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Abstract: In this paper, we examine the cost optimization analysis of retrial machine repair problem with warm standby 
components and imperfect coverage. This research suggests that failure times and repair times of the primary 
and warm standby components are exponentially distributed and that the coverage factor is the same for a 
primary component failure and a standby component failure. When the server is either busy with other tasks 
or is repairing a failed component, the failed component will be sent to the retrial orbit. The steady-state 
probabilities of the number of failed components in an orbit is developed by using the matrix-analytic method. 
The particle swarm optimization (PSO) algorithm is implemented to simultaneously determine the joint 
optimal values of the number of warm standbys, the repair rate, and the retrial rate at minimum cost. Under 
optimal operating conditions, numerical experiments were presented to illustrate results. Sensitivity analysis 
for system parameters is performed additionally. 

1 INTRODUCTION 

This paper studies a retrial machine repair problem 
(RMRP) with warm standby components and 
imperfect coverage. Retrial queue or RMRP with 
imperfect coverage is a major issue. Artalejo (1999a, 
1999b),  Falin (1990), and  Yang and  Templeton 
(1987) provided the foremost overall surveys and 
ideas for retrial queues. Queueing systems in which 
arriving failed components that cannot accept service 
immediately enter orbit and retry for service again 
after a random time is called retrial queue. Retrial 
queueing problems are increasingly important 
concerns and play a crucial role in many practical 
applications, such as message switching systems, 
manufacturing systems, telecommunication systems, 
and production management. With an imperfect 
coverage factor, the failed component is immediately 
detected, located, and recovered by standby, and the 
faults that exchange the failed component within the 
standby component are called to be not covered. 
Wang et al. (2014) examined an M/G/1 MRP with 
imperfect coverage by constructing a cost function 
and using direct search and the Quasi-Newton method 
to find the optimal number of operating components, 
the repair rate, and the coverage factor. Wang et al. 
(2013) proposed the direct search method and PSO 

algorithm to determine the joint optimal values at the 
maximum profit function. After comparing these two 
methods, using the PSO algorithm is a better choice 
when dealing with optimization problems. Yen et al. 
(2021) contrasted four retrial systems with imperfect 
coverage and warm standbys. They presented the 
comparative analysis of the cost-benefit ratio among 
four retrial systems and provided the optimal retrial 
system. Yen and Wang (2020) investigated the cost-
benefit analysis of four retrial systems with imperfect 
coverage and warm standbys and made comparisons. 
Wang et al. (2012) compared two availability systems 
with imperfect coverage and warm standbys. This 
paper also compares five different distributions of 
repair time, which are exponential, normal, gamma, 
uniform, and deterministic. Sherbeny and Hussien 
(2019) studied the cost-benefit and the availability 
analysis for three models with imperfect coverage and 
mixed standby (cold and warm standby). Jain and 
Meena (2017) analyzed a model of a fault-tolerant 
system with imperfect coverage, applied the Runge-
Kutta method to evaluate system performance 
measures, and conducted a numerical simulation of 
the cost and sensitivity. Wang et al. (2013) conducted 
a reliability and sensitivity analysis for the repair 
system with imperfect coverage and service pressure 
conditions, and studied the influence of different 
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parameters on system reliability and MTTF. 
Cost optimization is a major topic and much 

research has been done using particle swarm 
optimization (PSO) algorithm for cost optimization 
analysis. The PSO algorithm was first proposed by 
Kennedy and Eberhart (1995). Zhang et al. (2017) 
investigated the retrial queue under the state-
dependent service policy and established a reward-
cost function, using the PSO algorithm to obtain the 
optimal strategy. Compared with related service 
strategies, managers get more benefits. Wang et al. 
(2019) analyzed RMRP with working breakdowns 
under the N policy, proposing a profit function and 
using the PSO algorithm to determine the optimum 
number of warm standbys, fast service rates, and slow 
service rates. Yang et al. (2020) considered an M/M/2 
queue with two heterogeneous servers. They 
constructed a cost function and determined the 
optimal solutions by using PSO algorithm. Zhang and 
Wang (2017) studied an M/G/1 retrial queue with 
setup times and used the PSO algorithm to find the 
optimal reserved idle time for maximizing profit. 

