device remains up-to-date throughout its
operation.

2.3 Certificate Management Across all
Stages

Certificate management is a function used through-
out the device’s lifecycle, from enrollment to revoca-
tion of devices. This function also involves key provi-
sioning. Devices may request certificate updates over
the network.
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Figure 1: Key Management Functions in IoT Device Lifecycle.

3 INFRASTRUCTURE
MANAGEMENT ISSUES

It is imperative for every organization to consider the
deployment of security functions. However, imple-
menting them as a large-scale, on-premise infrastruc-
ture can significantly increase the burden of deploy-
ment and management. Consequently, the primary
objective of this work is to design a flexible, secure
and cost-effective model for managing essential func-
tions, such as provisioning, certificate management,
and software updates, within a small-scale infrastruc-
ture. At the same time, the implemented system
should be deployable or migratable to a large-scale
distributed environment without design modification
as we define a requirement Req.1 in Section 3.2.

Moreover, the system must account for the differ-
ent environmental conditions under which each func-
tion operates. Provisioning functions are executed
in factory or manufacturing environments at an early
stage, where the device may lack the capability to
verify any injected input. Consequently, provision-
ing functions are conducted in physically protected
environments, with external network connections pro-
hibited. In contrast, certificate management necessi-
tates communication to issue updated certificates, re-
voke existing ones, or generate certificate revocation
lists, thereby supporting devices throughout their en-
tire lifecycle. Similarly, software update functions re-
quire connectivity to external software repositories to
monitor and download new updates. We define a re-
quirement Req.2 in Section 3.2.

3.1 Security Considerations

In deploying multiple security functions, we discuss
the potential threat scenarios that must be considered
for the system providing key provisioning, certificate

management, and software updates.

3.1.1 Threats in Key Provisioning

During the initial provisioning phase, the device lacks
the necessary keys or credentials to verify any data.
This vulnerability presents a significant security risk,
as an attacker could potentially install compromised
keys or software, thereby gaining control over the de-
vice. Although we assume that provisioning occurs in
a physically isolated environment and is handled by
authorized personnel, remote access attacks remain a
concern. Therefore, we define the requirement Req.3
in Section 3.2.

3.1.2 Threats in Certificate Management

In certificate management, an attacker may attempt to
issue certificates for their own devices by sending a
certificate signing request (CSR) that pretends to be
from a legitimate blank device. Once the certificate
is issued, the attacker’s device can masquerade as a
genuine device. To mitigate this risk, we define the
requirement Req.4 in Section 3.2.

By addressing these challenges with the proposed
solutions, the model aims to provide a secure and flex-
ible framework to efficiently manage critical infras-
tructure functions.

3.1.3 Threats in Software Updates

During the operation of software update management,
the system retrieves new software or firmware from
the repository for installation on the device. If ma-
licious software is installed, the device can be com-
promised, allowing an attacker to gain access and
control. Malicious software could originate from a
harmful repository, be modified or compromised by
an attacker, or be an outdated version of the software.
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Moreover, an attacker could attempt to compromise
the software while it is stored locally within the sys-
tem, waiting to be installed on the device. It is impor-
tant to note that software can be transmitted over the
network or delivered through out-of-band channels.
Thus, we define the requirement Req.5 in Section 3.2.

According to (Kuppusamy et al., 2017), revealing
the current version of the software to any malicious
entity also increases the risk that an attacker could ex-
ploit the vulnerabilities of the system. Thus, we ex-
plicitly include the Req.6 in Section 3.2.

3.2 Requirements

We define the requirements based on the issues iden-
tified in this section.
Req.1: The system shall maximize cost efficiency in

providing security functions while ensuring scal-
ability to accommodate growth.

Req.2: The system shall provide appropriate security
functions to satisfy their operational conditions.

Req.3: The system shall only allow physical access
during the provisioning phase.

Req.4: The Certificate Authority shall issue certifi-
cates for devices only through an authorized en-
tity.

Req.5: The system shall maintain the integrity of the
software until performing the installation on the
device.

Req.6: The system shall prevent the leakage of infor-
mation about the current software version in the
device to unauthorized entities.

