
CASTL: A Composable Source Code Query Language for Security
and Vulnerability Analysis

Blake Johnson a and Rahul Simha b
The George Washington University, Washington, DC 20052, U.S.A.

Keywords: Source Code, Security, Static Analysis, Vulnerability, Query, Language, Composable, Parse, Syntax,
Search.

Abstract: This paper describes CASTL (Composable Auditing and Security Tree-optimized Language), a new source
code query language focused on security analysis. The widespread implementation of static analysis for
vulnerability identification suggests the need for capable, approachable code query languages for security
analysts. Languages customized for the unique properties of code can be more expressive and performant
than generic solutions.
CASTL features a familiar SQL-style syntax, with inputs and outputs consisting of sets of abstract syntax
trees (ASTs). This abstraction enables the advantages of (1) composability (the output of one query can
become the input to another), (2) direct querying of the code’s structure and metadata; (3) tree-specific
language optimizations for performance; and (4) applicability to any AST-based language. Complex queries
can be expressed in a compact, straightforward manner. Common vulnerabilities, including buffer
overflows, ingestion, and server side request forgery (SSRF) (Christey and Martin, 2007) translate into
simple, readable CASTL queries.
We describe CASTL and its capabilities, compare it to alternatives, finding potential advantages in clarity
and compactness, discuss features and optimizations improving effectiveness and efficiency, and finally
describe an example implementation applying CASTL to millions of Java source files.

a https://orcid.org/0009-0007-5533-9780
b https://orcid.org/0000-0002-0689-9411

1 INTRODUCTION

Techniques for the static analysis of source code, for
the purposes of security and quality analysis have
comprised a fast growing area within computer
security (Do, Wright, and Ali, 2020). While general-
purpose source code analysers are useful, security
analysts generally have more up-to-date domain and
application-specific knowledge. Thus, an
experienced analyst would benefit from a tool that
enables easy construction of source code queries.
Many current source code query languages contain
limitations that reduce their suitability for this task.
Urma and Mycroft (2012) surveyed query languages
for Java and found shortcomings in most of the
languages studied – some are character based and
cannot query parse trees, some do not support all
structures of the desired target language, some lack
the ability to query bindings and expression types,
some are proprietary, and others require overly

complex or verbose queries. In the subfield of
program security analysis, the limitations of the
query language can directly affect the ease, or even
the possibility, of detecting particular vulnerabilities.

In addition to practical requirements for
performance, power and ease of use, a language that
allows the full richness of source code to be
analysed must incorporate two key characteristics of
code – its syntactical organization, typically a tree
structure based on a context-free grammar, and its
metadata and post-compilation bindings. For
example, when examining a reference to a variable,
it is possible in many languages to know that
variable’s type, whether it was declared constant.
When encountering a method call, it may be possible
to know which method definition is being called.
Here is the full set of requirements we identified for
a code query language to assist security analysts:

• The language should offer specialized
operators and optimizations to allow the user

Johnson, B. and Simha, R.
CASTL: A Composable Source Code Query Language for Security and Vulnerability Analysis.
DOI: 10.5220/0013176200003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 1, pages 283-290
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

283

to effectively manage the tree structure of
code, since most programming languages are
parsed into Abstract Syntax Trees (ASTs).

• The language should make all derivable
metadata and bindings available for querying.

• The language should allow fine-grained
queries down to individual syntax-token level.

• The language must enable optimized, high
performance query execution that can scale to
millions or billions of source files.

• The language should be composable – that is,
the output of a query should be able to be used
as the input to another. This allows complex
queries to be built from smaller, simpler ones.

• The language should be extensible, and allow
programmers to include imperative code inline
for maximum flexibility and compactness.

• Finally, the language should have a familiar,
easily-understood SQL-like syntax that will
allow simple, compact construction of queries,
with clear, meaningful results.

This paper will present the Composable Auditing
and Security Tree-optimized Language (CASTL), a
new, flexible query language for source code. We
will discuss the design of the language, how it meets
the above criteria, its optimizations, some results of
testing queries on Java source code, and our open
source implementation, which may be further
enhanced or integrated into other tools, and its
performance. We also discuss a few of the surprises
we found while implementing our language, such as
discovering that the tree-pruning operations we
introduced to optimize query performance were the
same operations we came to use constantly to tailor
our results correctly in our tree-based system.

