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Abstract: Digital pathology allows for the efficient storage and advanced computational analysis of stained 
histopathological slides of various tissues. Tissue segmentation is a crucial first step of digital pathology 
aimed at eliminating background, pen markings, and other artifacts, reducing image size, and increasing the 
efficiency of further analysis. In most cases, color thresholding or deep learning models are used, but their 
effectiveness is reduced due to complex artifacts and huge color variations between slides. We propose a post-
processing method to increase the tissue segmentation performance of any initial segmentation algorithm. 
Using a set of 197 manually annotated histopathological images of breast cancer patients and 63 images of 
endometrial cancer patients, we tested our method with 3 thresholding techniques and 3 deep learning-based 
algorithms by calculating the Dice index, Jaccard index, precision, and recall. In both datasets, applying post-
processing increased precision and recall for thresholding methods and mostly precision for deep learning 
models. Overall, applying post-processing gave better tissue segmentation performance than initial 
segmentation methods, significantly increasing Dice and Jaccard indices. Our results proved that thanks to 
post-processing, the tissue segmentation pipeline is more robust to noises and artifacts commonly present in 
histopathological images. 

1 INTRODUCTION 

Modern medical imaging enables precise assessment 
of the stained histopathologic slides of different 
tissues. The most common staining method is 
hematoxylin and eosin (HE) since using only these 
two stains allows the visualization of major tissue 
structures. Hematoxylin stains nuclei blue, while 
eosin stains the cytoplasm and connective tissue pink 
or red. With histopathological slides, pathologists can 
determine the presence and stage of the disease or the 
effect of medical treatment (Cooper, L.A., et al., 
2018). The development of digital scanners that can 
obtain high-resolution whole-slide images (WSIs) 
has contributed to creating extensive datasets with 
images for various diseases. Digital processing of 
slides and the decreasing data storage costs stimulated 
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the development of new algorithms in the fields of 
image processing and machine learning (Serag, A., et 
al., 2019). However, the main obstacle is that scanned 
images are much larger than natural images, so 
analysis could be extremely time-consuming with 
high computational capacity requirements. 

Most WSIs contain a lot of the background area, 
which is uninformative for pathologists and only 
increases the computational cost of image analysis. 
Tissue segmentation leads to the accurate 
identification and isolation of relevant regions of 
WSI, which can significantly impact the efficiency 
and speed of analysis and decrease the cost of data 
storage (Salvi, M., et al., 2021). It is also crucial when 
supervised methods are developed on digital slides 
since it prevents learning from background noise. 
Known semi-automated and manual segmentation 
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methods, such as color classification, edge detection, 
and region growing, can be time-consuming and 
labor-intensive, especially when dealing with WSIs. 
Thus in practice one of the two approaches is chosen: 
traditional thresholding with morphological 
operations (Alomari, R.S., et al., 2009; Song, Y., et 
al., 2023) or deep learning-based (DL-based) 
methods (Riasatian, A., et al., 2020; Lucassen, R.T., 
et al., 2024). In DL models, an encoder is often used 
to extract image features while a decoder is used to 
restore extracted features to the original image size 
and output the final segmentation results, like in U-
Net architecture (Riasatian, A., et al., 2020). 
SlideSegmenter, based also on convolutional neural 
network encoder-decoder architecture, introduces 
some post-processing steps but only for dividing the 
segmented tissue into cross-sections (Lucassen, R.T., 
et al., 2024). Additionally, SlideSegmenter provides 
pen marking segmentation to exclude these regions 
from tissue segmentation. Even though few 
techniques have been introduced, there are still many 
problems unsolved: (i) the requirement for the color 
of the input image to be normalized, due to 
differences in staining between laboratories; (ii) 
manual adjustments of parameters for atypical cases; 
(iii) the performance of the DL models depends on 
the datasets used in developing the algorithm or 
model training; (iv) supervised methods require 
annotation by an expert pathologist. 

Post-processing refinements like hole filling and 
noise reduction could improve initial segmentation 
performance. For example, traditional image 
processing techniques produce initial segmentations 
that contain single-pixel errors. Also, they might 
work well on images with high contrast between 
tissue and background but could struggle with images 
containing a lot of noise or debris. WSIs often contain 
artifacts, such as pen markings, air bubbles, and tissue 
folds, that can interfere with subsequent analyses. 
Post-processing techniques can be employed to 
specifically detect and remove these artifacts, 
resulting in cleaner and more reliable data for 
downstream tasks. Lastly, DL models also often 
benefit from post-processing steps that can refine 
their predictions and improve their accuracy.   

