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Abstract: This paper focuses on optimizing multi-period investment strategies for Fiber deployment. The main ob-
jective is to provide guidelines to improve the cost-effectiveness of Fiber investment strategies employed by
telecommunication operators. To achieve this objective, an optimization framework is developed, providing
a systematic approach to multi-period investment planning for Fiber deployment. It combines mathematical
modeling and data analysis. For this, we introduce two mixed-integer linear programs to formulate the prob-
lem, taking into account demands, budget constraints and market conditions. Additionally, we propose several
valid inequalities for the associated polytopes to enhance the linear relaxation and achieve tighter bounds.
Relying on this modeling framework, we devise an exact optimization approach based on a Branch-and-Cut
algorithm to solve the problem. Furthermore, we present a computational study that considers various in-
stances and scenarios to assess the performance of the proposed models and algorithms.

1 INTRODUCTION

The transformation of copper access networks into
Fiber optic networks is a key challenge for telecom-
munication operators such as Orange, in terms of eco-
nomic viability, competition, and inclusion, with the
aim of providing sustainable and quality telecommu-
nication services to everyone.

1.1 Telecom Context and Motivations

In Europe, fixed broadband subscriptions are pro-
jected to increase by 25 million, rising from 260 mil-
lion in 2021 to 285 million by 2026 (Dgtlinfra, 2021).
Fiber is anticipated to become the dominant trans-
mission technology, with its subscriptions growing
from 30% in 2021 to over 50% by 2026 (Dgtlinfra,
2021). This transition underscores the significance of
various network architecture options utilizing optical
fiber, collectively referred to as Fiber To The x. Here,
”x” represents the Fiber termination point, which can
be at home (FTTH), curb (FTTC), building (FTTB),
antenna (FTTA), or premises (FTTP). Fiber To The x
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is crucial for next-generation access, significantly en-
hancing broadband speed and quality of service (QoS)
(Dgtlinfra, 2021).

In France, the ”Plan France Très Haut Débit”
(PFTHD) is designed to achieve high-speed broad-
band coverage across the entire national territory, tar-
geting all homes, businesses, and public administra-
tions by 2030. The initiative is projected to cost a total
of 21 billion euros, with public investment expected
to account for approximately 13 billion euros to 14
billion euros. In particular, the cost of deploying the
FTTH technology across the entire territory has been
estimated at several dozen billion euros by the French
Senate (Angilella et al., 2016). Consequently, opera-
tors do not deploy their own FTTH networks through-
out the whole territory; especially, in specific geo-
graphical areas, deployments are entrusted to third-
party operators.

The key question for a commercial operator like
Orange becomes defining an effective long-term strat-
egy for aquiring optical fibers in the areas deployed by
third-party operators, covering the needs of its cus-
tomers while minimizing purchasing costs. The asso-
ciated financial stakes amount to several hundred mil-
lion euros per year, making the optimization of such
strategy essential.

This study primarily focuses on optimizing the
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Fiber infrastructure business decision, especially in
these geographical areas where third-party operators
are in charge of the Fiber deployment. This involves
strategically choosing the level of investment in Fiber
optic infrastructure to meet the customers’demand for
high-speed and connectivity from which is increas-
ing over time. Due to limited investment capacity, it
is necessary to consider the multi-year nature of Fiber
wholesale investments. This also holds significant im-
portance because investment decisions in the telecom-
munication networks often have long-term implica-
tions. By developing effective investment strategies,
we aim to assist telecommunication operators in max-
imizing the impact and benefits of their investment ef-
forts. Moreover, the study enables telco to plan their
investments strategically, considering factors such as
future demand forecasts, budget constraints, so as to
remain competitive in the dynamic Fiber wholesale
market. This paper explores the strategic planning
of Fiber optic deployment across multiple zones that
are currently undeployed. Each zone has specific at-
tributes, including the number of connectable clients
and demand for connections over consecutive time
periods. The operator can choose between two in-
vestment strategies: renting or co-investment of Fiber
lines, with the requirement that the total deployed
lines meet the demand. Zones are classified based on
investment feasibility, and the decision-making pro-
cess is influenced by investment percentages and cu-
mulative investment rates, which must adhere to con-
tractual limits. Investments incur capital and opera-
tional costs, with a budget constraint on capital ex-
penditures. The study focuses on optimizing invest-
ment strategies to effectively meet client demands
while managing costs. Moreover, this study exam-
ines several key performance indicators (KPIs) essen-
tial for evaluating the success of investment decisions
in Fiber optic infrastructure. The metrics analyzed in-
clude Return on Investment (ROI), which measures
the cost-effectiveness of investments by comparing
generated benefits to initial costs; Capital Expendi-
ture (CAPEX) costs, which encompass funds allo-
cated for acquiring or upgrading infrastructure; and
Operational Expenditure (OPEX) costs, reflecting on-
going expenses related to maintenance and energy
consumption. Additionally, the analysis embeds Fiber
renting costs, which are critical when existing Fiber
lines do not meet demand, and Fiber migration costs,
incurred when transitioning from rented to co-owned
Fiber lines. By assessing these KPIs, the study aims
to provide a comprehensive framework for informed
investment decision-making in the Fiber optic sector,
providing decision-makers with insights to improve
the economic viability of Fiber optic deployments.

