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Abstract: Various methods have been proposed for generating human motion from text due to advancements in large lan-
guage models and diffusion models. However, most research has focused primarily on 3D motion generation.
While 3D motion enables realistic representations, the creation and collection of datasets using motion-capture
technology is costly, and its application to downstream tasks, such as pose-guided human video generation, is
limited. Therefore, we propose 2D Convolutional Motion Generative Pre-trained Transformer (2CM-GPT), a
method for generating two-dimensional (2D) motion from text. 2CM-GPT is based on the framework of Mo-
tionGPT, a method for 3D motion generation, and uses a motion tokenizer to convert 2D motion into motion
tokens while learning the relationship between text and motion using a language model. Unlike MotionGPT,
which utilizes 1D convolution for processing 3D motion, 2CM-GPT uses 2D convolution for processing 2D
motion. This enables more effective capture of spatial relationships between joints. Evaluation experiments
demonstrated that 2CM-GPT is effective in both motion reconstruction and text-guided 2D motion generation.
The generated 2D motion is also shown to be effective for pose-guided human video generation.

1 INTRODUCTION

The task of generating human motion from text is
gaining attention due to its potential applications in
fields such as games, movies, virtual reality, and aug-
mented reality. With significant advancements in
large language models (LLMs) and diffusion mod-
els, various methods for generating human motion
from text have been proposed, e.g., methods based
on LLMs, such as Generative Pre-trained Trans-
former (GPT) including MotionGPT (Jiang et al.,
2024) and T2M-GPT (Zhang et al., 2023), and
those using diffusion models such as motion diffu-
sion model (MDM) (Tevet et al., 2023), MotionDif-
fuse (Zhang et al., 2024), and motion latent diffusion
(MLD) (Chen et al., 2023).

Conventional human-motion-generation methods
mainly focus on generating three-dimensional (3D)
motions using natural-language texts describing mo-
tions as input. These methods are trained on a
skinned multi-person linear (SMPL) model (Loper
et al., 2015) motion-text-pair dataset to generate
human motions. However, 3D motion generation
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incurs high dataset-creation costs. Typically, 3D-
human-motion data are created and collected using
motion-capture technology, but this requires dedi-
cated motion-capture equipment, studios, and ac-
tors. This also requires specialized knowledge for
setup and post-processing. Applications such as pose-
guided human-video-generation tasks also often re-
quire 2D motions as input. Therefore, it is necessary
to convert 3D motions to 2D motions. In summary,
conventional methods focusing on 3D motion gener-
ation incur high cost of creating datasets and are inef-
ficient when applied to 2D applications.

We propose 2D Convolutional Motion Genera-
tive Pre-trained Transformer (2CM-GPT), a method
for generating 2D motion from text. By focusing on
2D motion, datasets can be created more easily using
techniques such as pose estimation, compared with
3D motion, enabling direct application of the gener-
ated 2D motion to various applications. Using text as
input also enables intuitive motion generation. Our
method consists of a motion tokenizer for process-
ing motion as text and a language model for learning
the relationship between text and motion. The motion
tokenizer uses a vector quantised variational autoen-
coder (VQ-VAE) (Van Den Oord et al., 2017) to con-
vert human 2D motion into discrete motion tokens.
This enables handling motion in a feature space sim-
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ilar to text. The language model uses a pre-trained
text-to-text transfer Transformer (T5) (Raffel et al.,
2020) to learn motion as language. This enables the
generation of diverse 2D motions on the basis of dif-
ferent texts. We converted the HumanML3D (Guo
et al., 2022) dataset, which pairs text with 3D motion
data and is widely used in text-to-motion tasks, into
2D-motion data for model training.

Our contributions are as follows.

• We propose a generation method for modifying
the convolution method of motion tokenizer, a
conventional method that relies on 3D data, to en-
able 2D motion generation from text.

• The 2D motion generated with our method was
applied to a pose-guided human-video-generation
method to demonstrate the effectiveness of our
method.

2 RELATED WORK

In this section, we introduce datasets that pair text
with 3D motion and methods for generating 3D mo-
tion from text.