The rest of the paper is organized as follows. The 
model descriptions and assumptions of the RMRP 
with warm standby components and imperfect 
coverage are presented in Section 2. By using the 
matrix-analytic method, Section 3 provides the 
derivations of the steady-state probabilities of the 
number of failed components in the retrial orbit. The 
effects of various system parameters on the system 
performance measures are investigated in Section 4. 
The total expected cost function to determine the 
optimal solutions and perform sensitivity analysis is 
shown in Section 5. Finally, the conclusion will be 
shown in Section 6 of this paper. 

2 THE MODEL DESCRIPTIONS  

We consider the RMRP with N=M+S   identical 
components and a single server in the repair facility. 
As many as M of these components can operate at 
the same time, while the rest of the S components are 
warm standbys. The assumptions of the model are 
described as follows: 
(1) Primary components are subject to breakdowns 

according to the independent Poisson process 
with parameter λ . 

(2) Warm standby components are subject to 
breakdowns according to independent Poisson 
process with parameter α  ( 0< <α λ ).  

(3) When one of the primary components fails, it is 
instantly replaced by an available warm standby 
component. When a warm standby moves into 
operating state, its failure characteristics will be 
that of a primary component.  

(4) Whenever a component fails, it will be sent to the 
server immediately, where the repair is provided 
in the order of their breakdowns, that is, the first-
come, first-served discipline.  

(5) The repair times at this repair facility follow 
exponential distribution with parameter μ .  

(6) The server can only repair one failed component 
at a time. Once a failed component is repaired, it 
becomes as good as new.  

(7) The probability of successful recovery on the 
failure of a primary component (or warm standby 
component) is denoted as c . Quantity c , which 
is included in the probabilities of successful 
detection, location, and recovery from a failure, is 
known as the coverage factor or coverage 
probability 

(8) The unsafe failure state of the system in any one 
of the breakdowns is not covered. 

(9) Primary component (or warm standby component) 
failure in the unsafe failure state is cleared by a 
reboot. Reboot delay follows exponential 
distribution with parameter β . 

(10) When a primary or warm standby component 
fails and finds that the server is busy in repairing 
another failed component, it will be sent to the 
retrial queue (orbit). 

(11) Failed components in the retrial queue repeat its 
request for service with an exponential random 
period of retrial time at rate γ . 

(12) When the time waiting in the retrial queue 
terminates, the failed component will get the 
repair if the server is idle; otherwise, it will 
again be sent to the retrial queue for another 
random period. 

(13) The failure times, repair times, retrial times, and 
reboot delay times are mutually independent 
from each other. 

3 STEADY-STATE RESULTS 

In this RMRP with imperfect coverage, we describe 
the system states by the pairs ( , )i j . 0i =  means 
that the server is idle, 1i =  shows that the server is 
busy, j n=  denotes that there are n  failed 
components in the retrial orbit and the system is in a 
safe failure state, and nj uf=  represents that there 
are n  failed components in the retrial orbit and the 
system is in an unsafe failure state. 

The mean failure rate of a primary component 
nλ  is given by 

( ) , 0 1,
( ) , .n

M S n  n S
M S n  S n N M S

λ α
λ

λ
+ − ≤ ≤ −

=  + − ≤ < = +
 

The following steady-state probabilities are 
employed throughout this paper: 
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Figure 1: State-transition-rate diagram of RMRP with warm standby components and imperfect coverage. 

