
ReactSR: Efficient Real-World Super-Resolution Application in a

Single Floppy Disk

Gleb S. Brykin a and Valeria Efimova b
ITMO University, Kronverksky Pr, St. Petersburg, Russia

Keywords: Deep Learning, Image Super-Resolution, Image Restoration, Generative Artificial Intelligence,

Generative-Adversarial Networks, Vision Transformer, Convolutional Neural Network.

Abstract: Image super-resolution methods are increasingly divided into several groups, setting different goals for

themselves, which leads to difficulties when using them in real conditions. While some methods maximize

the accuracy of detail reconstruction and minimize the complexity of the model, losing realism, other methods

use heavy architectures to achieve realistic images. In this paper, we propose a new class of image super-

resolution methods called efficient real super-resolution, which occupies the gap between efficient and real

super-resolution methods. The main goal of our work is to show the possibility of creating compact super-

resolution models that allow generating realistic images, like SOTA in the field of real super-resolution,

requiring only a few parameters and small computing resources. We compare our models with SOTA

qualitatively and quantitatively using NIQE and LPIPS image naturalness metrics, getting unambiguous

positive results. We also offer a self-contained cross-platform application that generates images comparable

to SOTA in terms of realism in an acceptable time, and fits entirely on one 3.5-inch floppy disk.

1 INTRODUCTION

Since the introduction of SRCNN (Dong et al., 2014)

in 2014, numerous neural network architectures and

training methods have emerged to enhance super-

resolution quality and efficiency. In 2016, FSRCNN

(Dong et al., 2016) was introduced, significantly

speeding up super-resolution and improving image

reconstruction accuracy. That same year, the

Subpixel Convolution method (Shi et al., 2016) was

proposed, enhancing performance and reducing

artifacts from transposed convolution used in earlier

models.

Subsequent research has focused on complex

architectures for precise detail reconstruction

(maximizing PSNR/SSIM) and the use of generative

adversarial networks (GANs) for photorealistic

results. Following the introduction of SRGAN (Ledig

et al., 2016), various GANs have been developed,

often leading to a divide between classical super-

resolution, which emphasizes accuracy, and

photorealistic super-resolution, which prioritizes

realism over exact reproduction. The work in (Ji et al.,

a https://orcid.org/0009-0006-3063-1948
b https://orcid.org/0000-0002-5309-2207

2020) from 2020 marked a significant advancement

in natural super-resolution, distinguishing it from

classical methods.

Alongside these developments, there has been a

push for efficient architectures suitable for real-time

applications on mobile devices. Competitions like

NTIRE have emerged, focusing on efficient super-

resolution, aiming for accurate image restoration with

minimal computational complexity.

Currently, single image super-resolution is

categorized into three classes: real, classical, and

efficient super-resolution. While each effectively

addresses specific tasks, they often fall short in

practical applications due to non-photorealistic

results or high resource demands. We propose a new

class called efficient real super-resolution, which

aims to create compact models that process real

images with natural distortions and yield

photorealistic outcomes.

We tested two models from the NTIRE 2022 (Li

et al., 2022) and 2024 (Ren et al., 2024) competitions,

training them with state-of-the-art techniques for real

super-resolution (Zhang et al., 2021) (Wang et al.,

Brykin, G. S. and Efimova, V.
ReactSR: Efficient Real-World Super-Resolution Application in a Single Floppy Disk.
DOI: 10.5220/0013175800003912
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2025) - Volume 3: VISAPP, pages
483-490
ISBN: 978-989-758-728-3; ISSN: 2184-4321
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

483

2021) (Liang et al., 2021) (Zhou et al., 2023). The

models produced visually appealing images with

minimal parameters and computational complexity.

As a practical demonstration, we developed cross-

platform applications in C# based on these models,

achieving acceptable performance on standard

laptops without hardware-specific optimizations. The

applications fit entirely on a standard 3.5-inch floppy

disk and can run on x86, x86-64, or ARM devices

with Windows, Linux, or ReactOS, requiring only

.NET Framework or Mono.

Our main contributions include:

- The introduction of a new class of image

super-resolution methods.

- Enhanced synthetic data generation for

efficient model training.

- Improvements to the real super-resolution

model training pipeline.

