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Abstract: Image super-resolution methods are increasingly divided into several groups, setting different goals for 

themselves, which leads to difficulties when using them in real conditions. While some methods maximize 

the accuracy of detail reconstruction and minimize the complexity of the model, losing realism, other methods 

use heavy architectures to achieve realistic images. In this paper, we propose a new class of image super-

resolution methods called efficient real super-resolution, which occupies the gap between efficient and real 

super-resolution methods. The main goal of our work is to show the possibility of creating compact super-

resolution models that allow generating realistic images, like SOTA in the field of real super-resolution, 

requiring only a few parameters and small computing resources. We compare our models with SOTA 

qualitatively and quantitatively using NIQE and LPIPS image naturalness metrics, getting unambiguous 

positive results. We also offer a self-contained cross-platform application that generates images comparable 

to SOTA in terms of realism in an acceptable time, and fits entirely on one 3.5-inch floppy disk. 

1 INTRODUCTION 

Since the introduction of SRCNN (Dong et al., 2014) 

in 2014, numerous neural network architectures and 

training methods have emerged to enhance super-

resolution quality and efficiency. In 2016, FSRCNN 

(Dong et al., 2016) was introduced, significantly 

speeding up super-resolution and improving image 

reconstruction accuracy. That same year, the 

Subpixel Convolution method (Shi et al., 2016) was 

proposed, enhancing performance and reducing 

artifacts from transposed convolution used in earlier 

models. 

Subsequent research has focused on complex 

architectures for precise detail reconstruction 

(maximizing PSNR/SSIM) and the use of generative 

adversarial networks (GANs) for photorealistic 

results. Following the introduction of SRGAN (Ledig 

et al., 2016), various GANs have been developed, 

often leading to a divide between classical super-

resolution, which emphasizes accuracy, and 

photorealistic super-resolution, which prioritizes 

realism over exact reproduction. The work in (Ji et al., 
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2020) from 2020 marked a significant advancement 

in natural super-resolution, distinguishing it from 

classical methods. 

Alongside these developments, there has been a 

push for efficient architectures suitable for real-time 

applications on mobile devices. Competitions like 

NTIRE have emerged, focusing on efficient super-

resolution, aiming for accurate image restoration with 

minimal computational complexity. 

Currently, single image super-resolution is 

categorized into three classes: real, classical, and 

efficient super-resolution. While each effectively 

addresses specific tasks, they often fall short in 

practical applications due to non-photorealistic 

results or high resource demands. We propose a new 

class called efficient real super-resolution, which 

aims to create compact models that process real 

images with natural distortions and yield 

photorealistic outcomes. 

We tested two models from the NTIRE 2022 (Li 

et al., 2022) and 2024 (Ren et al., 2024) competitions, 

training them with state-of-the-art techniques for real 

super-resolution (Zhang et al., 2021) (Wang et al., 
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2021) (Liang et al., 2021) (Zhou et al., 2023). The 

models produced visually appealing images with 

minimal parameters and computational complexity. 

As a practical demonstration, we developed cross-

platform applications in C# based on these models, 

achieving acceptable performance on standard 

laptops without hardware-specific optimizations. The 

applications fit entirely on a standard 3.5-inch floppy 

disk and can run on x86, x86-64, or ARM devices 

with Windows, Linux, or ReactOS, requiring only 

.NET Framework or Mono. 

Our main contributions include: 

- The introduction of a new class of image 

super-resolution methods. 

- Enhanced synthetic data generation for 

efficient model training. 

- Improvements to the real super-resolution 

model training pipeline. 

- Demonstration of compact super-resolution 

models that generate visually pleasing 

images. 

- A production-ready solution that competes 

with existing alternatives in key metrics. 

2 RELATED WORK 

The super-resolution problem is categorized into 

three main groups: real super-resolution, classical 

super-resolution, and efficient super-resolution. 

Many studies on neural network architectures 

propose solutions across these categories. Typically, 

real-world super-resolution methods incorporate 

classical super-resolution as an intermediate learning 

stage. 