2 RELATED WORK

The querying of source code is a relatively recent
phenomenon, as publicly available codebases have
grown in number and size, and a growing emphasis
on security has increased interest in both automated
and interactive evaluation of code quality.
Historically, query writers used simple text
searching tools like awk and grep, or relational
database query languages like SQL. These tools are
not well-suited for source code because they do not
capture the rich structure and semantics of code.
However, they have nonetheless been used. Google
Code Search offered a huge archive of code to
search, regular expression queries, and improved
special character handling, a step above most other

options at the time (Cox, 2012). Natural language
query interpretation, correlated against the linguistic
information present in source comments and
identifier names, can also avoid the limitations of
flat searches. Haiduc, Bavota, Marcus, Oliveto, De
Lucia, and Menzies (2013) developed a system to
automatically detect low-quality queries and rewrite
them for more relevant results. Hill (2010) proposed
a hybrid system combining natural language and
program structure that used the natural language
query to prune poor results, allowing the query to
return more promising results.

Not all static analysis needs to query deeply
within source code at all. Robles and Merelo (2006)
described how non-code artifacts in a project may be
as rich a source of information as the code itself.
CQL (Code Query Language) and its successor,
CQLinq, which underpin the popular NDepend static
analysis tool, are SQL-like languages for .NET
projects that look primarily at high level .NET
assembly metadata, representing programs as simple
relations (Smacchia, 2008). They have limited
capability to search below the class and member
level. PQL (Martin, Livshits, and Lam, 2005) is a
fascinating query language focused on the
identification of object event patterns, analyzing
sequences of method calls. Mcmillan, Poshyvanyk,
Grechanik, Xie, and Fu (2013) identify chains of
function calls as the key search result developers
require and their Portfolio system thus models the
code as a directed graph of function calls.

Query languages focused on general tree or graph
structures also have relevance to code querying.
XQuery (Chamberlin, 2003) is a W3C standard
language based on XPath for querying XML
documents, which particularly influenced our work
due to its natural implementation of paths through
the XML nodes and its straightforward and powerful
FLOWR expression which allows the output to be
filtered, tweaked, and output into a customized html
format. PMD (PMD Introduction, 2018), a source
code analysis tool also based on XPath, with many
simple and useful rules predefined, allows efficient
querying of the entire AST, but lacks support for
bindings and metadata. Gremlin (Rodriguez. 2015)
is a graph traversal and query language that allows a
mixture of imperative and declarative queries, that
we have also drawn inspiration from.

The BOA language and infrastructure (Dyer,
Nguyen, Rajan, and Nguyen, 2013) is a
comprehensive system with high performance for
source code mining. It provides streamlined ASTs
for querying. However, the visitor-based query
language, derived from Google Sawzall, has a steep

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

284

learning curve and can result in complex queries.
Some similar issues affect ASTLOG (Crew, 1997), a
Prolog variant for analysis of ASTs – the queries can
be long and complicated, even for simple questions.

srcQL, by Bartman, Newman, Collard and
Maletic (2017), features a SQL-like query syntax
down to the token level, and pattern matching within
tokens, however it lacks exposure of bindings and
metadata. CodeQL, by Moor et al. (2007) is based
on Datalog and similar to CASTL in many ways, but
its somewhat counterintuitive modelling of object-
oriented relationships, and nondeterministic
expressions may be an obstacle to wide adoption.

The use of Machine Learning (ML) for
vulnerability detection has seen increasing interest in
recent years. Marjanov, Pashchenko, Massacci
(2022) present a useful survey of developments in
this area. Significant challenges remain, particularly
related to providing sufficiently large and diverse
training data, and the opacity of many ML
techniques limiting our ability to fully understand
the reasoning behind their outputs or clearly
perceive their limits. Still, the potential for AI in this
space is high, especially if combined with more
traditional techniques. One middle ground that may
be productive is the use of Generative AI to produce
or enhance queries, in a manner similar to that of
Troy, Sturley, Alcaraz-Calero and Wang (2023), in
languages like CASTL, realizing the creative
potential of ML while preserving traceability and
oversight and allowing for human customization.

Table 1: Source Code Query Language Feature
Comparison.

