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Abstract: For a society to thrive, people must feel safe; otherwise, fear and stress reduce the quality of life. A variety
of security measures are used, but as populations grow and firearms become more accessible, societal safety
faces new challenges. Existing works on threat detection focus primarily on security cameras but lack common
benchmarks, standard datasets, or consistent constraints, making it difficult to assess their real-world perfor-
mance, especially with low-quality footage. This work introduces a challenging dataset for Firearm Threat
Detection, comprising 7450 annotated frames across 291 videos, created under rigorous quality controls. We
also developed tools to streamline dataset creation and expansion through semi-automatic annotations. To
our knowledge, this is the largest real-world dataset with frame-level annotations in the area. Our dataset is
available online alongside the tools developed, including some to facilitate its extension. We evaluated popular
detectors and state-of-the-art transformer-based methods on the dataset to validate its difficulty.

1 INTRODUCTION

Security has always been a major concern, and
as firearms become increasingly accessible, societal
safety grows more fragile (Hurka and Knill, 2020).
Firearms allow individuals, even without advanced
training, to cause significant harm in public spaces,
leading to tragedies such as school and mass shoot-
ings (Gius, 2018; Lemieux, 2014). Several measures
exist to handle these situations, the most common be-
ing monitoring environments using security cameras.

While security cameras offer advantages (Piza
et al., 2019), such as recording events for posterior-
ity, they rely heavily on human supervision. Cam-
eras only capture footage, they require operators to
actively monitor and respond to incidents. In larger
areas or buildings, multiple cameras must be moni-
tored simultaneously, increasing the risk of distrac-
tions and human error (Darker et al., 2007).

Effective vigilance requires sustained concentra-
tion (Donald and Donald, 2015), yet CCTV operators
often struggle to maintain attention over time. Studies
show that focus declines significantly after 20 min-
utes (Velastin et al., 2006), with operators missing
45% of scene elements by 12 minutes and up to 95%
after 22 minutes (Ainsworth, 2002). This highlights
the limitations of traditional monitoring and the need
for solutions to enhance security.

Many studies have tackled firearm detection, of-
ten prioritizing model performance over the data
used (Gelana and Yadav, 2019; de Azevedo Kanehisa
and de Almeida Neto, 2019). Some focus on spe-
cific tasks, such as concealed weapon detection (Ra-
turi et al., 2019; Ineneji and Kusaf, 2019), while oth-
ers address broader security issues, including aban-
doned luggage (Loganathan et al., 2019), fire (Mehta
et al., 2020), or general violence (Pawar et al., 2019).

Despite ongoing concerns about dataset quality,
these issues are frequently left for future work (Ol-
mos et al., 2018; Lim et al., 2019). Few authors pro-
pose new datasets, and even fewer provide real-world
data with detailed object detection annotations. To
address this gap, we developed a novel and flexible
dataset for firearm threat detection, created methodi-
cally from real-world scenes using rigorous selection
and annotation processes.

The contributions of this work are threefold:

• A novel challenging dataset called FiDaSS
(Firearm Dataset for Smart Surveillance) with
7450 real-world annotated images featuring di-
verse scenarios, cultural contexts, and detailed an-
notations for victims, perpetrators, and weapons.

• Tools to streamline dataset creation or expansion
by using pre-existing detectors to estimate anno-
tations, which can be manually refined afterward.
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Table 1: Most frequently used datasets in the studied literature, shown in descending order of popularity.

Type Amount FrameDataset of Data of Data Annotations Task Dimension Year

(Olmos et al., 2018) Movie 3,000 Frames Frame Level Detection Varied 2018
(IMFDB, 2015) Movie 396,808 Frames Frame Level Classification Varied 2015

(Sultani et al., 2018) Real-world 200 Videos Video Level Classification 320x240 2018
(Grega et al., 2013) Acted 7 Videos Video Level Classification 640x480 2013

(González et al., 2020) Synthetic 4000 Frames Frame Level Detection 1920x1080 2020
(Gu et al., 2022) Acted 5000 Frames Frame Level Detection Varied 2022

(Hnoohom et al., 2022) Acted 8319 Frames Frame Level Detection 1920x1080 2022
FiDaSS Real-world 7450 Frames Frame Level Detection Varied N/A

• Experiments using state-of-the-art networks to
evaluate the quality and difficulty of FiDaSS.

