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Abstract: This paper describes CASTL (Composable Auditing and Security Tree-optimized Language), a new source 
code query language focused on security analysis. The widespread implementation of static analysis for 
vulnerability identification suggests the need for capable, approachable code query languages for security 
analysts. Languages customized for the unique properties of code can be more expressive and performant 
than generic solutions. 
CASTL features a familiar SQL-style syntax, with inputs and outputs consisting of sets of abstract syntax 
trees (ASTs). This abstraction enables the advantages of (1) composability (the output of one query can 
become the input to another), (2) direct querying of the code’s structure and metadata; (3) tree-specific 
language optimizations for performance; and (4) applicability to any AST-based language. Complex queries 
can be expressed in a compact, straightforward manner. Common vulnerabilities, including buffer 
overflows, ingestion, and server side request forgery (SSRF) (Christey and Martin, 2007) translate into 
simple, readable CASTL queries. 
We describe CASTL and its capabilities, compare it to alternatives, finding potential advantages in clarity 
and compactness, discuss features and optimizations improving effectiveness and efficiency, and finally 
describe an example implementation applying CASTL to millions of Java source files. 
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1 INTRODUCTION 

Techniques for the static analysis of source code, for 
the purposes of security and quality analysis have 
comprised a fast growing area within computer 
security (Do, Wright, and Ali, 2020). While general-
purpose source code analysers are useful, security 
analysts generally have more up-to-date domain and 
application-specific knowledge. Thus, an 
experienced analyst would benefit from a tool that 
enables easy construction of source code queries. 
Many current source code query languages contain 
limitations that reduce their suitability for this task. 
Urma and Mycroft (2012) surveyed query languages 
for Java and found shortcomings in most of the 
languages studied – some are character based and 
cannot query parse trees, some do not support all 
structures of the desired target language, some lack 
the ability to query bindings and expression types, 
some are proprietary, and others require overly 

complex or verbose queries. In the subfield of 
program security analysis, the limitations of the 
query language can directly affect the ease, or even 
the possibility, of detecting particular vulnerabilities. 

In addition to practical requirements for 
performance, power and ease of use, a language that 
allows the full richness of source code to be 
analysed must incorporate two key characteristics of 
code – its syntactical organization, typically a tree 
structure based on a context-free grammar, and its 
metadata and post-compilation bindings. For 
example, when examining a reference to a variable, 
it is possible in many languages to know that 
variable’s type, whether it was declared constant. 
When encountering a method call, it may be possible 
to know which method definition is being called. 
Here is the full set of requirements we identified for 
a code query language to assist security analysts:  

• The language should offer specialized 
operators and optimizations to allow the user 
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to effectively manage the tree structure of 
code, since most programming languages are 
parsed into Abstract Syntax Trees (ASTs). 

• The language should make all derivable 
metadata and bindings available for querying. 

• The language should allow fine-grained 
queries down to individual syntax-token level. 

• The language must enable optimized, high 
performance query execution that can scale to 
millions or billions of source files. 

• The language should be composable – that is, 
the output of a query should be able to be used 
as the input to another. This allows complex 
queries to be built from smaller, simpler ones.  

• The language should be extensible, and allow 
programmers to include imperative code inline 
for maximum flexibility and compactness. 

• Finally, the language should have a familiar, 
easily-understood SQL-like syntax that will 
allow simple, compact construction of queries, 
with clear, meaningful results. 

This paper will present the Composable Auditing 
and Security Tree-optimized Language (CASTL), a 
new, flexible query language for source code. We 
will discuss the design of the language, how it meets 
the above criteria, its optimizations, some results of 
testing queries on Java source code, and our open 
source implementation, which may be further 
enhanced or integrated into other tools, and its 
performance. We also discuss a few of the surprises 
we found while implementing our language, such as 
discovering that the tree-pruning operations we 
introduced to optimize query performance were the 
same operations we came to use constantly to tailor 
our results correctly in our tree-based system. 