Super-resolution tasks involve finding an inverse 

function (Eq. 2) to a downscaling function (Eq. 1), 

such as bicubic interpolation, which reduces image 

dimensions while losing information. This 

irreversibility complicates the upsample function's 

task, making it ambiguous. The aim of all super-

resolution models is to optimize the upsample 

function based on various metrics. In this context, 𝑙𝑟 

is the low-resolution image, ℎ𝑟 is the original high-

resolution image, and 𝑠𝑟 is the high-resolution image 

produced from 𝑙𝑟. 

The evaluation of super-resolution functions 

typically uses formal metrics like PSNR and SSIM, 

which measure structural similarity, alongside 

realism metrics such as FID and NIQE, as well as 

considerations of model complexity. 

𝑙𝑟 =  𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(ℎ𝑟) (1) 

 

𝑠𝑟 =  𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑙𝑟) (2) 

2.1 Classic Super-Resolution 

Since (Dong et al., 2014), super-resolution has been 

framed as finding the inverse of bicubic 

downsampling. The problem can be viewed as 

minimizing the distance between 𝑠𝑟  and ℎ𝑟 , 

commonly using mean squared or absolute error. 

Classical methods focus on accurately restoring the 

original image, utilizing PSNR and SSIM for 

evaluation. 

Although some architectures emerged post-2016 

that employed generative adversarial networks 

(GANs), many continued to prioritize precise detail 

reconstruction (Lim et al., 2017) (Yu et al., 2018) 

(Ahn et al., 2018) (Zhang et al., 2018). Typically, real 

super-resolution networks first learn to reconstruct 

images before being adapted for GAN training (Ledig 

et al., 2016) (Wang et al., 2018) (Zhang et al., 2021) 

(Wang et al., 2021) (Liang et al., 2021) (Zhou et al., 

2023). However, these classical methods are 

resource-intensive, often produce less realistic 

images, and struggle with artifacts in input images, 

leading to unsatisfactory outcomes for many real 

images. 

2.2 Real-World Super-Resolution 

Models in this category aim to effectively process 

images with natural distortions, such as JPEG 

artifacts or noise from smartphone cameras. Classical 

models struggle with such distortions due to their 

training on ideal data. A 2020 study (Ji et al., 2020) 

proposed training on distorted images to better handle 

real-world cases. 

Current real super-resolution models build on 

classical architectures, leveraging their capacity to 

predict missing elements while incorporating 

additional training to address distortions. This 

approach, often combined with GAN strategies, 

enhances realism and artifact resistance. Recent 

works (Zhang et al., 2021) (Wang et al., 2021) 

suggest generating synthetic low-resolution images 

with simulated distortions for training. The typical 

training pipeline involves three stages: training on 

ideal images, further training to suppress artifacts, 

and GAN training. 

Real super-resolution methods prioritize 

generating visually appealing images, often assessed 

by FID and NIQE metrics. While PSNR and SSIM 

can be used, they may not accurately reflect the 

quality of photorealistic results, which may not match 

the original texture. 
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Although real-world super-resolution methods 

offer visually pleasing results, their high resource 

demands limit widespread use, and they cannot easily 

replace non-neural scaling algorithms on end-user 

devices. 

2.3 Efficient Super-Resolution 

Efficient super-resolution methods target real-time 

performance on devices with limited computing 

resources. Global research efforts focus on 

developing architectures that balance parameters, 

computational complexity, and accuracy. 

Competitions like NTIRE foster innovation in this 

area. 

These models aim to maximize PSNR and SSIM 

while minimizing resource usage. They often employ 

complex architectures that outperform simplified 

versions of classical models; for instance, 

SMFANet+ (Zheng et al., 2024) demonstrates 

superior performance compared to SwinIR-light 

(Liang et al., 2021). 

The learning process for efficient super-resolution 

models mirrors that of classical models, encountering 

similar issues with defective images and unrealistic 

generation. However, an additional loss calculated in 

frequency space enhances the restoration of high-

frequency components, albeit not achieving GAN-

level quality. 