2 RELATED WORK

Through a literature study, we identified 34 datasets
used or proposed, and in Table 1 we provide a com-
parison between the most popular. The datasets found
can be roughly categorized based on the data they use.
This insight is crucial for quickly filtering undesirable
datasets and focusing on those that are adequate to our
objectives. The categories identified are as follows:

• Movie Data: Datasets based on movies are abun-
dant and offer plenty of data, but have a ten-
dency for lower real-world performance due to
cinematic characteristics. E.g., (IMFDB, 2015).

• Enacted Data: Simulated real-life scenarios offer
better realism but are smaller due to the high effort
required for creation. E.g., (Grega et al., 2013).

• Real Data: Surveillance footage datasets are rare,
small, and often subsets of broader datasets, de-
spite being the most representative of real-world
scenarios. E.g., (Sultani et al., 2018).

Although most works focused on CCTV scenar-
ios, only three public datasets are based on real-world
data. Movie-based datasets were the most prevalent,
with the two most used datasets falling into this cat-
egory. This mismatch highlights a reliance on in-
adequate data for real-world applications, likely due
to the greater availability and size of movie datasets.
Furthermore, when analyzing the datasets shown in
Table 1, we notice it is difficult to compare the meth-
ods in the area fairly, as works use diverging datasets
that focus on different categories. Similarly, there
is no standard measure for comparing methods, even
considering within the same category.

We identified that the biggest concern in the area
is the construction of representative datasets. Some
works (Sultani et al., 2018; Lim et al., 2019) stand
out for presenting data from actual events captured

by security cameras and made available to the pub-
lic and contain exciting data. However, they lack in
amount, diversity, and are composed of a set of videos
or contiguous frames marked as containing or not the
object of interest instead of precise annotations. Con-
sidering this, we created a dataset aiming to address
the limitations identified and provide a robust foun-
dation for future research, thus fulfilling the follow-
ing gaps: (I) Real-world data to encourage practical
applications; (II) High variability in sources, video
quality, and cultural representation; (III) Frame-level
annotations, adaptable for tasks like object detection
and scene classification.

3 DATASET DESCRIPTION

We started with a literature review to identify com-
monly used datasets, their characteristics, and areas
for improvement (Section 2). Based on that, we de-
cided that our primary objective for FiDaSS was to
portray a diversity of cultures using real-world scenes,
thus minimizing regional social biases.

To facilitate FiDaSS creation, we implemented a
set of tools to provide useful scripts for manipulating
videos, creating and labeling clips, creating bounding
box annotations, and generating statistics. We also in-
tegrated our annotation pipeline with an open-source
video object tracking frameworkto provide sugges-
tions for future annotations.

The following sections describe each step pre-
sented in Fig. 1. FiDaSS, the tools developed to create
it, and complementary details about it (e.g., dataset
splits, geographical diversity, and training configura-
tions) are available online1.

3.1 Data Collection

To create FiDaSS, we explored a wide range of data
sources to assess the existing resources in the lit-
erature and identify gaps. We began by analyzing

1https://github.com/fidass/fidass dataset
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Figure 1: Steps followed to create our dataset.

the well-known datasets listed in Table 1, along with
lesser-known ones, to establish a strong foundation
for our dataset. Building on this, we sought videos
from YouTube and a local news company to enrich
FiDaSS with diverse scenarios, situations, and cul-
tures. However, obtaining a substantial amount of
varied real-world data remains a significant challenge
due to privacy concerns and the limited availability of
recordings held by security companies.