Here, we propose a method for post-processing 
results of various tissue segmentation methods. We 
tested a combination of our method with three 
traditional thresholding algorithms and three DL-
based solutions on a set of manually annotated HE-
stained histopathological images. For thresholding, 
we chose adaptive methods that are unsupervised, 
parameter-free, and robust to changes in color 
intensity distribution between slides. 

2 MATERIALS AND METHODS 

2.1 Data 

Randomly selected 197 histopathological images of 
breast cancer patients (BRCA) and 63 images of 
uterine corpus endometrial cancer patients (UCEC) 
from The Cancer Genome Atlas (TCGA) obtained 
through The Cancer Imaging Archive (Clark, K., et 
al., 2013) were manually annotated by a single expert. 
The data were saved in .svs format that included 
slides in different magnifications. For manual 
annotation, images scanned with a magnification of 
2.5x were selected. The annotation was done in a 
MATLAB environment using the roipoly() function 
or using ImageJ software. All fragments of the tissue 
in a single slide were marked, excluding artifacts like 
pen markings, shades, and others, and extremely 
small fragments. 

2.2 Adaptive Image Thresholding 
Methods 

Each scanned HE-stained image is composed of three 
channels, R, G, and B, that represent color 
components. Thresholding is done on each color 
separately. Three thresholding methods were tested: 
(i) GaMRed; (ii) Otsu; and (iii) Peaks. GaMRed is 
based on the Gaussian mixture decomposition of 1D 
signal and includes unique data cleaning and post-
processing steps (Marczyk, M., et al., 2020). Color 
intensity from each channel was decomposed into 2 
Gaussian components. The component with the 
higher mean intensity represents background pixels. 
The threshold value was found as the intersection 
point between two Gaussians. The Otsu thresholding 
method (Otsu, N., 1979) was implemented as a two-
step algorithm. First, the Otsu method is applied to 
the original image color channels and cut-off values 
are found. Second, the Otsu method is applied to 
image color channels thresholded using cut-off values 
from the first step, and new cut-off values are 
estimated. The Peaks method is based on the peak 
detection algorithm developed for the analysis of 1D 
mass spectrometry data (Marczyk, M., et al.,2017). 
The algorithm finds all maxima and minima using the 
first derivative and then removes small amplitude 
peaks, similar intensity peaks in close neighborhoods, 
and the one with too small signal-to-noise ratio. For 
each color, the threshold value was found as a 
minimum between the two last peaks of color 
intensity. All 3 methods allow adaptive estimation of 
cut-of values for color thresholding without any 
parameter tuning. 
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2.3 Deep Learning-Based Methods 

Three existing methods based on deep learning (DL) 
models were evaluated for a tissue segmentation task. 
All models were previously trained by the respective 
authors on their datasets and used as predictors with 
TCGA data to mimic real life scenario in which tissue 
annotations are not provided. All parameters were set 
as default. The first method, called SlideSegmenter is 
a convolutional neural network with a post-
processing method based on clustering predicted 
centroid locations of the cross-sections in a 2D 
histogram (Lucassen, R.T., et al., 2024). Another two 
methods resulted from the experiments on the U-Net 
architecture with different network backbones 
(Riasatian, A., et al., 2020). Based on the published 
results, the two best backbones were selected for 
comparison: EfficientNet-B3 and MobileNet. 

2.4 Post-Processing Methods 

The proposed method consists of three subsequent 
steps: (i) artifacts removal (P1); (ii) region filling 
(P2); and (iii) small regions removal (P3). Artifacts, 
which mainly are due to errors during specimen 
preparation, staining, imaging, or tissue handling, 
were found and removed using raw WSIs (without 
thresholding). First, pixels including black and grey 
color artifacts (resulting from tissue folding, air 
bubbles, dust, debris and others) were identified using 
the following steps: (i) create a mask of pixels with a 
difference between red and green color channels 
smaller than 10 and a difference between green and 
blue color channels smaller than 10; (ii) remove the 
background region resulting from image thresholding 
from the mask; (iii) remove too small regions from 
the mask (<30 pixels); (iv) apply morphological 
closing using a disk of radius 3; (v) apply 
morphological opening using a disk of radius 3. 
Pixels including green color artifacts (mostly due to 
green pen markings) were identified similarly, with 
modifications only in the first step; the initial mask 
was created using pixels with a difference between 
red and blue color channels smaller than 10 and 
intensity of green color higher than 150. Next, using 
cleaned images an initial segmentation operation was 
performed to find the tissue mask using methods 
described in the previous section. Additionally, pixels 
with low chroma component (square root of the sum 
of squared a and b color values resulting from image 
transformation to LAB color space smaller than 3) 
were removed from the mask. Next, in P2 holes in the 
mask were filled using the morphological region 
filling method with 4 connectivity, and 