3 PROPOSED METHOD 

Our key hypothesis is that compact super-resolution 

models that have shown good results on the task of 

efficient super-resolution can be successfully trained 

like real super-resolution models and produce images 

of similar quality. To test this hypothesis, we propose 

an improved learning pipeline, which includes a 

modified algorithm for generating synthetic training 

data and a discriminator pre-training stage, which has 

shown its effectiveness in the task of coloring black 

and white images and is called NoGAN (DeOldify, 

n.d.). As the initial models, we chose MobileSR (Sun 

et al., 2022) and SMFANet+, which demonstrated 

significant success at the NTIRE 2022 and 2024 

competitions and surpassed many previous methods 

of classical super-resolution in terms of PSNR and 

SSIM metrics with significantly fewer parameters 

and computational complexity. 

In the end, to confirm the validity of the ideas 

outlined in the article, we developed cross-platform 

desktop applications in C# based on trained models, 

without using hardware-dependent optimizations 

such as SIMD, limiting ourselves only to general 

principles of improving code efficiency, such as 

optimizing the processor cache by reordering data in 

memory and multithreading. The solutions obtained 

were tested both on a laptop and on a server. The 

results obtained should confirm the possibility of 

creating compact production-ready solutions that 

implement real super-resolution. 

3.1 Architecture Overview 

As test models in this work, we took MobileSR, 

which is the winner of the model complexity track at 

NTIRE 2022, as well as the SMFANet model, which 

took 2nd and 3rd place in the FLOPs and Parameters 

sub-track of the NTIRE2024 ESR challenge. 

MobileSR contains 176,000 parameters, 

processing an image with a size of 64x64 pixels is the 

equivalent of about 8.73 GFlops. MobileSR is a 

hybrid of residual convolutional network and ViT, 

providing processing of local and global features. 

MobileSR consists of an input convolutional layer 

that extracts features from the input image, 5 hybrid 

blocks ending with convolution, and an upsampling 

module based on Subpixel Convolution. The hybrid 

block consists of a visual transformer module with 

Window Attention and an Inverted Residual Block, 

similar to the one presented in MobileNet. 

SMFANet is represented by two modifications: 

SMFANet itself and SMFANet+ with an increased 

number of channels and blocks. SMFANet+ requires 

more time for inference and has more parameters 

compared to SMFANet, however, due to significantly 

better PSNR/SSIM and the insignificant overall 

complexity of the model, we use SMFANet+ and 

further under SMFANet we understand this 

modification. SMFANet contains about 496,000 

parameters, processing an image with a size of 64x64 

pixels by this model is the equivalent of 28 GFlops. 

This model is superior to many CNN-based solutions 

and ViT-based solutions for PSNR/SSIM, while it 

contains significantly fewer parameters and has less 

computational complexity. SMFANet consists of a 

convolution that extracts low-level features from the 

input image, 12 basic blocks and an effective 

upsampling module consisting of one convolutional 

layer and a PixelShuffle that produces the output 

image. The basic block consists of a self-modulation 

feature aggregation module and a partial convolution-

based feed-forward network. These blocks provide 

more efficient processing of global and local context 

than solutions based on vision transformers. 

The choice of two fundamentally different 

architectures (ViT-based and CNN-based) allows for 
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a more objective assessment of the results obtained, 

minimizing their dependence on a random 

architecture choice. 

3.2 Data Generation Pipeline 

The works (Zhang et al., 2021) (Wang et al., 2021) 

present a simple and effective way to train an artifact-

resistant model. The method consists in generating 

synthetic low-resolution images containing simulated 

distortions similar to real ones. Among the basic 

degrades are compression artifacts, scaling artifacts 

by various popular algorithms such as bilinear and 

bicubic interpolation, noise from normal and Poisson 

distributions, Gaussian blur. In the previous works, 

these distortions are arranged in sequence in 

accordance with various patterns. We noticed that the 

level of artifacts generated by these image generation 

methods is excessive and the generated images in 

most cases are unrealistic. For example, the quality 

parameter of the JPEG codec is randomly selected 

from the range of 10..95%, which means that a 

significant part of the images will be overcompressed. 

Since in reality such a strong compression is 

practically not found, we suggest using values from 

the range of 75..99%. In addition, we use fewer 

duplicate distortions to bring the generated images 

closer to the real ones. Early synthetic image 

generation strategies make it possible to train a neural 

network to handle highly noisy and clamped images 

well, however, we noticed that such a model would 

work poorly with high-quality images, removing 

important details, mistaking them for artifacts. We 

propose a simple, Real-ESRGAN-like synthetic 

image generation pipeline (Fig. 1).  