- Demonstration of compact super-resolution

models that generate visually pleasing

images.

- A production-ready solution that competes

with existing alternatives in key metrics.

2 RELATED WORK

The super-resolution problem is categorized into

three main groups: real super-resolution, classical

super-resolution, and efficient super-resolution.

Many studies on neural network architectures

propose solutions across these categories. Typically,

real-world super-resolution methods incorporate

classical super-resolution as an intermediate learning

stage.

Super-resolution tasks involve finding an inverse

function (Eq. 2) to a downscaling function (Eq. 1),

such as bicubic interpolation, which reduces image

dimensions while losing information. This

irreversibility complicates the upsample function's

task, making it ambiguous. The aim of all super-

resolution models is to optimize the upsample

function based on various metrics. In this context, 𝑙𝑟

is the low-resolution image, ℎ𝑟 is the original high-

resolution image, and 𝑠𝑟 is the high-resolution image

produced from 𝑙𝑟.

The evaluation of super-resolution functions

typically uses formal metrics like PSNR and SSIM,

which measure structural similarity, alongside

realism metrics such as FID and NIQE, as well as

considerations of model complexity.

𝑙𝑟 = 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(ℎ𝑟) (1)

𝑠𝑟 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑙𝑟) (2)

2.1 Classic Super-Resolution

Since (Dong et al., 2014), super-resolution has been

framed as finding the inverse of bicubic

downsampling. The problem can be viewed as

minimizing the distance between 𝑠𝑟 and ℎ𝑟 ,

commonly using mean squared or absolute error.

Classical methods focus on accurately restoring the

original image, utilizing PSNR and SSIM for

evaluation.

Although some architectures emerged post-2016

that employed generative adversarial networks

(GANs), many continued to prioritize precise detail

reconstruction (Lim et al., 2017) (Yu et al., 2018)

(Ahn et al., 2018) (Zhang et al., 2018). Typically, real

super-resolution networks first learn to reconstruct

images before being adapted for GAN training (Ledig

et al., 2016) (Wang et al., 2018) (Zhang et al., 2021)

(Wang et al., 2021) (Liang et al., 2021) (Zhou et al.,

2023). However, these classical methods are

resource-intensive, often produce less realistic

images, and struggle with artifacts in input images,

leading to unsatisfactory outcomes for many real

images.

2.2 Real-World Super-Resolution

Models in this category aim to effectively process

images with natural distortions, such as JPEG

artifacts or noise from smartphone cameras. Classical

models struggle with such distortions due to their

training on ideal data. A 2020 study (Ji et al., 2020)

proposed training on distorted images to better handle

real-world cases.

Current real super-resolution models build on

classical architectures, leveraging their capacity to

predict missing elements while incorporating

additional training to address distortions. This

approach, often combined with GAN strategies,

enhances realism and artifact resistance. Recent

works (Zhang et al., 2021) (Wang et al., 2021)

suggest generating synthetic low-resolution images

with simulated distortions for training. The typical

training pipeline involves three stages: training on

ideal images, further training to suppress artifacts,

and GAN training.

Real super-resolution methods prioritize

generating visually appealing images, often assessed

by FID and NIQE metrics. While PSNR and SSIM

can be used, they may not accurately reflect the

quality of photorealistic results, which may not match

the original texture.

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

484

Although real-world super-resolution methods

offer visually pleasing results, their high resource

demands limit widespread use, and they cannot easily

replace non-neural scaling algorithms on end-user

devices.

2.3 Efficient Super-Resolution

Efficient super-resolution methods target real-time

performance on devices with limited computing

resources. Global research efforts focus on

developing architectures that balance parameters,

computational complexity, and accuracy.

Competitions like NTIRE foster innovation in this

area.

These models aim to maximize PSNR and SSIM

while minimizing resource usage. They often employ

complex architectures that outperform simplified

versions of classical models; for instance,

SMFANet+ (Zheng et al., 2024) demonstrates

superior performance compared to SwinIR-light

(Liang et al., 2021).

The learning process for efficient super-resolution

models mirrors that of classical models, encountering

similar issues with defective images and unrealistic

generation. However, an additional loss calculated in

frequency space enhances the restoration of high-

frequency components, albeit not achieving GAN-

level quality.