morphological opening using a disk of radius 3 was 
applied. Finally, in P3 small area objects were 
removed from a tissue mask (smaller than 1% of the 
total tissue mask region). All parameters were 
estimated on a small pool of HE-stained images 
scanned with 2.5x magnification, but not used in this 
manuscript, and then fixed during the analysis. Codes 
for thresholding and post-processing are available on 
GitHub under the following adress: 
github.com/ZAEDPolSl/WSI_TissueSeg . 

2.5 Evaluation Metrics 

Four different performance metrics were used to 
compare tissue segmentation models before and after 
applying post-processing: Dice coefficient, Jaccard 
index, pixel precision, and pixel recall. These metrics 
are defined as follows: 𝐷𝑖𝑐𝑒 = 2 ∗ |𝑀𝑎𝑠𝑘 ∩ 𝐺𝑇||𝑀𝑎𝑠𝑘| + |𝐺𝑇|  (1)

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = |𝑀𝑎𝑠𝑘 ∩ 𝐺𝑇||𝑀𝑎𝑠𝑘 ∪ 𝐺𝑇| (2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |𝑀𝑎𝑠𝑘 ∩ 𝐺𝑇||𝑀𝑎𝑠𝑘|  (3)

𝑅𝑒𝑐𝑎𝑙𝑙 = |𝑀𝑎𝑠𝑘 ∩ 𝐺𝑇||𝐺𝑇|  (4)

In all equations, Mask represents all pixels within 
the tissue mask, GT represents all pixels within 
manual annotation (ground truth), and || represents 
cardinality, which is a sum of pixels in the specified 
area. 

3 RESULTS AND DISCUSSION 

We created a pipeline for the segmentation of tissue 
regions on whole slide images, that is composed of 
two subsequent steps (Figure 1A): (i) initial image 
segmentation to eliminate the background area of the 
tissue slide; (ii) image and tissue mask post-
processing to refine initial segmentation and isolate 
only relevant tissue fragments. We tested different 
methods of thresholding, which estimate the 
background cut-off values based on the analysis of 
histograms of color intensities and DL-based models. 
For the resulting images, we applied image 
processing techniques used in computer vision which 
are necessary to increase the quality of the tissue 
segmentation by removing artifacts, and all other 
noise components of the image (see example in 
Figure 1B). 
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Figure 1: Proposed tissue segmentation algorithm including post-processing step. A) Subsequent steps of the full pipeline. B) 
Exemplary results of applying the algorithm to the HE image: from raw image (left), through initial tissue segmentation 
(middle) to segmented tissue after post-processing step (right). 

 
Figure 2: Comparison of tissue segmentation performance between initial segmentation methods (without post-processing) 
using Dice and Jaccard indices for BRCA (A) and UCEC (B) cohorts. 

3.1 Initial Segmentation of WSIs 

We compared three thresholding methods with three 
different DL-based methods using Dice and Jaccard 
indices and precision and recall metrics (Figure 2). 
Overall, DL-based methods gave better results than 
traditional methods on both datasets (Table 1).  

Among thresholding methods, we observed the 
highest values for GaMRed (median Dice = 0.9556 in 
BRCA and 0.9725 in UCEC; median Jaccard = 

0.9149 in BRCA and 0.9464 in UCEC) while the 
lowest for the Peaks method. Among DL-based 
method, we observed the highest values for 
MobileNet in BRCA (median Dice = 0.9749; median 
Jaccard = 0.9511) and EfficientNet-B3 in UCEC 
(median Dice = 0.9913; median Jaccard = 0.9827). 
Also, DL-based methods gave higher minimum 
values of indices than thresholding methods, 
especially in UCEC (Figure 2B).  
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Figure 3: Selected cases with poor initial segmentation (no post-processing). GT is a ground truth segmentation (yellow line 
around tissue). For each method, the green color indicates true positive, blue false negative, and red false positive regions. 