2 RELATED WORK 

The querying of source code is a relatively recent 
phenomenon, as publicly available codebases have 
grown in number and size, and a growing emphasis 
on security has increased interest in both automated 
and interactive evaluation of code quality. 
Historically, query writers used simple text 
searching tools like awk and grep, or relational 
database query languages like SQL. These tools are 
not well-suited for source code because they do not 
capture the rich structure and semantics of code. 
However, they have nonetheless been used. Google 
Code Search offered a huge archive of code to 
search, regular expression queries, and improved 
special character handling, a step above most other 

options at the time (Cox, 2012). Natural language 
query interpretation, correlated against the linguistic 
information present in source comments and 
identifier names, can also avoid the limitations of 
flat searches. Haiduc, Bavota, Marcus, Oliveto, De 
Lucia, and Menzies (2013) developed a system to 
automatically detect low-quality queries and rewrite 
them for more relevant results. Hill (2010) proposed 
a hybrid system combining natural language and 
program structure that used the natural language 
query to prune poor results, allowing the query to 
return more promising results. 

Not all static analysis needs to query deeply 
within source code at all. Robles and Merelo (2006) 
described how non-code artifacts in a project may be 
as rich a source of information as the code itself. 
CQL (Code Query Language) and its successor, 
CQLinq, which underpin the popular NDepend static 
analysis tool, are SQL-like languages for .NET 
projects that look primarily at high level .NET 
assembly metadata, representing programs as simple 
relations (Smacchia, 2008). They have limited 
capability to search below the class and member 
level. PQL (Martin, Livshits, and Lam, 2005) is a 
fascinating query language focused on the 
identification of object event patterns, analyzing 
sequences of method calls. Mcmillan, Poshyvanyk, 
Grechanik, Xie, and Fu (2013) identify chains of 
function calls as the key search result developers 
require and their Portfolio system thus models the 
code as a directed graph of function calls. 

Query languages focused on general tree or graph 
structures also have relevance to code querying. 
XQuery (Chamberlin, 2003) is a W3C standard 
language based on XPath for querying XML 
documents, which particularly influenced our work 
due to its natural implementation of paths through 
the XML nodes and its straightforward and powerful 
FLOWR expression which allows the output to be 
filtered, tweaked, and output into a customized html 
format. PMD (PMD Introduction, 2018), a source 
code analysis tool also based on XPath, with many 
simple and useful rules predefined, allows efficient 
querying of the entire AST, but lacks support for 
bindings and metadata. Gremlin (Rodriguez. 2015) 
is a graph traversal and query language that allows a 
mixture of imperative and declarative queries, that 
we have also drawn inspiration from. 

The BOA language and infrastructure (Dyer, 
Nguyen, Rajan, and Nguyen, 2013) is a 
comprehensive system with high performance for 
source code mining. It provides streamlined ASTs 
for querying. However, the visitor-based query 
language, derived from Google Sawzall, has a steep 
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learning curve and can result in complex queries. 
Some similar issues affect ASTLOG (Crew, 1997), a 
Prolog variant for analysis of ASTs – the queries can 
be long and complicated, even for  simple questions. 

srcQL, by Bartman, Newman, Collard and 
Maletic (2017), features a SQL-like query syntax 
down to the token level, and pattern matching within 
tokens, however it lacks exposure of bindings and 
metadata. CodeQL, by Moor et al. (2007) is based 
on Datalog and similar to CASTL in many ways, but 
its somewhat counterintuitive modelling of object-
oriented relationships, and nondeterministic 
expressions may be an obstacle to wide adoption. 

The use of Machine Learning (ML) for 
vulnerability detection has seen increasing interest in 
recent years. Marjanov, Pashchenko, Massacci 
(2022) present a useful survey of developments in 
this area. Significant challenges remain, particularly 
related to providing sufficiently large and diverse 
training data, and the opacity of many ML 
techniques limiting our ability to fully understand 
the reasoning behind their outputs or clearly 
perceive their limits. Still, the potential for AI in this 
space is high, especially if combined with more 
traditional techniques. One middle ground that may 
be productive is the use of Generative AI to produce 
or enhance queries, in a manner similar to that of 
Troy, Sturley, Alcaraz-Calero and Wang (2023), in 
languages like CASTL, realizing the creative 
potential of ML while preserving traceability and 
oversight and allowing for human customization. 

Table 1: Source Code Query Language Feature 
Comparison. 