From our analysis of existing datasets, we se-
lected UCF Crime as a foundation due to its focus
on real-world security camera footage. We selected
videos containing moments that clearly displayed a
held weapon and included a visible criminal, thus ex-
cluding scenarios solely involving law enforcement.
Then, to expand beyond the literature, we collected
unexplored data from YouTube. We collected an ini-
tial pool of videos using a query-based search with the
keywords [surveillance video armed robbery, CCTV
assaults, guns in CCTV, assault caught on camera] in
over 20 languages. After filtering based on our criteria
(weapon visibility and the presence of a criminal) and
removing duplicates, this yielded 139 videos. Fur-
thermore, we used YouTube’s recommendation sys-
tem to discover more content, and by applying the
same filtering process, we gathered 162 new videos.

To ensure there were no duplicate videos, we con-
ducted a manual verification to remove all overlap-
ping data from the selection. Thus, ultimately, we
selected 301 videos from YouTube depicting crime
scenes from different countries and cultures. The
playlists with these videos are available online2.

Finally, to expand our dataset further, we con-
tacted a local news company, requesting access to
some videos provided to them depicting recent crime
scenes from the region. Upon receiving their ap-
proval, we obtained 13 novel videos.

3.2 Dataset Annotation

After collecting the videos, we began annotating
clips, while ensuring each was self-contained. For

2https://youtube.com/@fidassdataset7285/playlists.

that, each clip had to feature the assailant for at least
five seconds, ensuring sufficient relevant information
to contribute. Through this process, we reduced 18
hours of video into 2.8 hours of manually selected
clips, with each containing either unique footage or
a different camera angle. To standardize the dataset,
we converted all clips to a frame-rate of 1 fps.

After delimiting each clip, we started annotating
each clip on a frame-level for object detection. Our
first step was to annotate only the first time each per-
son appeared in each clip. In addition to armed peo-
ple, we also included their guns and unarmed peo-
ple in the annotations. This way, models could learn
more reliably the difference between armed people
and people holding items similar to guns in low-
quality videos (such as phones and umbrellas).

Next, we processed all clips and their unique ob-
jects using a network designed for object tracking.
This approach generated an initial approximation of
annotations for every clip with minimal manual ef-
fort. To ensure quality, we meticulously reviewed
each frame and corrected mismarked instances. This
procedure significantly reduced our workload while
expediting the creation process of our dataset.

In many recordings, we noticed that the assailant
would, for example, stand perfectly still while mak-
ing demands for 15− 30 seconds, and the people in-
volved were paralyzed listening to their threats dur-
ing most of this time. These scenarios would cause
several clips to be composed of nearly identical im-
ages with no substantial changes that would provide
new information. Thus, while adjusting the miss-
detected bounding boxes, we discarded these long re-
dundant sequences to avoid having inflated results in
our experiments, as having the models predict identi-
cal frames would make them seem more accurate than
they actually were. By doing so, we reduced the total
duration of the clips in our dataset to 2.1 hours.

Since we gathered images from several differ-
ent videos available online, many of them had faces
blurred for anonymity. However, as our objective with
our dataset is to provide an accurate estimation of a
model’s performance in real-world scenarios, adding
blur to all faces would provide an inaccurate represen-
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Figure 2: Example of images from our dataset with their corresponding labels, following the color scheme: green for “armed”
labels, blue for “unarmed”, and red for “firearm”.

Table 2: Total data selected from each data source.

Dataset of Origin Videos Clips Frames
Youtube Playlist 301 216 4905

UCF Crime 197 144 2239
News Company 13 19 306

Total 522 379 7450

tation of the data models would find when applied in
real scenarios. Therefore, we decided not to add any
more blur to our dataset but still use the images we
gathered that were already blurred. This way, we hope
those images would serve as augmented data during
training, hopefully teaching models that the individ-
ual’s face is not as important as their posture and what
they are holding.

The annotation process described involved three
contributors, each responsible for annotating a sub-
set of the collected videos. A final group revision
was conducted to ensure consistency across all an-
notations, addressing nuances in low-quality frames,
such as determining whether faintly visible individu-
als in the background should be annotated.