On average, thresholding methods gave higher 
precision than DL-based methods, but lower recall 
(Table 1). We found the best precision for Peaks 
(median = 0.9793 in BRCA and 0.9976 in UCEC) 
while the worst for SlideSegmenter (median = 0.9461 
in BRCA and 0.9933 in UCEC). On the opposite, the 
best recall was for Slide Segmenter in BRCA (median 
= 0.9970) and EfficientNet-B3 in UCEC (median = 

0.9902). The worst recall was for the Peaks method 
(median = 0.9193 in BRCA and 0.9437 in UCEC). 

In Figure 3, we visualized the worst-case WSI for 
thresholding methods (left), and  DL-based methods 
(right) in terms of Jaccard and Dice indices. For 
thresholding methods, we observed mostly false 
negative regions (colored blue), where the 
segmentation algorithm omitted tissue regions 
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selected by the expert giving lower recall. However, 
in the original images, excluded regions were mostly 
composed of adipose tissue, which is not relevant in 
many digital pathology tasks. For the DL-based 
method, we observed mostly false positive regions 
(colored red), where the segmentation algorithm 
marked a larger area than the expert giving lower 
precision. 

A closer investigation of ground truth images 
shows that areas with noise or artifacts were wrongly 
selected as tissue regions by DL-based methods, 
which might bring worse consequences in further 
analysis. 

3.2 Influence of Post-Processing on 
Tissue Segmentation Results 

For both datasets and each initial segmentation 
method, we found a significant increase in almost all 
performance metrics (p-value from Wilcoxon test 
smaller than 0.05) after applying the post-processing 
step (Figure 4 and Tables 1 and 2). Only for 
EfficientNet-B3 and Slide Segmenter, there was a 
small decrease in recall in the BRCA dataset (median 
equal to -0.0001 and -0.0003, respectively). 

In terms of Dice and Jaccard indices, a higher gain 
was observed for thresholding methods than DL-
based methods in both datasets, which leads to a 
similar final performance for all methods (Table 1). 
Among unsupervised methods, after post-processing, 
we observed the highest values for GaMRed (median 
Dice = 0.9865 in BRCA and 0.9941 in UCEC; median 
Jaccard = 0.9733 in BRCA and 0.9883 in UCEC) 
while the lowest for the Peaks method. Among DL-
based methods, the results are similar giving U-Net-
based methods better than Slide Segmenter. Even 
after post-processing, thresholding methods gave 
higher precision and lower recall than DL-based 
methods, but the difference between them is now 
smaller. Again, we found the best precision for Peaks 
(median = 0.9923 in BRCA and 0.997 in UCEC) 
while the worst for Slide Segmenter (median = 0.9657 
in BRCA and 0.9964 in UCEC). The best recall was 
found for Slide Segmenter in BRCA (median = 
0.9971) and EfficientNet-B3 in UCEC (median = 
0.9976) and the worst for the Peaks method (median 
= 0.9836 in BRCA and 0.9881 in UCEC).  

In Figures 5 and 6, we visualized selected WSI, 
for which the number of false positive and false 
negative pixels is significantly reduced after post-
processing for each initial segmentation method. The 
selected image from BRCA (Figure 5) contains a lot 
of small holes in the tissue, which caused poor 
segmentation with thresholding methods. The 

selected image from UCEC (Figure 6) contains a blue 
pen marking, that was segmented as tissue mostly for 
DL-based methods. Also, grey shades below the 
tissue were falsely marked by Slide Segmenter. All 
these mistakes were reduced by applying proposed 
post-processing method. 

 
Figure 4: Gain in tissue segmentation performance of 
different initial segmentation methods after applying post-
processing measured using Dice and Jaccard indices for 
BRCA (A) and UCEC (B) cohorts. 
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Figure 5: Selected case from BRCA dataset with high gain in performance after post-processing (right). . For each method, 
the green color indicates true positive, blue false negative, and red false positive regions. 
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Figure 6: Selected case from UCEC dataset with high gain in performance after post-processing (right). For each method, the 
green color indicates true positive, blue false negative, and red false positive regions. 
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Table 1: Median values of performance indices across all images for each dataset and initial segmentation method. Results 
before and after post-processing are shown. Bold highlights the best value of each index within the dataset and pipeline step. 