0, nP ≡  probability that there are n  failed units in 
the retrial orbit when the server is idle and 
the system is in a safe failure state (cover), 
where n = 0, 1, 2, …, N 1− ; 

1, nP ≡   probability that there are n   failed units in 
the retrial orbit when the server is busy and 
the system is in a safe failure state (cover), 
where n = 0, 1, 2, …, N 1− ; 

, n0 ufP ≡ probability that there are n  failed units in 
the retrial orbit when the server is idle and 
the system is in an unsafe failure state (not 
covered), where n = 0, 1, 2, …, N 2− ; 

, n1 ufP ≡  probability that there are n   failed 
components in the retrial orbit when the 
server is busy and the system is in an unsafe 
failure state (not covered), where n = 0, 1, 
2, …, N 3− . 

3.1 Steady-State Equations 

Referring to the diagram displayed in Figure 1, the 
equilibrium equations are deduced as follows: 

1,0 0 0,0p pμ λ=              (1) 

10,uf 1, 0,( ) , 1 1
j j j jp p j p j Nβ μ λ γ
−

+ = + ≤ ≤ −   (2) 

0 0,0 0,1 1 1,0( )cp p pλ γ μ λ+ = +          (3) 

10, 1, 1 0, 1 1,uf

1 1,

( ) ( 1)

( ) , 1 2
jj j j j

j j

c p p j p p

p j N

λ γ β

μ λ
−− +

+

+ + + +

= + ≤ ≤ −
  (4) 

1 0, 1 1, 2 1, 1( )N N N Np p pλ μ− − − −+ =        (5) 

0, 0,uf(1 c) , 0 2
jj jp p j Nλ β− = ≤ ≤ −      (6) 

1, 1,uf(1 c) , 0 3
jj+1 jp p j Nλ β− = ≤ ≤ −      (7) 

 

3.2 Matrix-Analytic Method 

The matrix-analytic method was first introduced by 
Neuts (1981) while studying the embedded Markov 
chains of many queueing systems. Because of the 
high complexity of this RMRP with imperfect 
coverage, the matrix-analytic method is employed to 
derive the steady-state probabilities ,i jp  . By 
appropriately arranging the system states, the 
corresponding transition rate matrix Q   of this 
Markov chain can be established as the following 
block tridiagonal form: 

0 1

1 2

2 3

3

.

0

1

2

3

N 4

N 4 N 3

N 4 N 3 N 2

N 3 N 2 N 1

N 2 N 1

−

− −

− − −

− − −

− −

 
 
 
 
 
 
 =  
 
 
 
 
 
  

Q







B C
A B C

A B C
A B

A

C
B C
A B C

A B C
A B

(8) 

Each element of the matrix Q  is a submatrix, which 
may be listed as follows: 

1

1

(1 ) 0 0
0 0 , 0 ,0 0
0 0 (1 )

n

n
n

n n

n

c
n n N 3c

c

β λ
λ γ μ
λ μ λ

λ β
+

+

− − 
 − −= ≤ ≤ − − − 

− −  

B  

(1 ) 0
0 ( ) ,
0

N 2

N 2 N 2

N 2 N 1

c
N 2
c

β λ
λ γ μ

λ μ λ

−

− −

− −

− − 
 = − − −
 − − 

B  

,N 1
N 1

N 1

(N 1)λ γ μ
λ μ

−
−

−

− − − =  − 
B  
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0 0 0 0 , 10 0 0
0 0 0 0

n n N 3nγ

 
 

= ≤ ≤ − 
 
  

C , 

0 0 0
0 0 0 ,0 0
0 0 0

N 2 (N 2)γ−

 
 

=  − 
  

C
0 0
0 0 ,

0
N 1

(N 1)γ
−

 
 =
 − 

C  

0 0 0 0
0 0 0 , 0 ,0 0

0 0 0 0
n

n+1
n N 4c

β
λ β

 
 

= ≤ ≤ − 
 
  

A  

0 0 0 0
0 0 0 ,

0 0
N 3

N 2c
β

λ β
−

−

 
 =
 
 