 CASTL srcQL Boa CQLinq PQL Astlog 

Queries Tree 
Structure X X X1   X 

Metadata/ 
Bindings X   X X  

Token Level 
Queries X X    X 

Composable X   X  X 

Imperative 
Queries X  X2 X   

Familiar, 
SQL-like X X  X X  

 
1  Boa queries operate on a tree that is slightly abstracted 

from the native language tree 
2  Boa queries are imperative but must be structured 

according to Boa’s visitor paradigm. 

3 LANGUAGE DESCRIPTION 

3.1 Overview 

In CASTL, the primary input and output data of 
each query are sets of Abstract Syntax Trees, along 
with user defined variables. The language combines 
a familiar SQL-style declarative syntax with 
imperative, C-like code for filtering, refinement, and 
post-processing of results. Much of the additional 
information that source code contains beyond 
regular text (hierarchies, metadata, and bindings) is 
available to query. It also contains several keywords 
and operators for query optimization. CASTL is 
programming-language agnostic, but our initial 
implementation operates on Java source code. The 
broad structure of a query is familiar, and modeled 
on SQL and the relational algebra – selecting a 
subset of entities (in his case, ASTs) from a set, 
often winnowed by a where clause. 

 
Listing 1: An example CASTL query. 

3.2 Guided Tour of a CASTL Query 

Listing 1 shows an example CASTL query to 
identify a potential improper Unicode handling 
vulnerability, based on the IMPROPER_UNICODE 
pattern from the find-sec-bugs plugin. The 
vulnerability arises when an attacker inputs a crafted 

1: // query to detect potential improper unicode handling 

2:   // based on "IMPROPER_UNICODE" pattern from find-sec-

bugs 

3:   // ------------------------------------------------------ 

4: select ({Block} b) // Select all blocks in the program 

5: { 

6:  // See if this method contains a unicode upper/lowercase 

7:  // conversion 

8:  select ({MethodInvocation} i) directly in b 

9:  where i.expression.typebinding() == "java.lang.String" && 

10:   (i.name == "toUpperCase" || i.name == "toLowerCase")  

11:  { 

12:   // Now see if the method contains a string equality 

13:   // comparison on the converted string 

14:   select ({MethodInvocation} i2) in i.parent() 

15:   where i.name == "equals" && 

16:     i2.position() >= i.position() {  

17:    print(i.filename() + ":" + i.linenumber() +  

18:     " may contains improper unicode handling."; 

19:    num_improper_unicode_results++; 

20:   } 

20:  } 
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Unicode string that is subjected to an upper-or-
lowercase conversion that may allow the evasion of 
subsequent text comparisons intended to enforce 
input restrictions. The overall approach is to find all 
code blocks, then identify string case conversions in 
each that are followed by comparisons. 

We first select all Blocks (or more precisely, the 
set of subtrees with a Block as the root node) from 
our source project. Identifiers enclosed in curly 
braces (like “{Block}” on line 4) represent node 
types in the AST. The “in” keyword on line 8 directs 
the set of output trees from the outer query to the 
input of the inner query. The result set of Block 
subtrees becomes the input to the inner query for 
MethodInvocations. The “directly” keyword, on line 
7, is a tree pruning operation, discussed in section 
3.4, which eliminates invocations within sub-blocks 
of each result, as they are duplicative for this query.  

The where expression on lines 9-10 identifies the 
criteria the MethodInvocations will be selected on 
(specifically, toUpper or toLower invocations on 
Java Strings. For each of these results, beginning at 
line 14 we select another MethodInvocation (using 
the parent() function to limit the search to the same 
scope) that follows the first and executes the 
equality comparison function on a String. 

On line 17 we switch briefly to imperative code 
to  output the result and increment a counter to log 
the number of potential vulnerabilities found. We 
also use the CASTL “position()” function, which 
obtains the character position within the source file 
of the first character in the text comprising the AST 
node, to see which statement precedes the other.  

 
Listing 2: CASTL query snippets demonstrating the 
contains() and isparent() properties. 

3.3 CASTL Language Features 

3.3.1 Tree Node Relationships 

Listing 2, snippet 1 is part of a CASTL query 
designed to answer “how often does a try-catch 
actually throw an exception?” Line 4 demonstrates 
the contains() function, which is  true if a tree 
contains the given node type. This can help avoid an 
additional nested query, in cases where the analyst 
needs to know only the existence of a particular 
node type within a tree.  