4 MICROSERVICE-BASED KEY
MANAGEMENT
ARCHITECTURE

In this section, we propose the design of a system that
integrates software management, certificate manage-
ment, and key provisioning functions. This system is
capable of operating on a single physical unit while
also being scalable for deployment in large-scale in-
frastructures.

4.1 System Architecture

Figure 2 depicts our system architecture, communi-
cating with external entities, including Remote Repos-
itory and devices. By employing a microservice-
based architecture, each module is isolated as a sepa-
rate microservice.

4.1.1 Provisioning Module

The primary role of Provisioning Module (pm) is to
install the software and provision keys to the target
device at the provisioning stage. The pm contains
the public key of the software management module
(pksm) and the certificate management module(pkcm).
pm manages its public key pair and public keys of km
and sm. The pm operates in two steps:

Step 1: Provisioning Device Software and CA Cer-
tificates. Installing the root and associated CA cer-
tificates, along with the device software, is the first
step in the provisioning process. Once Step 1 is com-
pleted, the device can proceed to Step 2.

Step 2: Issuing Certificate of the Device Public
Key. The second step involves issuing a certificate
for the device’s public key. The device generates
its public key and requests the issuance of a certifi-
cate for this key from the key management system km
through pm.

4.1.2 Certificate Management Module

The Certificate (and Key) Management module (km)
handles the crucial tasks of managing certificates and
keys. The key management system km encompasses
the roles of the Certificate Authority (CA), the Regis-
tration Authority (RA), and the Validation Authority
(VA). km manages its public key pair and public keys
of sm and pm.

4.1.3 Software Management Module

The Software Management module (sm) is respon-
sible for overseeing all software management func-
tions, including the distribution of software updates
and the management of software package storage and
deployment. The system ensures that only authenti-
cated and validated updates are delivered to the de-
vice. sm manages its public key pair and public keys
of km and pm.

4.1.4 Communication Module

The Communication Module (cm) facilitates interac-
tions with external entities, including remote reposi-
tories or other devices via a wireless channel. Note
that We omit the details of cm as it pertains to generic
secure communication protocols, such as TLS.

4.1.5 External Entities

In our scenario, we define two types of external enti-
ties:
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Figure 2: System Architecture of Provisioning System.

Remote Repository. The Remote Repository repo
serves as an infrastructure to manage new software
packages those are to be distributed to the system for
installation on the devices. We consider the repository
model from the infrastructure perspective in Uptane
(Kuppusamy et al., 2017).

Device. Device refers to the target embedded hard-
ware supported by the system in software manage-
ment. The system manages specific device type dtype
and n number of devices di, where 1 ≤ i ≤ n.

4.2 Provisioning into the Device

Provisioning operations include two scenarios: one
is pm flashes the software (i.e., root certificate and
other shared credentials), and the other is pm flashes
the certificate of the device public key at the Provi-
sion stage. Since this operation shall be performed
in physically protected environment, and cm must be
turned off, and only necessary modules shall remain
turned on as depicted in Fig. 3 and Fig. 4.

4.2.1 Scenario 1: Flashing Software to the Blank
Device

The provisioning process begins by fetching the soft-
ware from the local storage. Algorithm 1 and Fig. 3
depict the overall flows.

By provisioning software, the device now has pub-
lic key of root CA and other necessary credential to
interact with servers.

4.2.2 Scenario 2: Provisioning Certificate

For the certificate issuing during the provisioning, de-
vices request the certificates to km through pm. Fig 4

Data: pm has pkrepo and pksm.;
sw j+α, meta j+α

repo, and sig j+α
sm in the local

repository
pm load sw j+α, meta j+α, and sig j+α

sm from the
local repository.;

pm verifies sw j+α and meta j+α
repo with sig j+α

sm
and pksm.;

if sig j+α
sm is valid then

Verify sw j+α with meta j+α
repo and pkrepo.;

if meta j+α
repo is valid then

Proceed flashing sw j+α to the device
di

end
.

end
Algorithm 1: Provisioning Software.