A 0 0 .0 0N 2
N 1

β
λ−

−

 =   
A  

It should be noted that the matrix Q  has a non-
homogeneous quasi-birth-death process. Let P  
denote the corresponding steady-state probability 
vector of Q  . By partitioning the vector P   as 

0 1 3 2 1[ , , , , , ]T
N N N− − −=P p p p p p , where

T
0, 0, 1, 1,[ , , , ] ,

n nn uf n n ufp p p p=p ( 0 n N 3≤ ≤ −  ) are 
column vectors with dimension 4 1×  , 

0, 0, 1,[ , , ]
N 2

T
N 2 uf N 2 N 2p p p

−− − −=p  is a 3 1×   column 
vector, and 0, 1,[ , ]T

N 1 N 1 N 1p p− − −=p  is a 2 1×  
column vector, the equilibrium equation 

4 3N −=QP O  can be rewritten as follows: 

0 0 1 1 4 ,+ =B p C p O          (9) 

1 1 1 1 4 , 1 3n n n n n n n N− − + ++ + = ≤ ≤ −A p B p C p O  (10) 

3 3 2 2 1 1 3N N N N N N− − − − − −+ + =A p B p C p O   (11) 

2 2 1 1 2N N N N− − − −+ =A p B p O      (12) 

where sO  is a zero column vector with dimensions 

1s × . 

3.3 Steady-State Solutions 

Based on Equations (9)-(12), we have the following: 
1

0 1 1 1 0 1, where ,  −= = −p X p X B C      (13) 

( )
1 1

1
1 1 1

, where 

, 1 2
n n n

n n n n n  n N
+ +

−
+ − +

=

= − + ≤ ≤ −

p X p

X A X B C
 (14) 

( )
( ) 1

, whereN 2 N 1 N 1 N 1 2

N 1 N 3 N 2 N 2 N 1

  − − − −

−
− − − − −

+ =

= − +

A X B p O

X A X B C
  (15) 

Consequently, np , 0 n N 2≤ ≤ −  can be 
represented in term of N 1−p  as 

1

1 2

1 ,

n

n n n N 1 N 1 i N 1
i N 1

n N 1   

+

+ + − − −
= −

+ −

= =

=

∏p X X X p X p

Φ p

   (16) 

where 
1

1

n

n i
i N 1

+

+
= −

= ∏Φ X , 0,1, ...,n N 2.= −  

Finally, the probability N 1−p  can be derived from 
Equation (15). The following normalizing equation is 
derived from: 

0

1
0

1

N 3
T T T
4 n 3 N 2 2 N 1

n

N 3
T T T
4 n 3 N 1 2 N 1

n

    
−

− −
=

−

+ − −
=

+ +

 = + + = 
 





e p e p e p

e Φ e Φ e p
 (17) 

where se  denotes an identity column vector with 
dimensions 1s ×  . Once the probability 1N −p  has 
been determined, the remaining probability vectors 
can be derived recursively according to Equation (16). 
Then, the desired system performance measures can 
be obtained on the basis of these probability vectors. 
The solution algorithm for the steady-state 
probability vectors is described in the following 
subsection. 

3.4 The Solution Algorithm 

INPUT: Number of primary and warm standby 
components , )(M S , Q  matrix  

OUTPUT: Steady-state probability vectors 

Step 1: Set 1
1 0 1

−= −X B C . 
Step 2: For n  from 1 to N 2− , set 

( ) 1
1 1 1n n n n n

−
+ − += − +X A X B C . 

Step 3: Set ( ) 1
N 1 N 3 N 2 N 2 N 1

−
− − − − −= − +X A X B C . 

Step 4: For n  from 1 to N 1− , set 
1n n N 3 N 2 N− − −=Φ X X X X . 