Dataset Step Method Dice Jaccard Precision Recall 

BRCA 

Initial 
segmentation 

GaMRed 0.9556 0.9149 0.9736 0.9449 
Otsu 0.9528 0.9099 0.9759 0.9316 
Peaks 0.9498 0.9043 0.9793 0.9193 
EfficientNet-B3 0.9719 0.9454 0.9511 0.9961 
MobileNet 0.9749 0.9511 0.9604 0.9936 
SlideSegmenter 0.9692 0.9403 0.9461 0.9970 

Post-processed 

GaMRed 0.9865 0.9733 0.9901 0.9862 
Otsu 0.9859 0.9723 0.9910 0.9848 
Peaks 0.9857 0.9719 0.9923 0.9836 
EfficientNet-B3 0.9833 0.9671 0.9711 0.9965 
MobileNet 0.9856 0.9715 0.9767 0.9955 
SlideSegmenter 0.9798 0.9603 0.9657 0.9971 

UCEC 

Initial 
segmentation 

GaMRed 0.9725 0.9464 0.9974 0.9487 
Otsu 0.9697 0.9411 0.9974 0.9437 
Peaks 0.9681 0.9382 0.9976 0.9437 
EfficientNet-B3 0.9913 0.9827 0.9935 0.9902 
MobileNet 0.9905 0.9812 0.9950 0.9870 
SlideSegmenter 0.9898 0.9798 0.9933 0.9893 

Post-processed 

GaMRed 0.9941 0.9883 0.9997 0.9891 
Otsu 0.9936 0.9872 0.9997 0.9885 
Peaks 0.9938 0.9878 0.9997 0.9881 
EfficientNet-B3 0.9967 0.9935 0.9968 0.9976 
MobileNet 0.9970 0.9940 0.9977 0.9961 
SlideSegmenter 0.9966 0.9932 0.9964 0.9975 

Table 2: Gain in performance indices across all images for each dataset and initial segmentation method. Results show the 
median difference of results after post-processing and initial segmentation. Bold highlights the best value of each index within 
the dataset. 

Dataset Method Dice Jaccard Precision Recall 

BRCA 

GaMRed 0.0281 0.0532 0.0121 0.0389 
Otsu 0.0322 0.0601 0.0105 0.0476 
Peaks 0.0341 0.0632 0.0097 0.0541 
EfficientNet-B3 0.0088 0.0171 0.0158 -0.0001 
MobileNet 0.0076 0.0148 0.0115 0.0006 
SlideSegmenter 0.0091 0.0171 0.0164 -0.0003 

UCEC 

GaMRed 0.0183 0.0357 0.0022 0.0333 
Otsu 0.0206 0.0400 0.0022 0.0386 
Peaks 0.0209 0.0402 0.0020 0.0385 
EfficientNet-B3 0.0052 0.0102 0.0025 0.0080 
MobileNet 0.0059 0.0117 0.0021 0.0095 
SlideSegmenter 0.0061 0.0121 0.0027 0.0083 

 

3.3 Ablation Study 

Lastly, we tested the influence of subsequent post-
processing methods on the performance of the 
proposed tissue segmentation pipeline. For each 
initial segmentation algorithm, we observed similar 
patterns of changes in the Dice and Jaccard indices 
(Figure 7). The highest increase was obtained after 
artifact removal together with region filling (IS+P12; 
3% on average), and then a small increase was found 

after filtering too small regions (IS+P123) in BRCA, 
but not in UCEC, where only DL-based methods 
showed a small increase. Artifact removal alone had 
the smallest influence on tissue segmentation 
performance. For DL-based methods, we even 
observed a small decrease in the Dice index mostly in 
UCEC. However, we noticed that without this step 
region filling and small regions removal steps gave 
much worse results. 
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Figure 7: Tissue segmentation results after subsequent steps 
of the tissue segmentation in BRCA (A) and UCEC (B). IS 
represents the initial segmentation step, while P123 artifacts 
removal, region filling, and small regions removal. 

4 CONCLUSIONS 

Segmentation of tissue regions on whole-slide images 
is an important first step in the advanced computational 
analysis of stained histopathological slides. We 
developed a post-processing algorithm that was 
successfully applied to simple image thresholding 
methods and more advanced DL-based models. Our 
analysis proved that the proposed tissue segmentation 
pipeline is robust to noise and different artifacts 
observed in the sample, and it can consistently acquire 
better results than initial segmentation alone. 
Regardless of a small improvement in performance 
indices, we visualized some cases to provide visual 
proof of post-processing necessity. Lastly, all 
parameters of the proposed method were selected on 
other, unseen data (but scanned with the same 
magnification), and fixed during analysis. Thus, there 
is a potential to improve the results even more through 
the parameter tuning procedure. 
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