3 PROPOSED METHOD

Our key hypothesis is that compact super-resolution

models that have shown good results on the task of

efficient super-resolution can be successfully trained

like real super-resolution models and produce images

of similar quality. To test this hypothesis, we propose

an improved learning pipeline, which includes a

modified algorithm for generating synthetic training

data and a discriminator pre-training stage, which has

shown its effectiveness in the task of coloring black

and white images and is called NoGAN (DeOldify,

n.d.). As the initial models, we chose MobileSR (Sun

et al., 2022) and SMFANet+, which demonstrated

significant success at the NTIRE 2022 and 2024

competitions and surpassed many previous methods

of classical super-resolution in terms of PSNR and

SSIM metrics with significantly fewer parameters

and computational complexity.

In the end, to confirm the validity of the ideas

outlined in the article, we developed cross-platform

desktop applications in C# based on trained models,

without using hardware-dependent optimizations

such as SIMD, limiting ourselves only to general

principles of improving code efficiency, such as

optimizing the processor cache by reordering data in

memory and multithreading. The solutions obtained

were tested both on a laptop and on a server. The

results obtained should confirm the possibility of

creating compact production-ready solutions that

implement real super-resolution.

3.1 Architecture Overview

As test models in this work, we took MobileSR,

which is the winner of the model complexity track at

NTIRE 2022, as well as the SMFANet model, which

took 2nd and 3rd place in the FLOPs and Parameters

sub-track of the NTIRE2024 ESR challenge.

MobileSR contains 176,000 parameters,

processing an image with a size of 64x64 pixels is the

equivalent of about 8.73 GFlops. MobileSR is a

hybrid of residual convolutional network and ViT,

providing processing of local and global features.

MobileSR consists of an input convolutional layer

that extracts features from the input image, 5 hybrid

blocks ending with convolution, and an upsampling

module based on Subpixel Convolution. The hybrid

block consists of a visual transformer module with

Window Attention and an Inverted Residual Block,

similar to the one presented in MobileNet.

SMFANet is represented by two modifications:

SMFANet itself and SMFANet+ with an increased

number of channels and blocks. SMFANet+ requires

more time for inference and has more parameters

compared to SMFANet, however, due to significantly

better PSNR/SSIM and the insignificant overall

complexity of the model, we use SMFANet+ and

further under SMFANet we understand this

modification. SMFANet contains about 496,000

parameters, processing an image with a size of 64x64

pixels by this model is the equivalent of 28 GFlops.

This model is superior to many CNN-based solutions

and ViT-based solutions for PSNR/SSIM, while it

contains significantly fewer parameters and has less

computational complexity. SMFANet consists of a

convolution that extracts low-level features from the

input image, 12 basic blocks and an effective

upsampling module consisting of one convolutional

layer and a PixelShuffle that produces the output

image. The basic block consists of a self-modulation

feature aggregation module and a partial convolution-

based feed-forward network. These blocks provide

more efficient processing of global and local context

than solutions based on vision transformers.

The choice of two fundamentally different

architectures (ViT-based and CNN-based) allows for

ReactSR: Efficient Real-World Super-Resolution Application in a Single Floppy Disk

485

a more objective assessment of the results obtained,

minimizing their dependence on a random

architecture choice.

3.2 Data Generation Pipeline

The works (Zhang et al., 2021) (Wang et al., 2021)

present a simple and effective way to train an artifact-

resistant model. The method consists in generating

synthetic low-resolution images containing simulated

distortions similar to real ones. Among the basic

degrades are compression artifacts, scaling artifacts

by various popular algorithms such as bilinear and

bicubic interpolation, noise from normal and Poisson

distributions, Gaussian blur. In the previous works,

these distortions are arranged in sequence in

accordance with various patterns. We noticed that the

level of artifacts generated by these image generation

methods is excessive and the generated images in

most cases are unrealistic. For example, the quality

parameter of the JPEG codec is randomly selected

from the range of 10..95%, which means that a

significant part of the images will be overcompressed.

Since in reality such a strong compression is

practically not found, we suggest using values from

the range of 75..99%. In addition, we use fewer

duplicate distortions to bring the generated images

closer to the real ones. Early synthetic image

generation strategies make it possible to train a neural

network to handle highly noisy and clamped images

well, however, we noticed that such a model would

work poorly with high-quality images, removing

important details, mistaking them for artifacts. We

propose a simple, Real-ESRGAN-like synthetic

image generation pipeline (Fig. 1).