 

Figure 1: Our synthetic image generation pipeline. 

Adding normal noise involves adding random 

values from the normal distribution multiplied by the 

w value to each color component of each pixel in the 

image. The w value is selected from a uniform 

distribution in the range [0, 0.1] for each image. 

Adding Gaussian blur involves applying 

convolution with the Gaussian kernel to the image. 

The kernel size is randomly selected from the set {1; 

3; 5}, the sigma variance parameter is selected from 

a uniform distribution and lies in the range [0.001, 

0.1]. 

JPEG compression artifacts are added with a 50% 

probability. When adding artifacts, a compression 

ratio in the range of [75, 99] % is selected from a 

uniform distribution. 

Downsampling is performed using one of the 

following methods: nearest neighbor, bilinear 

interpolation, bicubic interpolation, area. A specific 

method is randomly selected with equal probability 

for each of the images each time this operation is 

performed. 

When developing the synthetic data generation 

pipeline, we tried to rely on distortions that appear on 

images as a result of natural manipulations with them. 

Next, we show that for images that initially have 

acceptable quality, a compact neural network trained 

by our method can show a better result than SwinIR-

large trained on the original pipeline. 

3.3 Training Pipeline 

The model training pipeline is generally similar to 

that used in SOTA. However, we suggest adding an 

additional stage - discriminator pre-training. This 

approach, called NoGAN, was first introduced at 

DeOldify, where it showed the highest efficiency in 

training a neural network for coloring black and white 

photos. We adapt this approach to the super-

resolution problem and show (Fig. 2) that such a 

solution contributes to better learning dynamics at the 

GAN stage, significantly speeding up the process of 

transferring knowledge from the discriminator to the 

generator.  

 

Figure 2: Effect of the discriminator pretraining. 

In total, our learning pipeline consists of 4 steps: 
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1) Training the model in accordance with 

effective super-resolution techniques. 

2) Retraining the model for the correct 

processing of synthetic distorted images 

generated by our method. 

3) Training the discriminator separately 

from the generator as an independent 

neural network. 

4) Simultaneous generator and the 

discriminator training (GAN). 

We use FFTLoss at all stages of training, with the 

exception of 4, which uses Focal Frequency Loss 

(Jiang et al., 2020). Schematically, our learning 

pipeline is shown in Figure 3. 

 

Figure 3: Our training pipeline. 

We use the DIV2K dataset for all experiments. 

The first stage of training in accordance with our 

pipeline has been omitted, since the pre-trained 

models of efficient super-resolution provided by the 

authors are used. 

In the second stage, we used the Adam optimizer 

with an initial learning rate of 5x10-4, β1=0.9 and 

β2=0.999. We do 32,000 iterations, halving the 

learning rate every 8000 iterations. We set the MAE 

loss weight to 1 and the FFTLoss weight to 0.1, 

respectively. 

At the 3rd stage of training, we use the Adam 

optimizer with an initial learning rate of 1x10-4, 

halved every 8000 iterations. In total, we do 32,000 

iterations. We use the RaGAN loss function 

(Jolicoeur-Martineau, 2018) to train the 

discriminator. We use the architecture proposed in the 

work (Wang et al., 2021). 

At the last stage of training, we use the Adam 

optimizer with an initial learning rate of 1x10-4 for the 

generator and discriminator, which is halved every 

64,000 iterations. We set the weight for the MAE loss 

to 1, for the Perceptual Loss the weight is 1, for the 

Adversarial Loss the weight is 0.1. The alpha 

parameter of the Focal Frequency Loss is set to 1, 

which is optimal for most tasks.Perceptual Loss in our 

work is represented by the MSE loss in the feature 

space of the conv4_4 layer of the VGG19 pre-trained 

neural network. 

In all stages, we use a patch size of 16 and a patch 

size of 128. To speed up I/O, we pre-extract 

overlapping patches of slightly larger size from the 

original DIV2K images and save them to disk. In 

addition to generating synthetic data, we also use 

general augmentations such as horizontal and vertical 

flips, as well as patch random cut. 