2.1 3D Human Motion-Language
Dataset

Datasets that pair human motion with text annota-
tions play a crucial role in text-to-motion tasks. These
datasets are essential for training models that generate
motion based on natural-language descriptions, and
the quality and diversity of the datasets significantly
impact the performance of generation models. Repre-
sentative datasets widely used in text-to-motion tasks
include HumanML3D and the KIT Motion-Language
(ML) dataset (Plappert et al., 2016).

HumanML3D is a combined dataset of Human-
Act12 (Guo et al., 2020) and the Archive of Mo-
cap as Surface Shapes (Mahmood et al., 2019), com-
prising 14,616 motions and 44,970 text annotations.
This dataset includes everyday motions covering a
wide range of actions, such as walking and jumping;
sports motions, such as swimming and karate; acro-
batic motions, such as rotating; and artistic motions,
such as dancing. Therefore, HumanML3D is a versa-
tile dataset that can be used in various contexts and is
frequently used as a benchmark for diverse motion-
generation tasks. The KIT-ML dataset consists of
3,911 motions and 6,353 text annotations, including
more detailed motions, e.g., gesture motions, such as
pointing and waving; movements, such as walking
and crawling; manipulations, such as throwing and

wiping; and sports motions such as martial arts and
tennis.

2.2 Text-Guided 3D Motion Generation

Text-guided 3D motion generation aims to generate
human motion in 3D space using natural-language
text as input. Text2Action (Ahn et al., 2018) uses a
recurrent neural network (Graves and Graves, 2012)-
based sequence-to-sequence (Sutskever et al., 2014)
architecture to generate motion from text. Joint
language to pose (Ahuja and Morency, 2019) com-
bines a text encoder based on long short-term mem-
ory (Hochreiter and Schmidhuber, 1997) and a motion
encoder-decoder using a gated recurrent unit (Cho
et al., 2014) that learns text and motion in a shared
feature space for more accurate motion generation.
MotionCLIP (Tevet et al., 2022) leverages the text-
image latent space of contrastive language-image pre-
training (Radford et al., 2021), enabling flexible and
broad mappings from language to motion. This ap-
proach is particularly adaptable to diverse instruc-
tions given in language, contributing to a wide range
of motion-generation tasks. TEMOS (Petrovich
et al., 2022) uses a combination of a VAE and Trans-
former (Vaswani et al., 2017) for sequence-level em-
beddings of text and motion, generating diverse mo-
tion. MLD, a method based on diffusion models, exe-
cutes diffusion processes in the latent space of motion
to generate plausible human-motion sequences. Mo-
tionGPT uses a motion tokenizer using a VQ-VAE to
build a motion vocabulary and an LLM to learn the re-
lationship between text and motion vocabularies. This
enables MotionGPT to handle multiple motion tasks
such as text-to-motion, motion-to-text, motion predic-
tion, and motion in-between in a unified framework.

In summary, research in text-to-motion is cur-
rently active and has made significant progress
through these previous studies. However, most of
these methods focus only on 3D motion generation,
and research on 2D motion generation has not pro-
gressed much.

3 PROPOSED METHOD

In this section, we introduce 2CM-GPT, our method
for generating 2D motion from text.

3.1 Overview

Previous methods focusing on 3D motion generation
incur high costs for dataset creation and are inefficient
when applied to 2D applications. Thus, 2CM-GPT
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Figure 1: 2CM-GPT architecture. The model consists of a motion tokenizer for processing motion as text and a language
model for learning the relationship between text and motion. The input to the language model is a text-motion vocabulary that
combines two types of tokens: text tokens that describe motion and motion tokens that represent 2D motion.
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Figure 2: Motion tokenizer architecture. The model uses a CNN-based architecture with 2D convolution (Conv2D), residual
block (ResBlock), ReLU activation, and nearest neighbor interpolation (Upsample).