The tools we developed streamlined the methodol-
ogy described, enabling efficient frame selection, an-
notations, and subsequent corrections. The resulting
dataset comprises a total of 23109 annotated objects
across 379 clips (7450 frames), representing approx-
imately two hours of annotated footage. Examples
of the dataset’s annotations are shown in Fig. 2, with
the first row illustrating higher-quality frames and the
second row showcasing lower-quality frames that re-
quire additional context for proper interpretation.

4 DATASET STATISTICS

This section discusses some properties of FiDaSS
while also comparing it to those presented in Table 1
and addressing why the original annotations were in-
sufficient in the datasets we used as a basis for ours.

One crucial characteristic of FiDaSS is that we
made the annotations directed toward the task of ob-
ject detection in real-life scenarios. To the best of our
knowledge, considering our literature analysis, there
is no dataset presenting those characteristics and con-
taining a substantial number of images. Although the
datasets highlighted in Table 1 have a large amount of
data, only one presented exclusively real-world data,
and none had annotations for the object detection task,
only for image or video classification.

Table 2 lists the sources used for FiDaSS, show-
ing the number of videos and selected frames from
each. Approximately 40% of FiDaSS derives from
existing datasets, but we have rigorously selected and
annotated the most relevant frames, which were pre-
viously available only as raw videos. The remaining
60% consists of novel data from diverse cultures.

After describing FiDaSS’ properties, it is essen-
tial to compare it with the datasets identified in Ta-
ble 1. While Weapons-Detection and IMFDB offer
the largest datasets, they primarily consist of movie
scenes or context-free images, limiting real-world
applicability. The Gun Movies Database provides
security camera footage, but comprises only seven
laboratory-shot videos. The UCF Crime dataset pro-
vides real-world footage, with 150 robbery and 50
shooting videos, but uses clip-level labels instead of
frame-level. FiDaSS bridges these gaps with detailed
annotations and diverse real-world scenarios.
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Table 3: Comparison of the models we explored with our dataset, highlighting the transformer-based models in grayed lines.

AP50Model Input Backbone mAP50 Armed Unarmed Firearm #Params

DAFNe Frames ResNet-101 34.00% 50.07% 39.83% 12.11% 5M
Faster-RCNN Frames ResNet-50 40.65% 45.69% 48.83% 27.42% 42M

YOLOv10 Frames CSPDarknet-53 44.30% 56.10% 40.50% 36.10% 24M
DINO Frames ResNet-50 60.60% 71.30% 66.09% 44.35% 47M

EVA-02 Frames FPN-12 72.07% 86.47% 75.48% 54.27% 86M
TransVOD Clips ResNet-50 45.00% 57.11% 50.62% 27.26% 59M

5 ALGORITHMIC ANALYSIS

FiDaSS introduces a novel, challenging object detec-
tion dataset designed for adaptability to various tasks,
such as video and frame detection. To evaluate its util-
ity, we conducted experiments using both clip-based
context and individual frames. We also performed
cross-dataset evaluations to assess model generaliza-
tion when trained on our dataset. The following sec-
tions outline the setup used and discuss the results.

5.1 Experimental Setup

FiDaSS aims to evaluate how accurately models
would perform in real surveillance system applica-
tions. We tested a range of state-of-the-art architec-
tures to identify their weaknesses in this area.

Our initial experiments employed YOLO (Jocher
et al., 2023) and Faster-RCNN (Ren et al., 2015), ver-
satile models effective across diverse tasks. How-
ever, these models struggled with our dataset, es-
pecially with detecting firearms. To address this,
we tested DAFNe (Lang et al., 2021), a special-
ized architecture for detecting small objects in scenes.
We then explored two transformer-based networks,
DINO (Zhang et al., 2022) and EVA-02 (Fang
et al., 2023), as an alternative to convolutional ap-
proaches. Additionally, we evaluated sequence-
processing models using TransVOD (Zhou et al.,
2022), an enhanced version of DETR (Carion et al.,
2020), to analyze performance on short video clips
rather than isolated frames. Details of the training
configurations are available on the project’s GitHub.