Snippet 2 shows a second form of contains(), 
where it is passed a sub-tree, rather than a node type, 
and returns true if the parent tree contains the given 
subtree. This form is less often useful, as it is usually 
more efficient to flow output from one query to 
another using the “in” keyword as in Listing 1, 
rather than determine the relationship between trees 
after the fact using contains(). 

Snippet 3 is a query that returns statements 
paired with their enclosing block. isparent() returns 
true when a direct child to the root matches the node 
type or given subtree. 

3.3.2 Tree Traversal 

 
Listing 3: A CASTL query snippet demonstrating the 
contains() and isparent() properties. 

The query in Listing 3 is designed to find getters, 
here defined as methods with no parameters and a 
single statement that directly returns a single 
variable. This query shows some ways to traverse 
the returned subtrees. First, we select methods that 
have no parameters and a single statement. Then a 
subquery retrieves the statements from within the 
methods, filtering out those that are not return 
statements or do not directly return a variable. 

The parent() function on line 3 is used to ascend 
to the parent of the given node, in this case to affirm 
that this method is within a class (rather than an 

1: // Listing 2, snippet 1: contains() using an AST 
2: // node type -- find catches that throw 
3: select ({CatchClause} c) { 
4:    if (c.contains({ThrowStatement})) {  
... 
5: // snippet 2: contains() using a bound result tree 
6: select ({TypeDeclaration} t1) { 
7:    select ({TypeDeclaration} t2) { 
8:       if (t1.contains(t2)) { 
... 
9: // snippet 3: isparent() property 
10: select ({Block} b) { 
11:   select ({Statement} s) in s  
12:                  where b.isparent(s) { 
... 

1: // Figure 3: Finding getters 
2: select ({MethodDeclaration} m) where 
3:    m.parent().isnodetype({ClassDeclaration})  
4:   && !m.{parameters}  
5:   && m.{body}.{statements} == 1) { 
6:  select outmost ({Statements} s) in m where 
7:  s.isnodetype({ReturnStatement}) && 
8:  s.{Expression}.isnodetype({Name})) { 
9:   print(m + “ is a getter”); 
10:  } 
11: } 
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interface). To descend the tree, as on lines 4, 5 and 
8, the user may specify either the name of the 
subtree or subtree list that they wish to traverse to 
(as in {parameters}, {body}, and {statements}), or, 
as a shortcut in cases where the subnode can be 
unambiguously determined, by specifying the node 
type of the desired child node (as in {Expression}). 
These names are determined by the grammar of the 
target language. m.{body}.{statements} on line 5 
refers to a list of ASTs. CASTL automatically casts 
the list to an integer (the number of nodes in the list) 
when it is compared against an integer. 

3.3.3 Incorporating External Queries 

 
Listing 4: A CASTL query snippet demonstrating a 
recursive query invocation. 

Listing 4 contains a snippet from a query designed to 
find the most deeply nested for loops. For this we 
must recursively descend through the parse tree 
through all of the nested loops. Line 4 shows how 
the “callquery()” function can be used to 
dynamically incorporate any other query (or the 
same query again), using the output set from the 
current query as input. In this case the query passes 
its results to itself to count the nested loops. 

This feature is useful in cases where a query is 
searching for two or more associated node types, to 
dispatch execution to the appropriate inner query 
based on the types actually encountered. This feature 
can also be used to implement query “functions,” 
centralizing the implementation of a complex filter 
or traversal needed by multiple queries. 

3.3.4 Type and Method Bindings 

 
Listing 5: CASTL query snippets demonstrating method 
and type bindings. 

The snippets in Listing 5 demonstrate how the 
method and type bindings implicit within the source 
code may be queried. The first snippet contains two 
nested queries which find method declarations 
paired with method calls that invoke them. The 
methodbinding() function returns the method 
declaration that a method invocation is calling. 

Snippet 2 has a similar design, and finds type 
declarations paired with expressions that resolve to 
the type. The typebinding() function returns the type 
declaration that an expression returns. Thus, a 
method invocation may have both a methodbinding 
and a typebinding, which would be the return type of 
the method being called. Note that only bindings that 
may be statically determined at compile time can be 
queried in this manner. 