was developed for generating 2D motion from text.
By focusing on 2D motion, it becomes possible to
create datasets using methods, such as pose estima-
tion, enabling easier and more precise data creation
compared with focusing on 3D motion. Using text
as input enables intuitive generation, and the gener-
ated 2D motion can be directly applied to 2D appli-
cations. The architecture of 2CM-GPT is shown in
Figure 1. 2CM-GPT is based on the framework of the
3D-motion-generation method MotionGPT and con-
sists of two main components: a motion tokenizer
and language model, with modifications to the con-
volution method in the motion tokenizer and training
method of the language model. The next sections de-
scribe these components: Section 3.2 explains the ar-
chitecture, role, and training of the motion tokenizer,
and Section 3.3 discusses the role and training of the
language model when learning the relationship be-
tween text and motion.

3.2 Motion Tokenizer

The motion tokenizer in 2CM-GPT uses a VQ-VAE
architecture to build a vocabulary of 2D motion. VQ-
VAE is an extension of VAE with a discrete latent
space and consists of an encoder-decoder architec-
ture. The motion tokenizer first uses an encoder to
estimate latent variables from the input motion. It
then quantizes the latent variables using a codebook
of discrete vectors. Specifically, it finds the nearest
vector bk in the codebook B := {bk}K

k=1 for each la-
tent variable ze output by the encoder. The codebook
is constructed with K latent variable vectors of dimen-
sion d. The vector quantization is shown in Equation
(1):

zq = bk, where k = argmink ∥ze −bk∥2 (1)

Next, the quantized latent variables are used by the
decoder to reconstruct the input motion.

With 2CM-GPT, we change the convolution used
in the encoder and decoder of the motion tokenizer
from 1D convolution to 2D convolution. While 3D
motion data are represented in the same dimension
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for joint positions, velocities, and angles, and Mo-
tionGPT applies 1D convolution, 2D motion data rep-
resent joints and xy-coordinates in two different di-
mensions. Applying 1D convolution after aggregating
these into a single dimension fails to properly model
the relationships between joints. Instead, by using 2D
convolution while keeping the two dimensions sep-
arate, 2CM-GPT can directly account for the spatial
relationships between joints. The architecture of the
motion tokenizer and motion decoder is shown in Fig-
ure 2.

The motion tokenizer in MotionGPT uses three
different loss functions for training: reconstruction
loss, embedding loss, and commitment loss. Of
these losses, embedding loss is computed by extract-
ing joint velocity information from the embedding.
However, 2CM-GPT uses 2D motion, which is repre-
sented only by the coordinates of the joints, thus has
no velocity information. Therefore, we use two dif-
ferent loss functions for training: reconstruction loss
and commitment loss. To improve codebook utiliza-
tion, we use the exponential moving average and the
codebook-resetting technique (Razavi et al., 2019).
The L1 smooth loss is used for reconstruction loss.

3.3 Language Model

2CM-GPT uses a pre-trained T5 model to learn the
relationship between text tokens and motion tokens
generated by the motion tokenizer. The input to the
language model is a text-motion vocabulary that com-
bines two types of tokens: text tokens that describe
motion and motion tokens that represent 2D motion.
Depending on the task, the text-motion vocabulary
can represent text tokens, motion tokens, and tokens
that represent both text and motion, enabling Mo-
tionGPT to generate diverse and flexible text and mo-
tion.

The language model in MotionGPT involves pre-
training that learns the relationship between text to-
kens and motion tokens and instruction tuning for var-
ious motion-related tasks. During pre-training, 15%
of the input tokens are randomly replaced with special
sentinel tokens, and the model learns to generate the
corresponding tokens in the output. It also learns the
relationship using paired text and motion tokens. For
instruction tuning, prompts for tasks, such as text-to-
motion, motion-to-text, motion prediction, and mo-
tion in-between, are used. However, to achieve higher
accuracy in the text-to-motion task, we fine-tune the
language model in 2CM-GPT using only the instruc-
tion prompts for that task. The instruction prompts
used as input are those for text-to-motion from Mo-
tionGPT.