5.2 Experimental Results

The results of our experiments are presented on Ta-
ble 3, including information such as if the experiment
focused on individual frames or a clip sequence, the
average precision for each class, and the model size.
Because of the low quality of the images, when a per-
son has their arms stretched out, the models some-
times detect only the torso, which causes a dispar-

ity between the label and the detections. Considering
this, we focused our analysis on a 50% IoU threshold,
as we infer a person to be correctly detected even if
their limbs were not included in the prediction.

From the results gathered on Table 3, we can no-
tice a significant advantage of using transformer mod-
els. The first three models barely achieved a mAP
of 40%, and a class AP of 50%, while the trans-
former models achieved a mAP above 60%, with a
per-class AP between 70% and 80% for non-firearm
classes. Additionally, while the firearm class is con-
siderably lower, peaking at approximately 40%, if
we can consistently identify armed individuals, we
can infer more easily the presence of firearms on the
scene. Thus, we will focus mainly on “Armed” and
“Unarmed”.

Recurring errors emerged across all models, with
person labeling and firearm detection being the most
significant challenges. Models consistently identified
people, except in cases of heavy blur or background
occlusion. However, they struggled with labeling in-
dividuals as “armed” or “unarmed,” often fluctuating
between the two across consecutive frames, with a
slight bias toward the “armed” class. No model con-
sistently located firearms in the scene due to factors
such as image quality, variability in object shape, an-
gle, and distance.

These were the major issues identified that caused
the metrics to drop in all models proportionally to
how well the model could minimize these mistakes.
Because of this, we focus our analysis on the results
produced by EVA-02, which had the highest perfor-
mance, and discuss other issues we identified in more
depth while studying its results more thoroughly.

We present correct and incorrect detection sam-
ples in Fig. 3, illustrating diverse camera angles from
our test set. We can see that even from a distance
and with low-quality images, the model consistently
located people in the scene, with few recurring excep-
tions. For instance, individuals with their faces hidden
were often mislabeled as “Armed,” leading to errors in
cases with innocents with their backs to the camera.

To evaluate how representative our dataset is, we
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Figure 3: Examples of successful (left) and missed (right) detections by the EVA-02 model. The ground truth for each sample
is shown on the right and the model’s detection is on the left. The images presented have been zoomed for clarity.

conducted inference of our best-performing model
on two datasets from the literature: Sohas-Weapons,
which has been frequently used throughout the years,
and YouTube-GDD, which is a more recent and very
promising dataset. Because of the difference in the
datasets’ objectives, we decided to focus on a qualita-
tive analysis instead of metrics. In both datasets, we
noticed instances of firearms labeled in the scenes but
not held by anyone (e.g., in gun stores), which were
not detected by the model we trained. We did not con-
sider those as miss-detections, as our objective is to
identify firearms being wielded by someone. For fur-
ther comparisons, examples of our cross-dataset ex-
periments are also available on our GitHub.

Our experiments with Sohas-Weapons showed
that, despite its interesting and diverse data (e.g.,
video game screenshots, stock photos, and selfies), it
lacks relevance for real-world applications. Their an-
notations are also limited, labeling pistols regardless
of context (e.g., images of figurines) but excluding
people or other types of firearms, which reduces the
dataset’s applicability and flexibility. EVA-02 strug-

gled most with contextless images or first-person per-
spectives, which are absent in our training set.

Similarly, experimenting with YouTube-GDD
showed that it contains more specialized data, includ-
ing shooting range videos and demonstrations. Ad-
ditionally, they provide more complete annotations
covering firearms and people, though without dis-
tinguishing between armed and unarmed individuals.
However, while aligning better with real-world sce-
narios, it also includes close-ups of firearms or indi-
viduals, limiting its practical value. The model we
trained performed well in this dataset, mostly just suf-
fering from different firearm annotation policies be-
tween their dataset and ours.