1.2 Related Works

Regarding the literature, extensive research has been
conducted on the optimization of investment strate-
gies for various energy-related challenges. These in-
clude:

• Renewable Energy Systems: studies such as those
by (Wang et al., 2020),(Farah and Andresen,
2024) and (Faria et al., 2023) have explored in-
novative investment strategies to enhance the ef-
ficiency and sustainability of renewable energy
sources.

• Power Grid Management: research by (Gao et al.,
2022), (Gao et al., 2023) and (Zhang et al., 2019)
has focused on optimizing investments in power
grid infrastructure, aiming to improve reliability
and reduce operational costs.

• Energy Efficiency: the work of (He et al., 2019)
has highlighted strategies to optimize investments
in energy-efficient technologies, contributing to
overall energy savings.

• Smart Grids: studies by (Giannelos et al., 2023),
(Tuballa and Abundo, 2016) and (Zafar et al.,
2018) have examined investment optimization in
smart grid technologies, emphasizing the integra-
tion of advanced communication and control sys-
tems.

Conversely, some research has investigated invest-
ments in battery storage within telecommunications
networks, particularly under energy market incen-
tives, as seen in the works of (Kerdphol et al., 2016)
and (Silva et al., 2024). However, the specific area
of optimizing investment strategies for Fiber deploy-
ment, particularly in FTTH networks, remains under-
explored in the current state of the art. Most research
on Fiber optic network design has mainly focused on
network planning themselves and not the investment
optimization. (Grötschel et al., 2014) studied the cost-
effective deployment of optical access networks, fo-
cusing on different variants such as fiber to the home,
fiber to the building, fiber to the curb, and fiber to the
neighborhood. Other studies, such as (Chardy et al.,
2012), (Hervet et al., 2012), (Angilella et al., 2016)
and (Angilella et al., 2018), have addressed this topic,
focusing on the fiber to the home. Additionally, some
research has proposed optimization approaches for
mobile networks, as demonstrated by (Cambier et al.,
2021) and (Zappalà et al., 2022). This presents an
opportunity for further investigation into investment
strategies that could enhance Fiber deployment effi-
ciency and effectiveness in telecommunications.
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1.3 Contributions

In the work, we aim to provide an optimization
framework for network operators to optimize their
investment strategies specifically for Fiber deploy-
ment. This can be considered as the first devel-
oped framework in the literature to address this novel
economic problem encountered in Fiber deployment.
Our framework aims to provide an optimization ap-
proach to manage the investment strategies and min-
imizing costs in Fiber deployment scenarios. To
achieve this, we believe that an optimization approach
based on mathematical models and exact optimiza-
tion algorithms can effectively solve this problem,
even when dealing with large instances. For this,
we provide an efficient solution to the challenges
raised by the problem using mixed integer linear pro-
gramming formulations (MILP), and a polyhedral ap-
proach based on a Branch-and-Cut (B&C) algorithm.

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Sec-
tion 2, we provide a detailed step-by-step description
of the problem, which we refer to as the Multi-Period
Fiber Wholesale Investment Strategies Optimization
(MP-FWIS-O) problem. We consider the MP-FWIS-
O as a combinatorial optimization problem and pro-
vide its intuitive formulation as a Mixed Integer Lin-
ear Program. Section 3 is dedicated to the Complexity
analysis of the problem. In Section 4, we present sev-
eral mathematical properties leading us to reformulate
the problem, as well as a range of valid inequalities
for both formulation. A Branch-and-Cut is presented
in Section 5. We then present an extensive compu-
tational study in Section 6 using different classes of
instances and scenarios. Finally, we summarize our
results and future outlook in Section 7.