Figure 1: Our synthetic image generation pipeline.

Adding normal noise involves adding random

values from the normal distribution multiplied by the

w value to each color component of each pixel in the

image. The w value is selected from a uniform

distribution in the range [0, 0.1] for each image.

Adding Gaussian blur involves applying

convolution with the Gaussian kernel to the image.

The kernel size is randomly selected from the set {1;

3; 5}, the sigma variance parameter is selected from

a uniform distribution and lies in the range [0.001,

0.1].

JPEG compression artifacts are added with a 50%

probability. When adding artifacts, a compression

ratio in the range of [75, 99] % is selected from a

uniform distribution.

Downsampling is performed using one of the

following methods: nearest neighbor, bilinear

interpolation, bicubic interpolation, area. A specific

method is randomly selected with equal probability

for each of the images each time this operation is

performed.

When developing the synthetic data generation

pipeline, we tried to rely on distortions that appear on

images as a result of natural manipulations with them.

Next, we show that for images that initially have

acceptable quality, a compact neural network trained

by our method can show a better result than SwinIR-

large trained on the original pipeline.

3.3 Training Pipeline

The model training pipeline is generally similar to

that used in SOTA. However, we suggest adding an

additional stage - discriminator pre-training. This

approach, called NoGAN, was first introduced at

DeOldify, where it showed the highest efficiency in

training a neural network for coloring black and white

photos. We adapt this approach to the super-

resolution problem and show (Fig. 2) that such a

solution contributes to better learning dynamics at the

GAN stage, significantly speeding up the process of

transferring knowledge from the discriminator to the

generator.

Figure 2: Effect of the discriminator pretraining.

In total, our learning pipeline consists of 4 steps:

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

486

1) Training the model in accordance with

effective super-resolution techniques.

2) Retraining the model for the correct

processing of synthetic distorted images

generated by our method.

3) Training the discriminator separately

from the generator as an independent

neural network.

4) Simultaneous generator and the

discriminator training (GAN).

We use FFTLoss at all stages of training, with the

exception of 4, which uses Focal Frequency Loss

(Jiang et al., 2020). Schematically, our learning

pipeline is shown in Figure 3.

Figure 3: Our training pipeline.

We use the DIV2K dataset for all experiments.

The first stage of training in accordance with our

pipeline has been omitted, since the pre-trained

models of efficient super-resolution provided by the

authors are used.

In the second stage, we used the Adam optimizer

with an initial learning rate of 5x10-4, β1=0.9 and

β2=0.999. We do 32,000 iterations, halving the

learning rate every 8000 iterations. We set the MAE

loss weight to 1 and the FFTLoss weight to 0.1,

respectively.

At the 3rd stage of training, we use the Adam

optimizer with an initial learning rate of 1x10-4,

halved every 8000 iterations. In total, we do 32,000

iterations. We use the RaGAN loss function

(Jolicoeur-Martineau, 2018) to train the

discriminator. We use the architecture proposed in the

work (Wang et al., 2021).

At the last stage of training, we use the Adam

optimizer with an initial learning rate of 1x10-4 for the

generator and discriminator, which is halved every

64,000 iterations. We set the weight for the MAE loss

to 1, for the Perceptual Loss the weight is 1, for the

Adversarial Loss the weight is 0.1. The alpha

parameter of the Focal Frequency Loss is set to 1,

which is optimal for most tasks.Perceptual Loss in our

work is represented by the MSE loss in the feature

space of the conv4_4 layer of the VGG19 pre-trained

neural network.

In all stages, we use a patch size of 16 and a patch

size of 128. To speed up I/O, we pre-extract

overlapping patches of slightly larger size from the

original DIV2K images and save them to disk. In

addition to generating synthetic data, we also use

general augmentations such as horizontal and vertical

flips, as well as patch random cut.

3.4 Inference Framework

Production-ready desktop applications were

developed on the basis of the models trained in this

work. Since the neural network architectures used in

this work are characterized by extremely low

computational complexity, we consider it acceptable

to implement inference without using hardware-

dependent optimizations. By doing this, we aim to

simplify the migration of our application to various

platforms, simplify deployment, and also ensure the

compactness and portability of the solution.