 CASTL srcQL Boa CQLinq PQL Astlog

Queries Tree
Structure X X X1 X

Metadata/
Bindings X X X

Token Level
Queries X X X

Composable X X X

Imperative
Queries X X2 X

Familiar,
SQL-like X X X X

1 Boa queries operate on a tree that is slightly abstracted

from the native language tree
2 Boa queries are imperative but must be structured

according to Boa’s visitor paradigm.

3 LANGUAGE DESCRIPTION

3.1 Overview

In CASTL, the primary input and output data of
each query are sets of Abstract Syntax Trees, along
with user defined variables. The language combines
a familiar SQL-style declarative syntax with
imperative, C-like code for filtering, refinement, and
post-processing of results. Much of the additional
information that source code contains beyond
regular text (hierarchies, metadata, and bindings) is
available to query. It also contains several keywords
and operators for query optimization. CASTL is
programming-language agnostic, but our initial
implementation operates on Java source code. The
broad structure of a query is familiar, and modeled
on SQL and the relational algebra – selecting a
subset of entities (in his case, ASTs) from a set,
often winnowed by a where clause.

Listing 1: An example CASTL query.

3.2 Guided Tour of a CASTL Query

Listing 1 shows an example CASTL query to
identify a potential improper Unicode handling
vulnerability, based on the IMPROPER_UNICODE
pattern from the find-sec-bugs plugin. The
vulnerability arises when an attacker inputs a crafted

1: // query to detect potential improper unicode handling

2: // based on "IMPROPER_UNICODE" pattern from find-sec-

bugs

3: // --

4: select ({Block} b) // Select all blocks in the program

5: {

6: // See if this method contains a unicode upper/lowercase

7: // conversion

8: select ({MethodInvocation} i) directly in b

9: where i.expression.typebinding() == "java.lang.String" &&

10: (i.name == "toUpperCase" || i.name == "toLowerCase")

11: {

12: // Now see if the method contains a string equality

13: // comparison on the converted string

14: select ({MethodInvocation} i2) in i.parent()

15: where i.name == "equals" &&

16: i2.position() >= i.position() {

17: print(i.filename() + ":" + i.linenumber() +

18: " may contains improper unicode handling.";

19: num_improper_unicode_results++;

20: }

20: }

CASTL: A Composable Source Code Query Language for Security and Vulnerability Analysis

285

Unicode string that is subjected to an upper-or-
lowercase conversion that may allow the evasion of
subsequent text comparisons intended to enforce
input restrictions. The overall approach is to find all
code blocks, then identify string case conversions in
each that are followed by comparisons.

We first select all Blocks (or more precisely, the
set of subtrees with a Block as the root node) from
our source project. Identifiers enclosed in curly
braces (like “{Block}” on line 4) represent node
types in the AST. The “in” keyword on line 8 directs
the set of output trees from the outer query to the
input of the inner query. The result set of Block
subtrees becomes the input to the inner query for
MethodInvocations. The “directly” keyword, on line
7, is a tree pruning operation, discussed in section
3.4, which eliminates invocations within sub-blocks
of each result, as they are duplicative for this query.

The where expression on lines 9-10 identifies the
criteria the MethodInvocations will be selected on
(specifically, toUpper or toLower invocations on
Java Strings. For each of these results, beginning at
line 14 we select another MethodInvocation (using
the parent() function to limit the search to the same
scope) that follows the first and executes the
equality comparison function on a String.

On line 17 we switch briefly to imperative code
to output the result and increment a counter to log
the number of potential vulnerabilities found. We
also use the CASTL “position()” function, which
obtains the character position within the source file
of the first character in the text comprising the AST
node, to see which statement precedes the other.

Listing 2: CASTL query snippets demonstrating the
contains() and isparent() properties.

3.3 CASTL Language Features

3.3.1 Tree Node Relationships

Listing 2, snippet 1 is part of a CASTL query
designed to answer “how often does a try-catch
actually throw an exception?” Line 4 demonstrates
the contains() function, which is true if a tree
contains the given node type. This can help avoid an
additional nested query, in cases where the analyst
needs to know only the existence of a particular
node type within a tree.

Snippet 2 shows a second form of contains(),
where it is passed a sub-tree, rather than a node type,
and returns true if the parent tree contains the given
subtree. This form is less often useful, as it is usually
more efficient to flow output from one query to
another using the “in” keyword as in Listing 1,
rather than determine the relationship between trees
after the fact using contains().