Figure 3: pm verifies new software sw j+α then install
sw j+α to the device di.

describe the flow of issuing a certificate with Certifi-
cate Signing Request (CSR), which is standardized as
PKCS#10.

For certain devices that are not capable of gener-
ating a CSR, we have also designed a solution using
the Certificate Request Message Format (CRMF), as
specified in RFC 4211. In this scenario, the device
may send its public key to pm through the out-of-band
channel, and pm generates the request on behalf of
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Figure 4: di request certificate with CSR. CSR is generated
by di.

Figure 5: di request certificate with CRMF. CRMF can be
generated by either di or pm with ‘RAverified.’.

the device, as depicted in Fig 5. Note that the ‘RA
verified’ stamp on the CRMF proof of possession in-
dicates that the request has been successfully verified
by the RA.

4.3 Certificate Management

Certificate management includes two cases. The first
case is certificate provisioning, and the other case is
certificate update.

4.3.1 Certificate Provisioning

As described in Section 4.2.2, km participates during
the provisioning operation as RA and CA. When the
new request with CSR or CRMF of di is received, km
check the ownership of private key skdi . We assume
the environment that km and pm are running is physi-
cally protected, and the network connection stays of-
fline, as cm is disabled.

4.3.2 Certificate Update

When it is not during the provisioning operation, km
functions as the Registration Authority (RA), Certifi-
cate Authority (CA), and Validation Authority (VA).
As shown in Fig. 6, certificate updates can occur with
devices or other CAs depend on the implementation
choice. Since km’s role mirrors that of a generic CA in
a typical PKI scenario, we omit further details. Dur-
ing this process, pm is strictly disabled.

Figure 6: km becomes the generic CA when provisioning is
not operated.

Figure 7: sm sends new software check request to Remote
Repository.

4.4 Software Management

Software management operations include download-
ing software from the repository and storing it in the
local system, tasks handled by the Software Manage-
ment Module (sm) within the system.

Let sm is currently managing a software sw j for
the device model dtype with the version number ver j,
where j stands for the count number of the current
software version that is managed by sm.

sm may need to check if a new software sw j+α

is available in repo, where α ≥ 1, to keep the device
up-to-date state.

4.4.1 Establishment of the Secured Connection
to the Remote Repository

At first, sm connects to the remote repository repo
through the communication module cm. We omit
the detail since establishing the authenticated and en-
crypted channel could be done using the standard
methods such as TLS.

4.4.2 Check Existence of the New Software

Checking the new software could be performed
either by sm triggering the update check proac-
tively as depicted in Fig.7, or by the repository
repo periodically notifying that new update is avail-
able. In Fig. 7, the signature sig j+α is sig j+α =
sign(skrepo,ver j+α,dtype), where sign(k,m) stands
for the signing m with k.

4.4.3 Download the Software

When sw j+α exists, sm initiates the process to down-
load the updated software. Algorithm 2 shows the
flow of downloading procedure. To minimize unnec-
essary data transfer and reduce bandwidth usage, the
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Figure 8: sm stores new software and the metadata with the
signature.

system first downloads the metadata associated with
the new software version.

Metadata meta j
repo essentially includes the infor-

mation of sw, mete j
repo = {data j

repo,sig j
repo}, where

payload data j
repo including the software version ver j,

the hash of sw hash j, where hash j = hash(sw j),
the size of sw, and sig j

repo, which is a signature of
data j

repo, sig j
repo = sign(skrepo,data j

repo).

Data: sm knows ver j, dtype, and pkrepo;
Received ver j+α and sig j+α from repo
Verify ver j+α with ver j+α, dtype with pkrepo;
if sig j+α is valid then

Compare ver j+α to ver j;
if ver j+α > ver j then

Download the metadata meta j+α
repo

end
end
meta j+α contains payload data j+α

repo and the
signature sig j+α

repo;
Verify data j+α

repo and sig j+α
repo with pkrepo;

if sig j+α
repo is valid then

Download sw j+α;
generate hash(sw j+α) and compare to
hash j+α, extracted from data j+α

repo ;
if hash j+α ≡ hash(sw j+α) then

Store meta j+α
repo and sw j+α at the local

repository
end

end
Algorithm 2: Download the new software.