2 PROBLEM DESCRIPTION AND
FORMULATION

We consider a geographical area (typically a country)
composed of a set of zones Z, on which the deploy-
ment of the Fiber access network is granted to ded-
icated Infrastructure Operators oz,z ∈ Z. These de-
ployments spread over time and we thus consider a
discrete time horizon T = {1, ..,n}, over which we
assume the future deployments to be known with cer-
tainty, denoting Dz,t the number of Fiber lines de-
ployed on zone z ∈ Z up to period t ∈ T ∪{0} (ie. the
connectable customers), t = 0 denoting the last period
in the past that comes before the first period in T .

We focus on a specific commercial operator of the
geographical area (typically a domestic operator such
as Orange) and denote by dz,t , t ∈ T ∪{0} the temporal
evolution of its number of retail Fiber customers on
zone z ∈ Z.

Considering any zone z ∈ Z and in order to be able
to satisfy its retail customers, this commercial opera-
tor has to purchase physical Fiber lines by the Infras-
tructure Operator of the zone oz mixing two comple-
mentary purchasing strategies: co-investing in the de-
ployments and renting lines. As for the co-investment
strategy, we assume that the commercial operator can
invest at particular periods TC ⊂ T when investment
committees hold, and only on a specific set of invest-
ment slices denoted by I and numbered from 0 to 20
(i.e., I = {0,1,2, ...,19,20}). We model the opera-
tor’s co-investment decisions by binary variables cupg

z,t,i,
equal to 1 if the operator decides to make a new co-
investment on slice i ∈ I for zone z ∈ Z at period t ∈ T
(0 otherwise), leading to the acquisition of a number
of new Fiber lines equal to a percentage Qi of the
deployed Fiber lines for the rest of the time-horizon
(note that we assume Q0 = 0% so as to model a ”no-
investment” slice, indexed by 0). Specifically, the set
(Qi)i∈I consists of slice percentages ranging from 0%
to 100% in increments of 5% (for example Q7 is equal
to 35%). At any time-period t ∈ T , based on its se-
quence of previous co-investments, the operator thus
owns a percentage of the deployed Fiber lines Dz,t for
each zone z ∈ Z, denoted by positive continuous vari-
able qz,t ≥ 0 (note that this variable qz,t will, in prac-
tice, take value within the set (Qi)i∈I). Introducing
constant parameter qz,0 the value of the initial cumu-
lative investment rate at period t = 0, the dynamics
can be described by the following equations:

qz,t = qz,t−1 +∑
i∈I

Qi · cupg
z,t,i,∀z ∈ Z,∀t ∈ T, (1)

while ensuring that at most one slice is invested on
each zone at any time-period

∑
i∈I

cupg
z,t,i = 1,∀z ∈ Z,∀t ∈ T, (2)

and that no investments are made outside committees’
time-periods:

∑
i∈I\{0}

cupg
z,t,i = 0,∀t ∈ T\TC. (3)

Note that for regulatory motivations related to fairness
(among domestic operators notably), a maximum in-
vestment rate, denoted by Qmax

z and assumed to be
greater than qz,0, is set on each zone z ∈ Z, such that:

qz,t ≤ Qmax
z ,∀t ∈ T. (4)
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From this dynamics, we can derive the number of co-
financed Fiber lines for each zone z ∈ Z and at each
period t ∈ T , denoted by d̄z,t :

d̄z,t = Dz,t ·qz,t ,∀z ∈ Z,∀t ∈ T . (5)

In this context, considering any zone z ∈ Z and period
t ∈ T , the whole number of retail Fiber customers of
the operator must be covered either by using a part of
its co-financed Fiber lines, denoted by uinv

z,t , or rented
lines urent

z,t :

uinv
z,t +urent

z,t = dz,t ,∀z ∈ Z,∀t ∈ T, (6)

knowing that the number of co-financed Fiber lines
used to serve customers cannot exceed the number of
co-financed Fiber lines owned by the operator:

uinv
z,t ≤ d̄z,t ,∀z ∈ Z,∀t ∈ T . (7)

Mixed co-investments and renting strategies induce
several types of costs. First, co-investments made in
zone z ∈ Z at period t ∈ T lead to one-shot capital
expenditures (CAPEX) which are proportional to the
number of Fiber lines ”acquired” at this period and
for this zone, denoted by positive continuous variable
capexz,t . Precisely, newly acquired Fiber lines can re-
sult from two phenomena identified in the following
CAPEX cost formulation:

capexz,t =CAPEXz,t ∑
i∈I

Qi ·Dz,t · cupg
z,t,i

+Qi ·
(
Dz,t −Dz,t−1

)+ · ctot
z,t−1,i,∀z ∈ Z,∀t ∈ T , (8)

where CAPEXz,t stands for the unitary cost of acquir-
ing a new Fiber line at period t ∈ T for zone z ∈ Z,
and

(
Dz,t −Dz,t−1

)+
=max

(
0;Dz,t −Dz,t−1

)
. For any

zone z ∈ Z we set constants ctot
z,0,i,∀i ∈ I to 0 except

for the unique slice i ∈ I such that qz,0 = Qi, which is
set to 1.