Snippet 3 is a query that returns statements
paired with their enclosing block. isparent() returns
true when a direct child to the root matches the node
type or given subtree.

3.3.2 Tree Traversal

Listing 3: A CASTL query snippet demonstrating the
contains() and isparent() properties.

The query in Listing 3 is designed to find getters,
here defined as methods with no parameters and a
single statement that directly returns a single
variable. This query shows some ways to traverse
the returned subtrees. First, we select methods that
have no parameters and a single statement. Then a
subquery retrieves the statements from within the
methods, filtering out those that are not return
statements or do not directly return a variable.

The parent() function on line 3 is used to ascend
to the parent of the given node, in this case to affirm
that this method is within a class (rather than an

1: // Listing 2, snippet 1: contains() using an AST
2: // node type -- find catches that throw
3: select ({CatchClause} c) {
4: if (c.contains({ThrowStatement})) {
...
5: // snippet 2: contains() using a bound result tree
6: select ({TypeDeclaration} t1) {
7: select ({TypeDeclaration} t2) {
8: if (t1.contains(t2)) {
...
9: // snippet 3: isparent() property
10: select ({Block} b) {
11: select ({Statement} s) in s
12: where b.isparent(s) {
...

1: // Figure 3: Finding getters
2: select ({MethodDeclaration} m) where
3: m.parent().isnodetype({ClassDeclaration})
4: && !m.{parameters}
5: && m.{body}.{statements} == 1) {
6: select outmost ({Statements} s) in m where
7: s.isnodetype({ReturnStatement}) &&
8: s.{Expression}.isnodetype({Name})) {
9: print(m + “ is a getter”);
10: }
11: }

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

286

interface). To descend the tree, as on lines 4, 5 and
8, the user may specify either the name of the
subtree or subtree list that they wish to traverse to
(as in {parameters}, {body}, and {statements}), or,
as a shortcut in cases where the subnode can be
unambiguously determined, by specifying the node
type of the desired child node (as in {Expression}).
These names are determined by the grammar of the
target language. m.{body}.{statements} on line 5
refers to a list of ASTs. CASTL automatically casts
the list to an integer (the number of nodes in the list)
when it is compared against an integer.

3.3.3 Incorporating External Queries

Listing 4: A CASTL query snippet demonstrating a
recursive query invocation.

Listing 4 contains a snippet from a query designed to
find the most deeply nested for loops. For this we
must recursively descend through the parse tree
through all of the nested loops. Line 4 shows how
the “callquery()” function can be used to
dynamically incorporate any other query (or the
same query again), using the output set from the
current query as input. In this case the query passes
its results to itself to count the nested loops.

This feature is useful in cases where a query is
searching for two or more associated node types, to
dispatch execution to the appropriate inner query
based on the types actually encountered. This feature
can also be used to implement query “functions,”
centralizing the implementation of a complex filter
or traversal needed by multiple queries.

3.3.4 Type and Method Bindings

Listing 5: CASTL query snippets demonstrating method
and type bindings.

The snippets in Listing 5 demonstrate how the
method and type bindings implicit within the source
code may be queried. The first snippet contains two
nested queries which find method declarations
paired with method calls that invoke them. The
methodbinding() function returns the method
declaration that a method invocation is calling.

Snippet 2 has a similar design, and finds type
declarations paired with expressions that resolve to
the type. The typebinding() function returns the type
declaration that an expression returns. Thus, a
method invocation may have both a methodbinding
and a typebinding, which would be the return type of
the method being called. Note that only bindings that
may be statically determined at compile time can be
queried in this manner.

Listing 6: A CASTL query for measuring the number of
incoming/outgoing method calls per class.

Listing 6 contains an appealingly compact query to
count, for each class, the number of method calls
into and out of that class’ methods. It is a component
of a simple, static-analysis version of the “Hubs and
Authorities” webmining-based class identification
method developed by Zaidman and Demeyer (2008).
The query proceeds by selecting all classes, then
selects all method invocations that originate within
each class but conclude outside of it. Finally, it
selects all method invocations that originate outside
each class but conclude inside it. These operations
are only possible because of the method binding
information exposed by the methodbinding()
function, and they demonstrate the powerful and
concise queries that it enables.