Step 5: Solve ( )N 2 N 1 N 1 N 1 2− − − −+ =A X B p O  and 
the normalization condition 

1
0

1
N 3

T T T
4 n 3 N 1 2 N 1

n

−

+ − −
=

 + + = 
 
 e Φ e Φ e p  

simultaneously, to obtain the probability N 1−p . 
Step 6: For 0 n N 2≤ ≤ − , the probability np  is 

constructed as follows: 
1n n N 1+ −=p Φ p . 
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4 SYSTEM PERFORMANCE 
MEASURES 

We define system performance measures of the 
RMRP with warm standby components and imperfect 
coverage as follows: 

[ ]E N ≡ the expected number of failed components in 
the retrial orbit; 

[ ]CE N ≡ the expected number of failed components 
in the retrial orbit when the system is in a 
safe failure state (cover); 

[ ]NCE N ≡ the expected number of failed components 
in the retrial orbit when and the system is 
in an unsafe failure state (not cover); 

[ ]E S ≡  the expected number of warm standby 
components in the retrial orbit; 

[ ]E O ≡ the expected number of primary components 
in the retrial orbit; 

NCP ≡  the probability of failed components in the 
retrial orbit when and the system is in an unsafe 
failure state (not cover); 

AV ≡ the probability of the number of failed units is 
less than or equal to the number of warm 
standby units. 

We can compute [ ]E N  , [ ]CE N  , [ ]NCE N  , 
[ ]E S , and [ ]E O  from the following equations. 

2 3

0, 1, 0,uf 1,uf[ ] ( )
n n

N 1 N N

n n
n 0 n 0 n 0

E N n p p np np
− − −

= = =

= + + +   (18) 

0, 1,[ ] ( )
N 1

C n n
n 0

E N n p p
−

=

= +        (19) 

2 3

0,uf 1,uf[ ]
n n

N N

NC
n 0 n 0

E N np np
− −

= =

= +       (20) 

0,uf 0, 1, ,uf
0

[ ] ( )(
n n

S

n n 1
n

E S S n p +p p +p )
=

= − +   (21) 

[ ] [ ] [ ],E O N E N E S= − −         (22) 

2 3

0,uf 1,ufn n

N N

NC
n 0 n 0

P = p p
− −

= =

+           (23) 

0,uf 0, 1, ,uf
0
( )

n n

S

n n 1
n

AV= p +p p +p
=

+      (24) 

The base case for the setting of system 

parameters is listed below:  

15,M =  10,S =  0.16,λ =  2.0,μ =  0.08,α =  
6.0,β =  15.0,γ =  0.9c = . 

This section first studies how each parameter 
affects system performance measures by the change 
of each system parameter value. Except for 15M=  
(which is always fixed), each system parameter takes 
turn changing in a certain range while keeping other 
system parameters fixed at the level of the base case. 
We consider seven cases with various values of 
system parameters. The numerical results are shown 
in Figures 2-3. 

Case 1: 2.0μ =  , 0.08α =  , 6.0β =  , 15.0γ =  , 
0.9c = , λ  varies from 0.12 to 0.26; 

Case 2: 0.16λ =  , 0.08α =  , 6.0β =  , 15.0γ =  , 
0.9c = , μ  varies from 1.0 to 10.0; 

In Figure 2, we find that (i) [ ]E N  , [ ]CE N  , 
[ ]E O , and AV  are significantly affected by λ ; (ii) 
[ ]E S   is slightly affected by λ  ; and (iii) [ ]NCE N  

and NCP  seems too insensitive to change in λ . In 
Figure 3, we find that (i) [ ]E N  , [ ]CE N  , [ ]E S  , 

[ ]E O , AV  are significantly affected by μ ; and (ii) 
[ ]NCE N  and NCP  are slightly affected by μ . 

 
Figure 2: System performance measures versus various 
values of λ . 