We target our applications to .NET Framework

and Mono platforms, using only the cross-platform

capabilities of the standard library to provide cross-

platform functionality at the binary level, following

(Brykin, 2022). We implement all the application

code in pure C#, without P/Invoke and third-party

libraries. We use common optimizations applicable to

various microprocessor architectures, such as

optimizing processor cache utilization by

redistributing data in RAM when performing

convolutions and multithreading. Multithreading is

implemented through TPL, which is an integral part

of BCL. The model parameters are stored in raw

ReactSR: Efficient Real-World Super-Resolution Application in a Single Floppy Disk

487

binary form as a sequence of half-precision floating

point values (float16). We found that converting the

parameters of the pre-trained model from single to

half floating point precision, even without additional

training in float16, does not lead to noticeable

distortions in the generated images. The correctness

of matching parameters in the file and in the model is

ensured by a hard-coded sequence of reading values

from the file into the internal arrays of the model. To

implement the graphical interface, we used Windows

Forms, since this technology is supported by various

versions of the Windows operating system and

ReactOS via .NET Framework, as well as on Linux

family operating systems via Mono.

4 EXPERIMENTAL RESULTS

4.1 Implementation Details

We perform experiments and model training using the

PyTorch library on a server with NVIDIA Tesla P40

and 2x Intel Xeon 2673v4. We write distributed

applications based on our models in C#, focusing them

on .NET Framework and Mono platforms and

Windows, Linux and ReactOS operating systems. The

applications were tested on a laptop with an Intel(R)

Core(TM) i5-6300HQ CPU and 32 GB of RAM

running the Windows 7 Ultimate x86-64 operating

system, as well as on Windows XP x86, Windows

Vista x86-64, Windows 8 x86-64, Windows 8.1 x86-

64, Windows 10 x86-64, Windows 11 x86-64,

ReactOS 0.4.14 x86, Linux Mint 21.3 x86-x64,

Ubuntu Desktop 24.04 LTS x86-64, Alt Linux 10.2

Workstation x86-64, Astra Linux SE 1.7 x86-64, Red

OS 8 x86-64 and Debian 12.5 x86-64 operating

systems, running in the VirtualBox virtualization

environment. In addition, testing was conducted on a

MacBook Air 2012 with an Intel(R) Core(TM) i7-

3667U CPU and 8 GB of RAM running Windows 7

Ultimate x86-64 and on a server with 2x Intel Xeon

2673v4 running Windows 7 Ultimate x86-64.

4.2 Comparisons with SOTA

We qualitatively and quantitatively compare our

trained models, which we call Real-MobileSR and

Real-SMFANet, respectively, with their original

versions, as well as with SwinIR-large, Real-

ESRGAN and BSRGAN. For the test, we selected

images 0806 and 0809 from the DIV2K test set. The

results of numerical comparison with PSNR, SSIM,

NIQE and LPIPS metrics are presented in Tables 1

and 2.

Table 1: Comparison of methods on 0806x4.png.

Method/Metric PSNR SSIM NIQE LPIPS

Real-MobileSR 24.42 0.79 2.21 0.16

MobileSR 23.78 0.79 4.48 0.29

Real-SMFANet 24.85 0.80 2.70 0.13

SMFANet 23.82 0.79 4.60 0.30

BSRGAN 25.26 0.79 2.98 0.15

Real-ESRGAN 24.25 0.77 2.15 0.15

SwinIR-large 24.56 0.80 2.47 0.13

Table 2: Comparison of methods on 0809x4.png.

Method/Metric PSNR SSIM NIQE LPIPS

Real-MobileSR 26.27 0.72 2.52 0.23

MobileSR 27.01 0.77 5.62 0.32

Real-SMFANet 26.90 0.75 3.42 0.20

SMFANet 26.73 0.77 5.35 0.32

BSRGAN 27.15 0.72 3.68 0.24

Real-ESRGAN 25.97 0.71 3.52 0.25

SwinIR-large 26.26 0.73 3.50 0.21

From Tables 1 and 2, it can be concluded that

GAN-based methods are unambiguously superior to

non-GAN methods in metrics evaluating the

naturalness and visual quality of images (NIQE and

LPIPS). From Table 2, we can conclude that our Real-

SMFANet in some cases surpasses BSRGAN, Real-

ESRGAN and SwinIR-large in NIQE and LPIPS

metrics, which are considered SOTA in the field of

real super-resolution. In Table 3, we offer a

comparison in terms of computational complexity

and number of parameters.