1: // Listing 4: Query Calls - counting loop depths
2: q1 : select outmost ({ForStatement} f) {
3: nested_for_count ++;
4: callquery(q1) directly in f;
5: ...

1: // Listing 5, snippet 2: Type bindings
2: select ({TypeDeclaration} t) {
3: select ({Expression} e) in t
4: where e.typebinding() == t {

1: // Listing 5, snippet 1: Method bindings
2: select ({MethodDeclaration} m) {
3: select ({MethodInvocation} i)
4: where m == i.methodbinding()

 1: // Listing 6: Counting number of in/out calls
 2: select ({TypeDeclaration} t) {
 3: num_incoming = 0;
 4: mum_outgoing = 0;
 5: // find methods calls out of this class
 6: select ({MethodInvocation} m) in t
 7: where !t.isparent(m.methodbinding()) {
 8: num_outgoing++;
 9: }
10: // now find method calls into this class
11: select ({MethodInvocation} m2)
12: where !t.contains(m2) &&
13: t.isparent(m2.methodbinding()) {
14: num_incoming++;
15: }

CASTL: A Composable Source Code Query Language for Security and Vulnerability Analysis

287

3.4 Tree Optimizations

Figure 1: An example AST for demonstrating tree-pruning
keywords.

Listing 7: Queries demonstrating the inmost, outmost, and
directly keywords operating on the AST from Figure 1.

Listing 7 shows three of the tree-pruning keywords
added to CASTL which may be used to tailor results
and optimize performance. The listing demonstrates
the effect of these modifiers on query results
generated from the input AST pictured in Figure 1.

The “outmost” keyword causes the query to
only return subtrees where there are no other nodes
of the queried type interposed between the root of
the query input and the root of the subtree being
returned. The inverse modifier “inmost,” is also
available, which has the effect of excluding subtrees

where the returned subtree contains additional nodes
of the queried type. An associated optimization is
the “directly in” syntax causes the query to return
only subtrees where there are no other nodes of the
type of the root node of each input tree interposed.

We initially designed these modifiers to filter
extraneous or duplicative subtrees and thus increase
performance, but they have also surprised us by
being very useful functionally, as well, and often are
necessary for strictly correct results. For example,
the situation arises commonly (as in our initial
example in Figure 2) where the query author wishes
to find only the top-level blocks or statements within
a method, and exclude those within nested loops or
inner classes. The use of “outmost” and “directly”
make this condition easy to implement, saving us a
significant amount of complex filtering.

4 SAMPLE IMPLEMENTATION

To explore the power and performance of CASTL,
we built an initial open-source implementation of the
parser and query processor supporting Java-language
source code. For the Java language parsing and
metadata inference, we used the Eclipse Java
Development Tools (JDT) libraries interfaced with
our own code for parsing and executing CASTL.
The system supports initializing sets of project-
specific variables that will flow into the queries, may
be used or modified, and are output along with the
result subtrees and any other output variables created
within the queries. After query execution, the output
variables for all projects are gathered up and built
into a single spreadsheet to aid in analysis.

To test our implementation, we also wrote
several dozen queries to find common vulnerabilities
and investigate areas of interest in the use of the
Java language. We executed these queries on over 2
million Java source files, with well over 100 million
lines of code, taken from the top 3000 Java projects
on github spanning two decades of Java usage. The
analysis of our query results will be presented in a
companion paper. Here we consider the performance
characteristics of this large scale execution.

Our measured performance on this dataset was
reasonable for a lightly optimized, single-threaded
implementation. CASTL performance is highly
dependent on the number and content of the queries
and projects, as well as the hardware platform, but
when executing our reasonably broad sample of
about 50 queries of varying sizes on a modest PC
with a spinning hard drive, the system worked
through about 25 million lines of code per hour. On

A1

B2

B1

A2

B3

Input AST

Query1 : select ({A} a) {
 select ({B} b) in a {}}
// Query1 returns B1, B2, B3

Query2 : select ({A} a) {
 select outmost ({B} b) in a {}}
// Query2 returns B1, B2

Query3 : select ({A} a) {
 select inmost ({B} b) in a {}}
// Query3 returns B1, B3

Query4 : select ({A} a) {
 select ({B} b) directly in a {}}
// Query4 returns B2, B3

Query5 : select ({A} a) {
 select outmost ({B} b) directly in a {}}
// Query5 returns B2

Query6 : select ({A} a) {
 select inmost ({B} b) directly in a {}}
// Query6 returns B3

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

288

a single simple query, representing the maximum
performance scenario, the system processed about
100 million lines of code per hour. The relative lack
of speedup indicates that a significant portion of the
total time in a single-query scenario is taken up by
parsing, which is relatively less important in the 50
query scenario (as each project is parsed only once
regardless of how many queries are executed on it).