 
Figure 3: System performance measures versus various 
values of μ . 
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5 COST OPTIMIZATION 
ANALYSIS 

Several researchers have investigated the study of 
retrial queue involving cost optimization analysis. 
They aimed at determining the optimal number of 
servers, optimal service rate, optimal repair rate, and 
so on. We construct the expected cost function per 
unit time for the RMRP with warm standby 
components and imperfect coverage where S  , μ  , 
and γ   are decision variables. Our main goal is to 
determine the optimal value of ( , , )S μ γ  , say 

ˆ ˆˆ( , , )S μ γ  , so as to minimize the cost function. The 
cost elements are defined as follows: 

1C ≡  cost per unit time per failed component in the 
retrial orbit when the system is in a safe failure 
state (cover); 

2C ≡  cost per unit time per failed component in the 
retrial orbit when the system is in an unsafe 
failure state (not cover); 

3C ≡  cost per unit time of probability of NCP ; 

4C ≡  cost per unit time of unavailability 1 AV− ; 

5C ≡  cost per unit time of providing the service rate 
μ ; 

6C ≡   cost per failed component in retrial orbit by 
providing the retrial rate γ . 

Based on all of the cost elements listed above, 
the expected cost per unit time is constructed as 
follows: 

1 2 3

4 6

( , , ) [ ] [ ]
(1 ) .

C NC NC

5

TC S C E N C E N C P
                   C AV C +C

μ γ
μ γ

= + +
+ − +

  (25) 

Thus, the cost minimization problem can be 
expressed mathematically as 

, ,
ˆ ˆˆ( , , ) ( , , ).

S
TC S Minimize TC S

μ γ
μ γ μ γ=

 
5.1 Sensitivity Analysis 

As the following numerical examples, we consider 
the cost elements as follows: 

1 2 3 5 6$60, $12 , $2 , $48 , $9 , $3 .4C C 0 C 40 C 0 C 0 C 0= = = = = =  

To examine the effect of system parameters on 
the cost function, a sensitivity analysis in six cases is 
provided for M=15   with various values of 
S  = 3, 5, 7,  respectively. 

Case 1: 2.0μ =  , 0.08α =  , 6.0β =  , 15.0γ =  , 
0.9c = , λ  varies from 0.12 to 0.26; 

Case 2: 0.16=λ  , 0.08α =  , 6.0β =  , 15.0γ =  , 
0.9c = , μ  varies from 1.0 to 10.0; 

The numerical results of the above four cases are 
shown in Figures 4-5, which depicts the sensitivity 
performance of cost function TC   on λ  , α  , β  , 
μ  , γ  , and c  , respectively. It is important to note 
that the sign of sensitivity indicates an increase or 
decrease in the expected cost by changing the values 
of system parameters. Figure 4 reveals that (i) 

/TC λ∂ ∂   is positive, which means that TC  
increases as λ  increases for all S ; (ii) /TC λ∂ ∂
has the highest point at around 0.13λ =  for all S ; 
and for (iii), as λ  is fixed, /TC λ∂ ∂ gets larger as 
S   increases. Figure 5 shows that (i) /TC μ∂ ∂
changes from negative to positive, which means that 
TC  changes from a decrease to an increase on μ  
for all S  ; (ii) as μ   is fixed, /TC μ∂ ∂   gets 
smaller as S   increases; and when (iii) as μ   is 
greater than 4, /TC μ∂ ∂  is similar for all S . 

 
Figure 4: Sensitivity analysis of TC  with respect to  λ  
for different S . 
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Figure 5: Sensitivity analysis of TC  with respect to μ  
for different S . 

5.2 Cost Optimization 

The PSO algorithm was first proposed by Kennedy 
and Eberhart (1995) and works with a population of 
particles where one procedure includes exploitation 
optimization searches. As the following numerical 
examples, we consider the cost elements as follows: 

1 2 3

5 6

$60, $12 , $2 ,
$48 , $9 , $3 .4

C C 0 C 40
C 0 C 0 C 0

= = =
= = =

 

The PSO algorithm is applied to find the approximate 
optimization solution ˆ ˆˆ, ,(S )μ γ   and minimum cost 