Table 3: Comparison of Flops and Params.

Method/Metric Params (M)
Complexity

(GFlops)

Real-MobileSR 0.176 8.73

MobileSR 0.176 8.73

Real-SMFANet 0.496 28

SMFANet 0.496 28

BSRGAN ~8 >50

Real-ESRGAN ~8 >50

SwinIR-large ~17 >100

A qualitative comparison of the methods is

presented in Figures 4 and 5. We draw attention to the

fact that the visual assessment of the images

generated by various models confirms the

quantitative assessment given in Tables 1 and 2.

In Figures 4 and 5, we present a comparison of

Real-MobileSR, MobileSR, Real-SMFANet,

SMFANet, BSRGAN, Real-ESRGAN, SwinIR-large

on texture-rich image areas. Using these examples,

we can see that methods trained not as real super-

resolution sharpen images without increasing detail,

while real super-resolution methods do not give

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

488

unnaturally sharp generations, but produce many

textures, thanks to which images are perceived

naturally.

Figure 4: Qualitative comparison on 0806 image from

DIV2K.

Figure 5: Qualitative comparison on 0809 image from

DIV2K.

4.3 Inference Comparisons

Today, there are several well-known desktop

applications designed for image super-resolution. The

most famous of them are PhotoZoom Pro, Topaz

Gigapixel AI, Waifu2x and Real-ESRGAN. These

applications are aimed at the most realistic image

restoration, as well as the applications proposed in

this work. Due to the fact that PhotoZoom Pro and

Topaz Gigapixel AI are proprietary software, it is

difficult to unambiguously judge the underlying

methods. It is known that PhotoZoom Pro has not

used neural algorithms until recently, and Topaz

Gigapixel AI obviously follows the trend of real

super-resolution in its developments. However, we

can compare software products by the disk space

occupied by the program modules, as well as by the

size of the installation distributions.

An analysis of existing analogues allowed us to

conclude that the minimum disk space required to

install the software is 74 MB for Real-ESRGAN on

Windows. Topaz Gigapixel requires more than 1 GB

to automatically download models, the current

version of PhotoZoom Pro takes up 212 MB of disk

space.

The applications we have developed in this work

require 548 KB and 1.13 MB, respectively, which is

several orders of magnitude less. Our programs are so

compact that they can be written to a single standard

3.5-inch floppy disk. Additionally, we can mention a

wide range of operating systems and microprocessor

architectures supported by our applications.

5 CONCLUSION

The new trend of image super-resolution proposed in

this paper may become a new trend in the field of

image restoration. Efficient real super-resolution

combines the advantages of the methods of two

actively developing areas of super-resolution and

allows solving practical problems. In this paper, we

proposed a pipeline for training models of effective

real super-resolution, trained two different models

with its help and evaluated them qualitatively and

quantitatively, confirming the validity of our

hypothesis. We suggest that researchers working on

effective super-resolution conduct additional research

on their architectures for the possibility of their

application to real super-resolution task. The

developed desktop applications are available on

GitHub and can be freely tested by the community:

https://github.com/ColorfulSoft/ReactSR

ReactSR: Efficient Real-World Super-Resolution Application in a Single Floppy Disk

489

ACKNOWLEDGEMENTS

The research was supported by the ITMO University,

project 623097 “Development of libraries containing

perspective machine learning methods”.

REFERENCES

Dong, C., Loy, C. C., He, K., & Tang, X. (2014). Image

super-resolution using deep convolutional networks.

arXiv e-print. https://arxiv.org/abs/1501.00092

Dong, C., Loy, C. C., & Tang, X. (2016). Accelerating the

super-resolution convolutional neural network. arXiv e-

print. https://arxiv.org/abs/1608.00367

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P.,

Bishop, R., Rueckert, D., & Wang, Z. (2016). Real-time

single image and video super-resolution using an

efficient sub-pixel convolutional neural network. arXiv

e-print. https://arxiv.org/abs/1609.05158

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham,

A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,

Z., & Shi, W. (2016). Photo-realistic single image

super-resolution using a generative adversarial

network. arXiv e-print.

https://arxiv.org/abs/1609.04802

Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., & Huang, F.