There are many potential improvements we
intend to make to this early implementation. Some
of the smaller convenience features of the language
have yet to be implemented, and there is scope for
additional performance optimizations such as
multithreading. It should also be possible to add
support for C++ code by integrating the Eclipse
C/C++ Development Tools (CDT) libraries, which
share a common interface with the JDT libraries we
currently use, as our CASTL execution code is
written to be largely independent of the target
language (though existing queries would need to be
modified for the different node types in a C++ AST).

5 CONCLUSION

Our results demonstrate the benefits of a query
language combining the composability and familiar
syntax of traditional relational query languages with
an input/output model adapted for ASTs, and
operations and optimizations tailored for source
code. Many queries that are possible in CASTL are
simply impossible in some other languages. In other
cases it may be possible to design queries that are
more compact, clear, or efficient, when compared
against their equivalents in other languages.

Listing 8: A CASTL query for locating instances of
unreachable code.

For example, Listing 8 shows a query to identify
certain instances of unreachable code, based on an
equivalent query from the reference documentation
of the Boa language. The query selects all blocks,
then attempts to find two statements directly within
each block where the statement that precedes the
other is of a type that aborts execution of the block
code (specifically, the break, return, throw, and
continue statements). The CASTL query used 15
lines and 418 characters, compared with the
equivalent query in the other language, which used
47 lines and 1,210 characters. Users may also find
the CASTL example to be clearer and easier to read,
due to its SQL-like semantics and because it is
structured and ordered the way a human would
perform the same search, versus the powerful but
unintuitive visitor-type query required by Boa. Our
initial implementation of a CASTL system
demonstrates that these benefits are realizable
without sacrificing high performance.

Further work is needed to refine our
implementation and explore additional
improvements to the language itself. For example,
the “directly” and “outmost” keywords, which have
proved immensely useful in our query set, feel like
two special cases of a more general purpose
operator, which would prune subtrees in which any
arbitrary, user-specified AST node type (or set of
node types) is interposed between the input and
result tree roots. We would like to find a way to
implement such a general operator without
sacrificing the clarity and compactness of our query
code. We could also boost performance with a new
pruning keyword replacing the isparent() function.

We would also like to build on our example
implementation to support other languages beyond
Java. A clear first step would be to add C/C++
support via the Eclipse C/C++ Development Tools
library. These additions would inform and improve
our efforts to make CASTL a valuable tool for
querying any AST-based language.

ACKNOWLEDGEMENTS

The authors would like to thank Sarah Casay and
Loc Nguyen, whose senior design projects
contributed to this paper.

REFERENCES

Christey, Steve and Martin, Robert A. Vulnerability Type
Distributions in CVS. (May 2007). Retrieved January

1: select ({Block} b) {
2: select outmost ({Statement} s1) directly in b
3: {
4: select outmost ({Statement} s2) directly in b
5: where s1.position() < s2.position() &&
6: (s1.isnodetype({BreakStatement}) ||
7: s1.isnodetype({ReturnStatement}) ||
8: s1.isnodetype({ThrowStatement}) ||
9: s1.isnodetype({ContinueStatement}))
10: {
11: print(s2.filename() + " - " +
12: s2.linenumber());
13: }
14: }
15:}

CASTL: A Composable Source Code Query Language for Security and Vulnerability Analysis

289

14, 2024 from https://cve.mitre.org/docs/vuln-
trends/index.html

L. Nguyen Quang Do, J. R. Wright, and K. Ali, “Why do
software developers use static analysis tools? a user-
centered study of developer needs and motivations.” In
Proceedings of the Sixteenth Symposium on Usable
Privacy and Security, 2020.

Raoul-Gabriel Urma and Alan Mycroft. 2012.
Programming language evolution via source code
query languages. In Proceedings of the ACM 4th
annual workshop on Evaluation and usability of
programming languages and tools (PLATEAU '12).
ACM, New York, NY, USA, 35-38.