4 EXPERIMENT

We quantitatively and qualitatively evaluated the ef-
fectiveness of 2CM-GPT by comparing the recon-
structed 2D motion using the motion tokenizer and
the motion generation guided by text. We also ap-
plied the 2D motion generated by 2CM-GPT to the
downstream task of pose-guided human video gener-
ation and qualitatively assessed the accuracy of the
generated 2D motion.

4.1 2D Human-Motion-Language
Dataset

Text-guided 2D motion generation requires a dataset
consisting of pairs of 2D motion and text, but no
suitable dataset currently exists. Therefore, creating
a dataset is a major challenge, and it is essential to
convert datasets into a new data format. For human
video generation, a 2D motion with 18 joints based on
the Common Objects in Context (COCO) (Lin et al.,
2014) dataset is widely used, so a dataset based on this
format is desirable. Therefore, we used a 3D motion
dataset to create a 2D motion dataset in the COCO
format. Specifically, we converted 3D motion to 2D
motion on the basis of HumanML3D, which consists
of pairs of text and 3D motion. The conversion pro-
cedure begins with estimating an SMPL mesh from
the 3D motion data included in HumanML3D using
the SMPL model. The estimated SMPL mesh is then
multiplied using a regressor matrix to obtain the co-
ordinates of 18 joints on a 2D plane. This method en-
ables us to obtain accurate joint information based on
the COCO format. Our 2D motion dataset was con-
structed on the basis of the text, type of motion, and
length of the action, similar to HumanML3D. This en-
ables the generation of diverse 2D motions guided by
text.

4.2 Experimental Settings

In this experiment, we used the 2D Human Motion-
Language dataset as the training and evaluation
dataset. To enhance the diversity of the dataset, we
applied left-right mirrored data augmentation to all
motions and specific texts (such as ”right hand,” ”left
hand,” ”right foot,” ”left foot”), effectively doubling
the dataset size. For training, we used 23,384 mo-
tions, 1,460 for validation and 4,384 for evaluation.

For training the motion tokenizer, the batch size
was set to 256, training iterations to 3,000 epochs,
learning rate to 2 × 10−4, and the codebook was
128× 512. For pre-training and fine-tuning the lan-
guage model, the batch size was set to 16, with 300
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epochs for pre-training, 100 epochs for fine-tuning,
and a learning rate of 1× 10−4. The optimizer used
for all training processes was AdamW.

4.3 Evaluation Metrics

We evaluated the accuracy of the motion tokenizer’s
2D motion reconstruction with 2CM-GPT using mean
per joint position error (MPJPE), Fréchet inception
distance (FID) (Heusel et al., 2017), and diver-
sity (Guo et al., 2020).

MPJPE measures the Euclidean distance between
the generated joints and ground-truth joints, taking
the mean of these distances. A value closer to 0 in-
dicates that the generated motion is accurate. MPJPE
is useful for measuring the reconstruction accuracy of
motion because it directly reflects the joint-position
errors. MPJPE is expressed as

MPJPE =
1
N

N

∑
i=1

∥ ji − j′i ∥2 (2)

where N is the number of joints, ji is the ground-truth-
joint coordinates, and j′i is the predicted joint coordi-
nates.

FID measures the Fréchet distance between the
distribution of generated motions and that of ground-
truth motions, with values closer to 0 indicating that
the distribution of generated motions is close to the
ground-truth distribution. FID is useful for evaluating
the overall quality and realism of generated motions.
FID is expressed as

FID =∥ µ−µ′ ∥2
2 +Tr(Σ+Σ

′−2(ΣΣ
′)1/2) (3)

where µ and Σ respectively represent the mean and co-
variance of the ground-truth-motion distribution, and
µ′ and Σ

′ represent those of the generated motion dis-
tribution.

Diversity calculates the variance of randomly
sampled pairs from the generated motions, with larger
values indicating greater diversity. Diversity is ex-
pressed as

Diversity =
1
S

S

∑
i=1

∥ vi − v′i ∥2 (4)

where S is the number of sampled pairs, and vi and v′i
are pairs of motion vectors.