4.4.4 Local Software Management

When sm stores meta j+α
repo and sw j+α to the local

repository, sm could generate the signature of them
sig j+α

sm , where sig j+α
sm = sign(sksm,meta j+α

repo||sw j+α)
as depicted in Fig.8. To prevent the leakage of the
metadata, the local repository could be managed by
an access control mechanism or by storing meta j+α

repo
in an encrypted state.

4.4.5 Report the Update to the Server

After completing the download and storing the soft-
ware in the local repository, or continuing with the
provisioning process, the software management mod-
ule sm may report to the repository repo that the
download and verification have been successfully
completed. This ensures a record is kept and prevents
unnecessary redundancies. This step requires a cus-
tomization of the Uptane model (Kuppusamy et al.,
2017), which typically completes the process after the
device has finalized the update.

5 EVALUATION

In this section, we evaluate our design that meets re-
quirements in Section 5.2 and also show the perfor-
mance upon scenarios in Section 5.4.

5.1 Design Analysis

We show that our design meet the requirements de-
fined in Section 2.

5.1.1 Scalable Design with Cost Efficiency

As depicted in Figure 2, our design integrates the
Key Provisioning, Certificate Management, and Soft-
ware Management functions as microservices within
a unified system. Leveraging the inherent advantages
of a microservice-based architecture (Chandramouli,
2019; Ugale and Potgantwar, 2023; Oluyede et al.,
2024; Pandiya, 2021), our design facilitates effective
scalability.

Every function we deploy in our system is em-
ployed as the microservice and managable with min-
imum burden. For example, we utilized a COTS so-
lution EJBCA for the key management function km,
and replacing to another COTS solution is available.
Our implemented pm is also changeable when the de-
vice is changed, additionally, by adding multiple pms,
multiple different types of devices can be supported.
Fig. 9 depicts the case that CA and softwar update
capability is located in different system, while con-
necting two provisioning servers supporting different
device types. Thus, it is trivial to address that our de-
sign meets Req.1.

5.1.2 Support Different Operation Environment

Using microservice-based architecture, each func-
tion can be managed independently as addressed by
(Chandramouli, 2019). In our system implementa-
tion, we used Docker to enable each module to be
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Figure 9: Example case: Physically separated functions.

Table 1: State of modules in each operation.

Operation cm sm km pm
Provisioning software off on (opt.) off on

Provisioning certificate off off on on
Software Management on on off off

Certificate Management on off on off

easily turned on and off based on the use cases. Ta-
ble 1 shows the state of modules in each operation.
For example, during the provisioning of a certificate,
the communication module cm is turned off, and the
remote access is not allowed. In contrast, when the
provisioning module pm is turned off and the com-
munication modeul cm is turned on to provide the net-
work based certificate management while preventing
malicious access to the blank devices. Thus, we claim
Req.2 holds.

5.2 Security Analysis

5.2.1 Security Against the Remote Attack
During Provisioning

A remote attacker Adv may try to access the system
while the provisioning is in progress. However, dur-
ing this process, the communication module and other
modules not involved in the provisioning operation
are disabled, as addressed in Section 5.1.2. Thus, we
claim Req.3 holds.

5.2.2 Security Against Issuing Certificate to
Unauthorized Devices

As we assume that only authorized personnel man-
ages pm and the blank devices are managed in the
physically protected environment. Thus, during pro-
visioning stage, km and pm establish the secure con-
nection, and sign messages between them. Since
pm manages devices physically, issuing certificates to
unauthorized entity can be prevented.

It is important to note that, in practice, a insider at-
tacker Adv may compromised km or pm and attempt
to issue certificates to malicious devices. Therefore,
a strict security policy must be enforced to restrict

system access by unauthorized personnel. Thus, we
claim Req.4 holds.

5.2.3 Security Against the Compromised
Software Installation

Following the model presented in (Kuppusamy et al.,
2017), our design specifically addresses scenarios
where malicious software is received and pending in-
stallation.