3.4 Inference Framework 

Production-ready desktop applications were 

developed on the basis of the models trained in this 

work. Since the neural network architectures used in 

this work are characterized by extremely low 

computational complexity, we consider it acceptable 

to implement inference without using hardware-

dependent optimizations. By doing this, we aim to 

simplify the migration of our application to various 

platforms, simplify deployment, and also ensure the 

compactness and portability of the solution. 

We target our applications to .NET Framework 

and Mono platforms, using only the cross-platform 

capabilities of the standard library to provide cross-

platform functionality at the binary level, following 

(Brykin, 2022). We implement all the application 

code in pure C#, without P/Invoke and third-party 

libraries. We use common optimizations applicable to 

various microprocessor architectures, such as 

optimizing processor cache utilization by 

redistributing data in RAM when performing 

convolutions and multithreading. Multithreading is 

implemented through TPL, which is an integral part 

of BCL. The model parameters are stored in raw 
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binary form as a sequence of half-precision floating 

point values (float16). We found that converting the 

parameters of the pre-trained model from single to 

half floating point precision, even without additional 

training in float16, does not lead to noticeable 

distortions in the generated images. The correctness 

of matching parameters in the file and in the model is 

ensured by a hard-coded sequence of reading values 

from the file into the internal arrays of the model. To 

implement the graphical interface, we used Windows 

Forms, since this technology is supported by various 

versions of the Windows operating system and 

ReactOS via .NET Framework, as well as on Linux 

family operating systems via Mono. 

4 EXPERIMENTAL RESULTS 

4.1 Implementation Details 

We perform experiments and model training using the 

PyTorch library on a server with NVIDIA Tesla P40 

and 2x Intel Xeon 2673v4. We write distributed 

applications based on our models in C#, focusing them 

on .NET Framework and Mono platforms and 

Windows, Linux and ReactOS operating systems. The 

applications were tested on a laptop with an Intel(R) 

Core(TM) i5-6300HQ CPU and 32 GB of RAM 

running the Windows 7 Ultimate x86-64 operating 

system, as well as on Windows XP x86, Windows 

Vista x86-64, Windows 8 x86-64, Windows 8.1 x86-

64, Windows 10 x86-64, Windows 11 x86-64, 

ReactOS 0.4.14 x86, Linux Mint 21.3 x86-x64, 

Ubuntu Desktop 24.04 LTS x86-64, Alt Linux 10.2 

Workstation x86-64, Astra Linux SE 1.7 x86-64, Red 

OS 8 x86-64 and Debian 12.5 x86-64 operating 

systems, running in the VirtualBox virtualization 

environment. In addition, testing was conducted on a 

MacBook Air 2012 with an Intel(R) Core(TM) i7-

3667U CPU and 8 GB of RAM running Windows 7 

Ultimate x86-64 and on a server with 2x Intel Xeon 

2673v4 running Windows 7 Ultimate x86-64.  

4.2 Comparisons with SOTA 

We qualitatively and quantitatively compare our 

trained models, which we call Real-MobileSR and 

Real-SMFANet, respectively, with their original 

versions, as well as with SwinIR-large, Real-

ESRGAN and BSRGAN. For the test, we selected 

images 0806 and 0809 from the DIV2K test set. The 

results of numerical comparison with PSNR, SSIM, 

NIQE and LPIPS metrics are presented in Tables 1 

and 2. 

Table 1: Comparison of methods on 0806x4.png. 

Method/Metric PSNR SSIM NIQE LPIPS 

Real-MobileSR 24.42 0.79 2.21 0.16 

MobileSR 23.78 0.79 4.48 0.29 

Real-SMFANet 24.85 0.80 2.70 0.13 

SMFANet 23.82 0.79 4.60 0.30 

BSRGAN 25.26 0.79 2.98 0.15 

Real-ESRGAN 24.25 0.77 2.15 0.15 

SwinIR-large 24.56 0.80 2.47 0.13 

Table 2: Comparison of methods on 0809x4.png. 