(2020). Real-world super-resolution via kernel

estimation and noise injection. arXiv e-print.

https://arxiv.org/abs/2005.01996

Li, Y., Zhang, K., Timofte, R., Van Gool, L., & others.

(2022). NTIRE 2022 challenge on efficient super-

resolution: Methods and results. arXiv e-print.

https://arxiv.org/abs/2205.05675

Ren, B., Li, Y., Mehta, N., Timofte, R., & others. (2024).

The ninth NTIRE 2024 efficient super-resolution

challenge report. arXiv e-print.

https://arxiv.org/abs/2404.10343

Lim, B., Son, S., Kim, H., Nah, S., & Lee, K. M. (2017).

Enhanced deep residual networks for single image

super-resolution. arXiv e-print.

https://arxiv.org/abs/1707.02921

Yu, J., Fan, Y., Yang, J., Xu, N., Wang, Z., Wang, X., &

Huang, T. (2018). Wide activation for efficient and

accurate image super-resolution. arXiv e-print.

https://arxiv.org/abs/1808.08718

Ahn, N., Kang, B., & Sohn, K.-A. (2018). Fast, accurate,

and lightweight super-resolution with cascading

residual network. arXiv e-print.

https://arxiv.org/abs/1803.08664

Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., & Fu, Y.

(2018). Image super-resolution using very deep residual

channel attention networks. arXiv e-print.

https://arxiv.org/abs/1807.02758

Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Loy,

C. C., Qiao, Y., & Tang, X. (2018). ESRGAN:

Enhanced super-resolution generative adversarial

networks. arXiv e-print.

https://arxiv.org/abs/1809.00219

Zhang, K., Liang, J., Van Gool, L., & Timofte, R. (2021).

Designing a practical degradation model for deep blind

image super-resolution. arXiv e-print.

https://arxiv.org/abs/2103.14006

Wang, X., Xie, L., Dong, C., & Shan, Y. (2021). Real-

ESRGAN: Training real-world blind super-resolution

with pure synthetic data. arXiv e-print.

https://arxiv.org/abs/2107.10833

Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., &

Timofte, R. (2021). SwinIR: Image restoration using

Swin transformer. arXiv e-print.

https://arxiv.org/abs/2108.10257

Zhou, Y., Li, Z., Guo, C.-L., Bai, S., Cheng, M.-M., & Hou,

Q. (2023). SRFormer: Permuted self-attention for

single image super-resolution. In Proceedings of the

IEEE/CVF International Conference on Computer

Vision.

Zheng, M., Sun, L., Dong, J., & Pan, J. (2024). SMFANet:

A lightweight self-modulation feature aggregation

network for efficient image super-resolution. In

Proceedings of the European Conference on Computer

Vision (ECCV).

DeOldify. (n.d.). DeOldify homepage. GitHub.

https://github.com/jantic/DeOldify

Sun, L., Pan, J., & Zhu, Y. (2022). MobileSR: A mobile-

friendly transformer for efficient image super-

resolution. In Proceedings of the NTIRE 2022

Workshop on Image Super-Resolution.

Jiang, L., Dai, B., Wu, W., & Loy, C. C. (2020). Focal

frequency loss for image reconstruction and synthesis.

arXiv e-print. https://arxiv.org/abs/2012.12821

Jolicoeur-Martineau, A. (2018). The relativistic

discriminator: A key element missing from standard

GAN. arXiv e-print. https://arxiv.org/abs/1807.00734

Brykin, G. S. (2022). The System.AI project: Fully

managed cross-platform machine learning and data

analysis stack for .NET ecosystem. In Trudy Instituta

sistemnogo analiza Rossiyskoy akademii nauk (ISA

RAN) (Proceedings of the Institute for Systems Analysis

Russian Academy of Sciences (ISA RAS), pp. 64-72).

https://doi.org/10.14357/20790279230108

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

490