Consider a remote attacker, denoted as Adv, who
generates compromised software swAdv, its signature
sigAdv, and the associated metadata metaAdv. The at-
tacker must create metaAdv without access to the pri-
vate key skrepo and transmit it to sm via cm. The
probability that a legitimate sm accepts metaAdv is no
greater than the likelihood of breaking the employed
public key cryptographic primitive.

Assume that swAdv is accepted by a compromised
sm. Using sksm, sm generates a valid signature sigAdv

sm ,
where sigAdv

sm ≡ sign(sksm,metaAdv||swAdv). Despite
the validity of sigAdv

sm , the signature of metaAdv be-
comes invalid, allowing pm to detect the compromise
of sm. If sigAdv

sm also becomes invalid, pm may con-
sider the entire system compromised and halt all op-
erations.

Instead of deploying malicious swAdv, a compro-
mised sm might use sw j+1 for pm, even though sw j+2
is already available from the remote repository. How-
ever, since sw j+1 is still a higher version than the cur-
rently installed sw j, the incentive for a successful at-
tack remains low.

Finally, the device may verify the software’s in-
tegrity post-installation using methods such as secure
boot. Thus, we claim Req.5 holds.

5.2.4 Security Against Leaking the Current
Software Version

During checking the up-to-date software version, sm
doesn’t reveal the software version those currently in-
stalled to devices. Also, sm only proceed the software
download after sig j+α is verified. An attacker Adv
may try to generate verAdv with slightly higher ver-
sion number and sigAdv without skrepo. The probabil-
ity of success that Adv generates the signature without
private key is same as one of breaking the public key
crypto primitive used.

Once the metadata meta is downloaded, it could
be stored in the local repository with encrypted state,
where the encryption key is only shared between sm
and pm. As far as sm or pm are not compromised, the
data will be stay encrypted. When the metadata is to
be decrypted, communication to the external network
is disabled, and only provisioning modules are active.
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To avoid such risk, adding more authentic method to
restrict the unauthorized access could be deployed.
Thus, we claim Req.6 holds.

5.3 Implementation Using COTS

In this section, we demonstrate the implementa-
tion of our design using Commercially Off-The-Shelf
(COTS) products. We implemented all functions as
containers on Docker. This approach allows for the
easy disabling of unnecessary modules for specific
operations.

For the channel (1) in Fig. 2, we adopted the Neu-
ral Autonomic Transport System (NATS)1, which pro-
vides a messaging service for microservices, to facil-
itate communication between each container.

For the certificate management function km, we
employed the Enterprise Java Beans Certificate Au-
thority (EJBCA), a comprehensive certificate author-
ity implementation by Keyfactor2, which has been
utilized in several research works (Tan et al., 2015;
Jain et al., 2018; Rasyid et al., 2022). Using EJBCA
WSDL/SOAP typed Web Service (EJBCA WS) APIs,
we implemented an interpreter that translates these
messages into JSON-type messages that can be ex-
changed over NATS.

Figure 10 illustrates an example where EJBCA
receives a ‘create certificate’ (createCertificate) re-
quest from another entity through NATS. The initial
message is in JSON format and is interpreted into a
WSDL/SOAP message that EJBCA WS can process.
In response, EJBCA issues a certificate based on the
CSR and sends it back through NATS in the reverse
order.

For the provisioning function pm, we imple-
mented a versatile design that manages certificate
handling during the provisioning process and sup-
ports various device types. We identified that the
flashing tool, as depicted in Fig. 2, may depend on
the specific device types. We tested with the Po-
larFire SoC FPGA from Microchip Inc. as a device
type dtype, utilizing their proprietary software called
Libero Pro. By containerizing this tool, pm can be
easily replaced when a new device type is introduced.

For the software management function sm, we
modeled the operation after the primary ECU in Up-
tane (Kuppusamy et al., 2017). Customization arises
from scenarios where the software may not be imme-
diately signed; hence, signing metadata from repo is
included, and the report confirms that sm has success-
fully downloaded the software.