Analyzing the results, we can observe that
transformer-based networks outperform purely con-
volutional networks. This is due to attention mech-
anisms that probably associate global information
to classify people in ambiguous scenarios, whereas
convolutional networks rely more on the immediate
vicinity of the object. Because of this, transformer
models can perform more reliably in instances where
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the presence of a firearm is not clear, either because
of its position relative to the camera or because the
image quality blurs it out. However, we were sur-
prised that our first experiments with clip sequences
performed worse than other transformer strategies.
We are unsure why that happened, given that we ex-
pected temporal information to help resolve ambigu-
ous scenes even more than spatial information.

6 DISCUSSION, LIMITATIONS,
AND FUTURE WORK

FiDaSS is one of the few datasets made entirely with
real data from various cultures, to the best of our
knowledge, being the only one in this context with
annotations for object detection. Moreover, our ex-
periments show that state-of-the-art methods have dif-
ficulty with it, primarily with differentiating armed
from non-armed people, making it an exciting alter-
native for future research. Our dataset offers a rich
diversity of scenes, capturing different real-world sit-
uations from security cameras with varying levels of
quality. These diverse scenes, often obfuscated and
ambiguous, provide exciting challenges to be tack-
led by future research. We also observed that only a
minority of firearm objects were correctly identified,
which we attribute to the high similarity between ob-
jects that the camera did not catch well due to their
small size and low image quality.

Additionally, by analyzing our results, we identi-
fied certain patterns that frequently reappear through-
out many videos. The first pattern we identified was
cases where the model found the gun but labeled the
person holding it as being unarmed. While this is
strange for us to observe, we must consider that the
model has no “reasoning module” that would asso-
ciate that those two labels go together. Thus, we be-
lieve that this can be addressed in a post-processing
module in specialized solutions.

The second important pattern is the fact that the
models appeared to associate a person hiding their
face with them being armed, which is true in a lot
of scenarios. It is not uncommon to find cases of peo-
ple wearing hoods and masks or bike helmets during
robberies, so this association was mostly positive for
the model. However, we also identified that, in un-
clear cases, a person with their back to the camera
had the tendency to be labeled as being armed. This
introduces several cases of false-positives in our pre-
dictions, but taking into consideration the final goal of
being usable in real surveillance systems, we consider
this a lower priority compared to false-negatives, i.e.,
cases when an armed person is not detected.

Although we sought diversity, a limitation of Fi-
DaSS is that we still noticed some inherent biases
consistently reflected in our results. One issue iden-
tified was that, in unclear scenarios where the video
quality makes it hard to discern where the firearm is,
the models tend to mark a man as “armed”, even if
it was a woman who was holding a gun. This char-
acteristic shows us that, even after including compre-
hensive data from different cultures, our dataset still
contains an overwhelming amount of examples of a
man holding guns compared to a minority of instances
with an armed woman.

For future work, we want to expand FiDaSS fur-
ther with new and unexplored data from more coun-
tries and cultures to introduce even more diversity of
images. Moreover, we want to provide more sub-
stantial and representative data to avoid social biases.
However, we expect that by using the proposed tools,
the task of enhancing the dataset becomes easier and
more efficient. Finally, we are also interested in ex-
ploring more specialized approaches that may achieve
better detection results on our task since the results we
achieved with general-purpose models were so low.

7 CONCLUSIONS

This work introduced a novel and challenging dataset
for firearm threat detection, focusing on object detec-
tion in real-world scenarios. Our experiments, both
individual frames and video sequences, resulted in
very low AP scores, highlighting the dataset’s diffi-
culty. The dataset contains 7450 annotated frames
from diverse cultures, environments, and situations
and is easily extendable using the provided tools.

We hope our work will help stimulate the research
area and provide a challenging dataset that could as-
sist in comparing the performance of works. Finally,
besides promoting research in the area, we hope to
contribute to security in our everyday lives.
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