For FID and diversity evaluation, feature vectors
extracted from current evaluation models are typically
used. However, there is currently no suitable fea-
ture extractor for the 2D Human Motion-Language
dataset. Therefore, we used the motion tokenizer of

MotionGPT and 2CM-GPT as feature extractors, en-
abling fair comparison of the inherent performance
of each method. This enables accurate evaluation of
the reconstruction and generation accuracy of 2CM-
GPT, clearly demonstrating performance differences
with other methods.

4.4 Motion Reconstruction

We quantitatively and qualitatively evaluated the 2D-
motion-reconstruction accuracy of 2CM-GPT’s mo-
tion tokenizer.

Quantitative Evaluation. The accuracy of motion
reconstruction using the motion tokenizer is shown
in Table 1, calculated using MPJPE, FID, and diver-
sity. The table also shows that 2CM-GPT improved
reconstruction accuracy compared with MotionGPT.
Specifically, MPJPE improved by 0.018 points, in-
dicating improved joint-position accuracy, enabling
closer reconstruction to the ground truth. To com-
plement the quantitative evaluation, we also show
MPJPE results at individual joints in table 2. The
table shows that 2CM-GPT consistently outperforms
MotionGPT at all joints. Notably, joints such as the
hips, shoulder, and neck exhibit the lowest MPJPE
values. These joints typically involve less complex
movement patterns, making them more predictable
for the model. In contrast, joints like the wrists and
elbows show higher MPJPE values, suggesting that
these are more challenging to reconstruct. This is
likely due to their greater range of motion and higher
degrees of freedom, as well as the fact that they are
involved in more intricate and dynamic movements.
FID improved by over 7.894 points, indicating that
the reconstructed motion distribution is similar to that
of real motions. Diversity improved by over 0.859
points, indicating enhanced diversity in the generated
motions, enabling 2CM-GPT to reconstruct a broader
range of motion patterns. These results indicate that
using 2D convolution for processing 2D motion data
is more effective than using 1D convolution for mo-
tion reconstruction.

Qualitative Evaluation. The reconstructed motion
using the motion tokenizer is shown in Figure 3.
The figure also shows that 2CM-GPT reconstructed
motion is closer to the input motion compared with
MotionGPT. Focusing on the movements of each
joint, the generated results from MotionGPT indi-
cate noticeable deviations in joint positions and ori-
entations. For example, even when the input motion
faces left, the reconstructed motion from MotionGPT
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Table 1: Comparison of accuracy of motion reconstruction by motion tokenizer between MotionGPT and 2CM-GPT. The
method names in the columns for FID and diversity indicate the motion tokenizer used as the feature extractor. “Real”
represents the evaluation results of ground-truth 2D motions.

Method MPJPE ↓ FID ↓ Diversity ↑
MotionGPT 2CM-GPT MotionGPT 2CM-GPT

Real 0.000 0.000 0.000 16.981 16.954
MotionGPT 0.179 33.753 34.545 11.385 10.896
2CM-GPT 0.161 25.859 25.150 12.244 12.129

Figure 3: Comparison of reconstructed motions by motion tokenizer between MotionGPT and 2CM-GPT. The left image
shows the initial frame, and the right image shows the final frame.

Table 2: Comparison of MPJPE for each joint of motion re-
construction by motion tokenizer between MotionGPT and
2CM-GPT.

Method
Joint MotionGPT 2CM-GPT
Nose 0.180 0.162
Neck 0.155 0.139

Shoulder Right 0.168 0.149
Elbow Right 0.196 0.171
Wrist Right 0.247 0.223

Shoulder Left 0.168 0.155
Elbow Left 0.195 0.180
Wrist Left 0.245 0.234
Hip Right 0.151 0.133

Knee Right 0.156 0.137
Ankle Right 0.173 0.151

Hip Left 0.151 0.135
Knee Left 0.156 0.141
Ankle Left 0.172 0.155
Eye Right 0.177 0.159
Eye Left 0.177 0.161
Ear Right 0.170 0.154
Ear Left 0.171 0.156

might face forward, resulting in incorrect motion re-
construction. In contrast, 2CM-GPT maintains joint
positions and orientations closer to the input motion,
accurately reproducing the overall motion. This sug-
gests that using 2D convolution in 2CM-GPT enables

better modeling of spatial relationships between joints
compared with using 1D convolution in MotionGPT.