1https://nats.io
2https://www.keyfactor.com/

Figure 10: Connecting EJBCA to NATS: Other module
connected to NATS transmits the request of ‘createCertifi-
cate’ message as JSON format, and interpreter in km con-
vert JSON message to WSDL/SOAP message format that
can run EJBCA WS.

Figure 11: Time comparison between CSR generation in
the device and CRMF generation in pm.

5.4 Performance Evaluation

In this section, we show the performance comparison
between using CSR and using CRMF shown in Sec-
tion 4.2.2, and also show the performance of issuing
certificate in the server.

We first tested generating 500 requests in CSR for-
mat in the device (Raspberry Pi 4) to emulate the cer-
tificate request from the device, and then tested gen-
erating 500 requests in CRMF format in pm (Intel(R)
Core(TM) i7-12800H) considering the server gener-
ates the request on behalf of the device.

As depicted in Fig. 11, handling computation of
500 requests in the device and in the server shows
approximately 20 times difference. Thus deploying
CRMF with ‘RAverified’ could be considered when
the performance is critical requirement, as well as the
device has lack of capability to generate CSR by it-
self.

For the certificate issuing, we tested certificate
generation on km in macOS on M3 Max Processor.
pm is sending CSR or CRMF with ‘createCertificate’
request to km over NATS, and km issues and sends
the certificate back to pm over NATS. As depicted in
Fig. 12, handling 1 certificate approximately takes
0.18 seconds, 100 certificates takes 9.2 seconds.

Implementer could refer to the time comparison
and time estimation in the deployment planning.
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Figure 12: Time that pm sends CSR/CRMF and receives
the certificate.

6 RELATED WORK

In the study of ”Securing IoT Microservices with Cer-
tificates” by (Pahl and Donini, 2018) addresses secu-
rity issues in IoT systems where microservices oper-
ate on distributed, resource-limited nodes. The au-
thor proposes a certificate-based approach to main-
tain authentication, accountability, and data integrity
throughout the service lifecycle, from development to
updates. Another paper proposes a framework for se-
curely managing and rotating secrets in cloud-based
microservices (Singh and Aggarwal, 2023). It auto-
mates secret rotation, balances centralized and decen-
tralized strategies, and ensures minimal service dis-
ruption. The approach includes key encryption, peri-
odic rotation, access control, and automated revoca-
tion, enhancing overall system security. The frame-
work focuses on scalability, continuous monitoring,
and robust auditing, providing a secure and efficient
solution for cloud environments. Finally, (Krämer
et al., 2019) addresses securing applications in smart
city cloud environments using microservices. It out-
lines challenges such as data privacy, authentication,
and inter-service communication. The authors pro-
pose a multi-layered security model that combines
role-based access control, encryption, and trusted
communication protocols.

Our paper distinguishes itself from existing re-
search by focusing on implementing Public Key In-
frastructure (PKI) through a microservice-based ar-
chitecture tailored for small and medium-sized en-
terprises (SMEs). Unlike traditional cloud-centric
or monolithic PKI systems, your solution prioritizes
on-premises scalability, modular updates, and mini-
mal resource overhead, using Docker-based microser-
vices and Commercial Off-The-Shelf (COTS) prod-
ucts. This design avoids the high costs, vendor lock-

ins, and complexities of Kubernetes, offering SMEs
greater control, security, and adaptability. By focus-
ing on localized infrastructure, your approach ensures
scalability, cost efficiency, and robust security without
relying on cloud dependencies, making it a practical
and accessible choice for businesses with limited bud-
gets and resources.

7 CONCLUSION

This paper presents a cost-efficient security model for
device lifecycle management, integrating key provi-
sioning, certificate management, and software man-
agement through a microservice architecture. The
model supports small-sized organizations and diverse
operational environments, ensuring cost efficiency,
flexibility, and scalability.

A case study demonstrates the model’s implemen-
tation using commercially off-the-shelf (COTS) solu-
tions. This approach allows organizations to establish
a security infrastructure that meets current require-
ments and adapts to future challenges and changes
in the security landscape, maintaining robust security
measures against evolving threats.
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