ˆ ˆˆ( , , )TC S μ γ . Since the PSO algorithm does not need 
to compute the gradient, it is flexible for non-
differentiable cost functions. Moreover, it can be 
implemented to handle optimization problems with a 
mixture of discrete and continuous decision variables. 
We first fix 15M=  and consider various values of 
λ , α , β , and c . Then, after setting the different 
ranges of decision variables S  , μ  , γ   by 
1 10S≤ ≤  , 0.1 10.0μ≤ ≤  , and 0.1 20.0γ≤ ≤  , we 
use computer software Maple for numerical 
investigation. The detailed optimal solution 

ˆ ˆˆ( , , )S μ γ  , minimum cost ˆ ˆˆ( , , )TC S μ γ   and related 
parameters are shown in Tables 1-4. We observe from 
Tables 1-4 that (i) the optimal number of warm 
standby components Ŝ   increases as λ   increases; 
(ii) the optimal number of warm standby components 
Ŝ   decreases as α   increases; (iii) the optimal 
number of warm standby components Ŝ  is the same 
even though β  varies from 4.0 to 8.0 and c  varies 
from 0.6 to 1.0; (iv) ˆ ˆˆ( , , )TC S μ γ  increases as λ  or 
α  increases; and (v) ˆ ˆˆ( , , )TC S μ γ  decreases as β  

or c   increases. Intuitively, the optimal number of 
warm standby components Ŝ   is significantly 
affected by λ  and α , but seems too insensitive to 
change in β  and c . 

Table 1: The optimal results for various values of λ with 
0.08α = , 6.0β = , and 0.9c = . 

λ  Ŝ μ̂ γ̂  ˆ ˆˆ( , , )TC S μ γ
0.12 4 3.435 2.493 519.127 
0.14 5 3.854 2.711 579.451 
0.16 5 4.268 2.967 637.675 
0.18 5 4.672 3.216 694.645 
0.20 5 5.066 3.457 750.483 

Table 2: The optimal results for various values of α with 
0.16λ = , 6.0β = , and 0.9c = . 

α Ŝ μ̂ γ̂  ˆ ˆˆ( , , )TC S μ γ
0.04 6 4.215 2.899 622.923 
0.06 5 4.247 2.957 631.115 
0.08 5 4.268 2.967 637.675 
0.10 5 4.288 2.976 644.031 
0.12 4 4.300 3.052 648.612 

Table 3: The optimal results for various values of β  with 
0.16λ = , 0.08α = , and 0.9c = . 

β Ŝ μ̂ γ̂  ˆ ˆˆ( , , )TC S μ γ
4.0 5 4.272 2.977 644.166 
5.0 5 4.270 2.971 640.304 
6.0 5 4.268 2.967 637.675 
7.0 5 4.267 2.964 635.770 
8.0 5 4.266 2.962 634.327 

Table 4: The optimal results for various values of c  with 
0.16λ = , 0.08α = , and 6.0β = . 

c Ŝ μ̂ γ̂  ˆ ˆˆ( , , )TC S μ γ
0.6 5 4.242 3.346 689.743 
0.7 5 4.250 3.223 673.331 
0.8 5 4.259 3.096 656.009 
0.9 5 4.268 2.967 637.675 
1.0 5 4.279 2.834 618.210 

6 CONCLUSIONS 

This article considers the RMRP with warm standby 
components and imperfect coverage. Steady-state 
results are computed numerically with the matrix-
analytic technique. We have performed the sensitivity 
analysis of system performance measures with 
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respect to various system parameters. By using the 
PSO algorithm, we determine the joint optimal values 
of the number of warm standbys, the repair rate, and 
the retrial rate simultaneously to minimize the 
expected cost. The PSO algorithm can be applied to 
analyze the complex optimization problems that 
occur in various retrial queues (or RMRP). Under 
optimal operating conditions, we illustrate our results 
by discussing several cases of numerical examples. 
The experimented results are helpful for managers to 
make decisions. Moreover, the results obtained 
provide further insight into the RMRP with warm 
standby components and imperfect coverage. 
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