Method/Metric PSNR SSIM NIQE LPIPS 

Real-MobileSR 26.27 0.72 2.52 0.23 

MobileSR 27.01 0.77 5.62 0.32 

Real-SMFANet 26.90 0.75 3.42 0.20 

SMFANet 26.73 0.77 5.35 0.32 

BSRGAN 27.15 0.72 3.68 0.24 

Real-ESRGAN 25.97 0.71 3.52 0.25 

SwinIR-large 26.26 0.73 3.50 0.21 

 

From Tables 1 and 2, it can be concluded that 

GAN-based methods are unambiguously superior to 

non-GAN methods in metrics evaluating the 

naturalness and visual quality of images (NIQE and 

LPIPS). From Table 2, we can conclude that our Real-

SMFANet in some cases surpasses BSRGAN, Real-

ESRGAN and SwinIR-large in NIQE and LPIPS 

metrics, which are considered SOTA in the field of 

real super-resolution. In Table 3, we offer a 

comparison in terms of computational complexity 

and number of parameters.  

Table 3: Comparison of Flops and Params. 

Method/Metric Params (M) 
Complexity 

(GFlops) 

Real-MobileSR 0.176 8.73 

MobileSR 0.176 8.73 

Real-SMFANet 0.496 28 

SMFANet 0.496 28 

BSRGAN ~8 >50 

Real-ESRGAN ~8 >50 

SwinIR-large ~17 >100 

A qualitative comparison of the methods is 

presented in Figures 4 and 5. We draw attention to the 

fact that the visual assessment of the images 

generated by various models confirms the 

quantitative assessment given in Tables 1 and 2. 

In Figures 4 and 5, we present a comparison of 

Real-MobileSR, MobileSR, Real-SMFANet, 

SMFANet, BSRGAN, Real-ESRGAN, SwinIR-large 

on texture-rich image areas. Using these examples, 

we can see that methods trained not as real super-

resolution sharpen images without increasing detail, 

while real super-resolution methods do not give 
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unnaturally sharp generations, but produce many 

textures, thanks to which images are perceived 

naturally. 

 

Figure 4: Qualitative comparison on 0806 image from 

DIV2K. 

 

Figure 5: Qualitative comparison on 0809 image from 

DIV2K. 

4.3 Inference Comparisons 

Today, there are several well-known desktop 

applications designed for image super-resolution. The 

most famous of them are PhotoZoom Pro, Topaz 

Gigapixel AI, Waifu2x and Real-ESRGAN. These 

applications are aimed at the most realistic image 

restoration, as well as the applications proposed in 

this work. Due to the fact that PhotoZoom Pro and 

Topaz Gigapixel AI are proprietary software, it is 

difficult to unambiguously judge the underlying 

methods. It is known that PhotoZoom Pro has not 

used neural algorithms until recently, and Topaz 

Gigapixel AI obviously follows the trend of real 

super-resolution in its developments. However, we 

can compare software products by the disk space 

occupied by the program modules, as well as by the 

size of the installation distributions. 

An analysis of existing analogues allowed us to 

conclude that the minimum disk space required to 

install the software is 74 MB for Real-ESRGAN on 

Windows. Topaz Gigapixel requires more than 1 GB 

to automatically download models, the current 

version of PhotoZoom Pro takes up 212 MB of disk 

space. 

The applications we have developed in this work 

require 548 KB and 1.13 MB, respectively, which is 

several orders of magnitude less. Our programs are so 

compact that they can be written to a single standard 

3.5-inch floppy disk. Additionally, we can mention a 

wide range of operating systems and microprocessor 

architectures supported by our applications. 

5 CONCLUSION 

The new trend of image super-resolution proposed in 

this paper may become a new trend in the field of 

image restoration. Efficient real super-resolution 

combines the advantages of the methods of two 

actively developing areas of super-resolution and 

allows solving practical problems. In this paper, we 

proposed a pipeline for training models of effective 

real super-resolution, trained two different models 

with its help and evaluated them qualitatively and 

quantitatively, confirming the validity of our 

hypothesis. We suggest that researchers working on 

effective super-resolution conduct additional research 

on their architectures for the possibility of their 

application to real super-resolution task. The 

developed desktop applications are available on 

GitHub and can be freely tested by the community: 

https://github.com/ColorfulSoft/ReactSR 
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