 
Listing 6: A CASTL query for measuring the number of 
incoming/outgoing method calls per class. 

Listing 6 contains an appealingly compact query to 
count, for each class, the number of method calls 
into and out of that class’ methods. It is a component 
of a simple, static-analysis version of the “Hubs and 
Authorities” webmining-based class identification 
method developed by Zaidman and Demeyer (2008). 
The query proceeds by selecting all classes, then 
selects all method invocations that originate within 
each class but conclude outside of it. Finally, it 
selects all method invocations that originate outside 
each class but conclude inside it. These operations 
are only possible because of the method binding 
information exposed by the methodbinding() 
function, and they demonstrate the powerful and 
concise queries that it enables. 

 

1: // Listing 4: Query Calls - counting loop depths 
2: q1 : select outmost ({ForStatement} f) { 
3:    nested_for_count ++; 
4:    callquery(q1) directly in f; 
5: ... 

1: // Listing 5, snippet 2:  Type bindings 
2: select ({TypeDeclaration} t) { 
3:  select ({Expression} e) in t 
4:   where e.typebinding() == t { 

1: // Listing 5, snippet 1: Method bindings 
2: select ({MethodDeclaration} m) { 
3:  select ({MethodInvocation} i)  
4:   where m == i.methodbinding()

 1: // Listing 6: Counting number of in/out calls 
 2: select ({TypeDeclaration} t) { 
 3:   num_incoming = 0;  
 4:   mum_outgoing = 0; 
 5:   // find methods calls out of this class 
 6:   select ({MethodInvocation} m) in t 
 7:       where !t.isparent(m.methodbinding()) { 
 8:     num_outgoing++; 
 9:   }   
10:  // now find method calls into this class 
11:  select ({MethodInvocation} m2) 
12:      where !t.contains(m2) && 
13:             t.isparent(m2.methodbinding()) { 
14:    num_incoming++; 
15:  }  
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3.4 Tree Optimizations 

 
Figure 1: An example AST for demonstrating tree-pruning 
keywords. 

 
Listing 7: Queries demonstrating the inmost, outmost, and 
directly keywords operating on the AST from Figure 1. 

Listing 7 shows three of the tree-pruning keywords 
added to CASTL which may be used to tailor results 
and optimize performance. The listing demonstrates 
the effect of these modifiers on query results 
generated from the input AST pictured in Figure 1. 

The “outmost” keyword causes the query to 
only return subtrees where there are no other nodes 
of the queried type interposed between the root of 
the query input and the root of the subtree being 
returned. The inverse modifier “inmost,” is also 
available, which has the effect of excluding subtrees 

where the returned subtree contains additional nodes 
of the queried type. An associated optimization is 
the “directly in” syntax causes the query to return 
only subtrees where there are no other nodes of the 
type of the root node of each input tree interposed. 

We initially designed these modifiers to filter 
extraneous or duplicative subtrees and thus increase 
performance, but they have also surprised us by 
being very useful functionally, as well, and often are 
necessary for strictly correct results. For example, 
the situation arises commonly (as in our initial 
example in Figure 2) where the query author wishes 
to find only the top-level blocks or statements within 
a method, and exclude those within nested loops or 
inner classes. The use of “outmost” and “directly” 
make this condition easy to implement, saving us a 
significant amount of complex filtering. 

4 SAMPLE IMPLEMENTATION 

To explore the power and performance of CASTL, 
we built an initial open-source implementation of the 
parser and query processor supporting Java-language 
source code. For the Java language parsing and 
metadata inference, we used the Eclipse Java 
Development Tools (JDT) libraries interfaced with 
our own code for parsing and executing CASTL. 
The system supports initializing sets of project-
specific variables that will flow into the queries, may 
be used or modified, and are output along with the 
result subtrees and any other output variables created 
within the queries. After query execution, the output 
variables for all projects are gathered up and built 
into a single spreadsheet to aid in analysis. 

To test our implementation, we also wrote 
several dozen queries to find common vulnerabilities 
and investigate areas of interest in the use of the 
Java language. We executed these queries on over 2 
million Java source files, with well over 100 million 
lines of code, taken from the top 3000 Java projects 
on github spanning two decades of Java usage. The 
analysis of our query results will be presented in a 
companion paper. Here we consider the performance 
characteristics of this large scale execution. 