4.5 Text-Guided Motion Generation

We qualitatively evaluated the accuracy of text-
guided 2D motion generation using 2CM-GPT, which
uses a motion tokenizer with improved motion-
reconstruction accuracy. The 2D motions generated
by inputting various texts is shown in Figure 4. The
results in Figure 4 indicate that the generated 2D mo-
tions align with the input texts. Notably, the start
and end points of actions, such as leg kicks and hand
claps, are accurately represented, and the consistency
of movements is maintained. 2CM-GPT effectively
interprets the semantic information in the text and
translates it into 2D motion, demonstrating high per-
formance in both accuracy and realism.

4.6 Application of Text-Guided 3D
Motion Generation

We applied the 2D motion generated with 2CM-GPT
from text to pose-guided human video generation,
demonstrating the effectiveness of 2CM-GPT through
qualitative evaluation. For pose-guided human video
generation, we used DisCo (Wang et al., 2024), a
method characterized by faithfulness, generalizabil-
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(a) A person kicks with their right leg.

(b) A man jumps and brings both arms above his head as he spreads his legs then moves them back
into the original position.

Figure 4: Text-guided motion generation results from 2CM-GPT. The corresponding input texts are shown in (a) and (b).

Figure 5: Human video generation results using 2D motion generated with 2CM-GPT. The input text used for generating the
2D motion is “A person claps their hands together well above their head.”

ity, and compositionality . The result of inputting the
2D motion generated with 2CM-GPT into DisCo is
shown in Figure 5. The results in this figure indicate
that the input 2D motion results in natural actions in
the generated human video. The 2D motion gener-
ated with 2CM-GPT was seamlessly integrated into
the output of DisCo, confirming the effectiveness of
2CM-GPT.

4.7 Ablation Studies

We evaluated the appropriate size K of codebook us-
ing motion tokenizer with different codebook sizes.
The accuracy of motion reconstruction using the mo-
tion tokenizer is shown in Table 3, calculated using
MPJPE, FID, and diversity. The table shows that K =
32 is appropriate for motion tokenizer. This suggests
that a too large size K of codebook cannot represent
2D motion well, which has few features.However, if
the codebook size K is too small, the motions gener-
ated by the language model become monotonous and
less diverse.It is suggested that the language model

cannot learn the relationship between text and motion
well because there are not enough tokens to represent
motion.

Table 3: Comparison of accuracy of motion reconstruction
by motion tokenizer in 2CM-GPT with different codebook
sizes. 2CM-GPT used as the feature extractor.

2CM-GPT MPJPE ↓ FID ↓ Diversity ↑
K=16 0.122 7.816 14.251
K=32 0.114 8.313 14.049
K=64 0.134 15.933 13.104

K=128 0.161 25.150 12.129
K=256 0.176 34.037 11.054
K=512 0.175 33.580 11.213
K=1024 0.185 40.502 10.952

5 CONCLUSIONS

We proposed 2CM-GPT for generating 2D motion
from text. By adopting 2D convolution for the mo-
tion tokenizer, 2CM-GPT is able to more accurately
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model spatial relationships between joints compared
with methods using 1D convolution. Evaluation ex-
periments demonstrated that 2CM-GPT achieved su-
perior accuracy in motion-reconstruction tasks both
quantitatively and qualitatively and showed high per-
formance in text-guided 2D motion generation. Ap-
plying the motions generated with 2CM-GPT to
pose-guided human video generation confirmed that
the resulting videos exhibited natural movements.
These results indicate the practicality of 2CM-GPT
in motion-generation tasks. Future work will include
training with more diverse motion datasets, introduc-
ing advanced architectures to further strengthen the
relationship between text and motion, and exploring
other possible applications for 2D motion generation.
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