Cox, Russ (2012). Regular Expression Matching with a
Trigram Index. Retrieved from https://swtch.com/~rsc/
regexp/regexp4.html

Smacchia, Patrick A (2008). Code Query Language 1.8
Specification. Retrieved from https://www.javade
pend.com/CQL.htm

Michael Martin, Benjamin Livshits, and Monica S. Lam.
2005. Finding application errors and security flaws
using PQL: a program query language. SIGPLAN
Not. 40, 10 (October 2005), 365-383.

Don Chamberlin. 2003. XQuery: a query language for
XML. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data
(SIGMOD '03). ACM, New York, NY, USA, 682-682.
DOI=http://dx.doi.org/10.1145/872757.872877

PMD Introduction (2018, January 21). PMD Source Code
Analyzer Project. Retrieved from https://pmd.github.
io/pmd-6.0.1/

Marko A. Rodriguez. 2015. The Gremlin graph traversal
machine and language (invited talk). In Proceedings of
the 15th Symposium on Database Programming
Languages (DBPL 2015). ACM, New York, NY,
USA, 1-10. DOI=http://dx.doi.org/10.1145/2815072.
2815073

Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien
N. Nguyen. 2013. Boa: a language and infrastructure
for analyzing ultra-large-scale software repositories. In
Proceedings of the 2013 International Conference on
Software Engineering (ICSE '13). IEEE Press,
Piscataway, NJ, USA, 422-431.

Roger F. Crew. 1997. ASTLOG: a language for examining
abstract syntax trees. In Proceedings of the Conference
on Domain-Specific Languages on Conference on
Domain-Specific Languages (DSL), 1997 (DSL'97).
USENIX Association, Berkeley, CA, USA, 18-18.

Emily Hill. 2010. Integrating Natural Language and
Program Structure Information to Improve Software
Search and Exploration. Ph.D. Dissertation.
University of Delaware, Newark, DE, USA.

Gregorio Robles, Jesus M. Gonzalez-Barahona, and Juan
Julian Merelo. 2006. Beyond source code: the
importance of other artifacts in software development
(a case study). J. Syst. Softw. 79, 9 (September 2006),
1233-1248.

Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco
Oliveto, Andrea De Lucia, and Tim Menzies. 2013.
Automatic query reformulations for text retrieval in

software engineering. In Proceedings of the 2013
International Conference on Software Engineering
(ICSE '13). IEEE Press, Piscataway, NJ, USA, 842-
851.

Collin Mcmillan, Denys Poshyvanyk, Mark Grechanik,
Qing Xie, and Chen Fu. 2013. Portfolio: Searching for
relevant functions and their usages in millions of lines
of code. ACM Trans. Softw. Eng. Methodol. 22, 4,
Article 37 (October 2013), 30 pages.

Andy Zaidman, Serge Demeyer. Automatic Identification
of Key Classes in a Software System Using
Webmining Techniques. In Journal of Software
Maintenance and Evolution: Research and Practice
20(6): 387-417, Wiley, November/December 2008.

B. Bartman, C. D. Newman, M. L. Collard and J. I.
Maletic, "srcQL: A syntax-aware query language for
source code," 2017 IEEE 24th International
Conference on Software Analysis, Evolution and
Reengineering (SANER), Klagenfurt, 2017, pp. 467-
471.

O. d. Moor et al., "Keynote Address: .QL for Source Code
Analysis," Seventh IEEE International Working
Conference on Source Code Analysis and
Manipulation (SCAM 2007), Paris, France, 2007, pp.
3-16, doi: 10.1109/SCAM.2007.31.

T. Marjanov, I. Pashchenko and F. Massacci, "Machine
Learning for Source Code Vulnerability Detection:
What Works and What Isn’t There Yet" in IEEE
Security & Privacy, vol. 20, no. 05, pp. 60-76, Sept.-
Oct. 2022, doi: 10.1109/MSEC.2022.3176058.

C. Troy, S. Sturley, J. M. Alcaraz-Calero and Q. Wang,
"Enabling Generative AI to Produce SQL Statements:
A Framework for the Auto- Generation of Knowledge
Based on EBNF Context-Free Grammars," in IEEE
Access, vol. 11, pp. 123543-123564, 2023, doi:
10.1109/ACCESS.2023.3329071.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

290