Our measured performance on this dataset was 
reasonable for a lightly optimized, single-threaded 
implementation. CASTL performance is highly 
dependent on the number and content of the queries 
and projects, as well as the hardware platform, but 
when executing our reasonably broad sample of 
about 50 queries of varying sizes on a modest PC 
with a spinning hard drive, the system worked 
through about 25 million lines of code per hour. On 

A1 

B2 

B1 

A2 

B3 

Input AST 

Query1 : select ({A} a) { 
   select ({B} b) in a {}} 
// Query1 returns B1, B2, B3 
 
Query2 : select ({A} a) { 
   select outmost ({B} b) in a {}} 
// Query2 returns B1, B2 
 
Query3 : select ({A} a) { 
   select inmost ({B} b) in a {}} 
// Query3 returns B1, B3 
 
Query4 : select ({A} a) { 
   select ({B} b) directly in a {}} 
// Query4 returns B2, B3 
 
Query5 : select ({A} a) { 
   select outmost ({B} b) directly in a {}} 
// Query5 returns B2 
 
Query6 : select ({A} a) { 
   select inmost ({B} b) directly in a {}} 
// Query6 returns B3 
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a single simple query, representing the maximum 
performance scenario, the system processed about 
100 million lines of code per hour. The relative lack 
of speedup indicates that a significant portion of the 
total time in a single-query scenario is taken up by 
parsing, which is relatively less important in the 50 
query scenario (as each project is parsed only once 
regardless of how many queries are executed on it). 

There are many potential improvements we 
intend to make to this early implementation. Some 
of the smaller convenience features of the language 
have yet to be implemented, and there is scope for 
additional performance optimizations such as 
multithreading. It should also be possible to add 
support for C++ code by integrating the Eclipse 
C/C++ Development Tools (CDT) libraries, which 
share a common interface with the JDT libraries we 
currently use, as our CASTL execution code is 
written to be largely independent of the target 
language (though existing queries would need to be 
modified for the different node types in a C++ AST). 

5 CONCLUSION 

Our results demonstrate the benefits of a query 
language combining the composability and familiar 
syntax of traditional relational query languages with 
an input/output model adapted for ASTs, and 
operations and optimizations tailored for source 
code. Many queries that are possible in CASTL are 
simply impossible in some other languages. In other 
cases it may be possible to design queries that are 
more compact, clear, or efficient, when compared 
against their equivalents in other languages. 

 
Listing 8: A CASTL query for locating instances of 
unreachable code. 

For example, Listing 8 shows a query to identify 
certain instances of unreachable code, based on an 
equivalent query from the reference documentation 
of the Boa language. The query selects all blocks, 
then attempts to find two statements directly within 
each block where the statement that precedes the 
other is of a type that aborts execution of the block 
code (specifically, the break, return, throw, and 
continue statements). The CASTL query used 15 
lines and 418 characters, compared with the 
equivalent query in the other language, which used 
47 lines and 1,210 characters. Users may also find 
the CASTL example to be clearer and easier to read, 
due to its SQL-like semantics and because it is 
structured and ordered the way a human would  
perform the same search, versus the powerful but 
unintuitive visitor-type query required by Boa. Our 
initial implementation of a CASTL system 
demonstrates that these benefits are realizable 
without sacrificing high performance. 

Further work is needed to refine our 
implementation and explore additional 
improvements to the language itself. For example, 
the “directly” and “outmost” keywords, which have 
proved immensely useful in our query set, feel like 
two special cases of a more general purpose 
operator, which would prune subtrees in which any 
arbitrary, user-specified AST node type (or set of 
node types) is interposed between the input and 
result tree roots. We would like to find a way to 
implement such a general operator without 
sacrificing the clarity and compactness of our query 
code. We could also boost performance with a new 
pruning keyword replacing the isparent() function. 

We would also like to build on our example 
implementation to support other languages beyond 
Java. A clear first step would be to add C/C++ 
support via the Eclipse C/C++ Development Tools 
library. These additions would inform and improve 
our efforts to make CASTL a valuable tool for 
querying any AST-based language. 
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