On the other hand, for any zone z∈ Z at any period
t ∈ T , the use of any co-financed Fiber line incurs an
operational cost (OPEX) depending on the total co-
investment slice, denoted by SUBz,t,i where i ∈ I rep-
resents the index of the total co-investment slice at
period t. To derive such type of cost, we first need
to identify the slice associated to a given total invest-
ment rate. Introducing binary variables ctot

z,t,i equal to 1
if the cumulative investment rate is equal to Qi, i ∈ I,
we identify the unique total co-investment slice for
each zone z ∈ Z and period t ∈ T as follows:

qz,t = ∑
i∈I

Qi · ctot
z,t,i,∀z ∈ Z,∀t ∈ T , (9)

∑
i∈I

ctot
z,t,i = 1,∀z ∈ Z,∀t ∈ T . (10)

Then the OPEX cost, noted opexz,t , can be expressed
as follows:

opexz,t = ∑
i∈I

SUBz,t,i · ctot
z,t,i ·uinv

z,t ,∀z ∈ Z,∀t ∈ T. (11)

The non-linearity of equations (11) is evident. To deal
with this, we propose a new variable f inv

z,t,i ∈ Z+ which
denotes the number of co-owned invested and used
Fiber lines when we have cumulatively the ith slice of
investment in zone. Using this, we consider the in-
equalities (11-1)-(11-4) used to linearize and replace
the quadratic equation (11). For each z ∈ Z and t ∈ T

opexz,t = ∑
i∈I

SUBz,t,i · f inv
z,t,i. (11-1)

For each z ∈ Z, i ∈ I and t ∈ T , we ensure that

f inv
z,t,i ≤ uinv

z,t , (11-2)

f inv
z,t,i ≤ Qi ·Dz,t · ctot

z,t,i, (11-3)

uinv
z,t −Qi ·Dz,t · (1− ctot

z,t,i)≤ f inv
z,t,i. (11-4)

Second, the renting cost of each zone z∈ Z and period
t ∈ T is proportional to the number of rented lines. Let
RENTz,t denote the unitary renting cost. The cumu-
lative renting cost is expressed through the decision
variables rentz,t , defined as follows:

rentz,t = RENTz,t ·urent
z,t ,∀z ∈ Z,∀t ∈ T . (12)

Finally, at any period t ∈ T , a unitary migration cost
MIGz,t is applied to any Fiber line rented at period
t − 1 and then served by a co-financed Fiber line at
period t, in the specific case of t being the first co-
investment period. Introducing the incremental de-
mand ∆dz,t = dz,t −dz,t−1 for each zone z ∈ Z and pe-
riod t ∈ T and denoting respectively by uinv

z,0 and urec
z,0

the initial number of co-invested and rented fibers for
each zone z ∈ Z at period t = 0, the number of mi-
grated fibers can be computed by distinguishing two
cases:

• when the number of Fiber customers decreases
from period t−1 to t, the number of migrated cus-
tomers at t is precisely the number of customers
served by co-invested fibers at t, ie. uinv

z,t −uinv
z,t−1.

• when the number of Fiber customers increases
from period t − 1 to t, the number of migrated
customers at t corresponds to the decrease in the
number of retail customers served with rented
lines urent

z,t−1 −urent
z,t .

This is summarized in the following equalities:

umig
z,t = ⊮{∆dz,t≤0}(u

inv
z,t −uinv

z,t−1) (13)

+⊮{∆dz,t>0}(u
rent
z,t−1 −urent

z,t ),∀z ∈ Z,∀t ∈ T .

We notice that the first period of co-investment
is, if existing, the only period t ∈ T such that
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∑i∈I\{0} ctot
z,t,i − ctot

z,t−1,i = 1. Then the migration cost,
denoted by decision variables migz,t for each zone
z ∈ Z and period t ∈ T , can be bounded as follows:

migz,t ≥ MIGz,t ·umig
z,t −dz,t ∑

i∈I\{0}
ctot

z,t,i −ctot
z,t−1,i (14)

relying on the objective function to ensure its equality
to 0 when needed.

Finally, we assume that the co-investments strate-
gies are restrained by CAPEX budgets attributed to
each investment committee period t ∈ TC, denoted by
Budgett . Denoting Pt the set of periods between t and
the next committee, we thus consider the following
constraints for each committee period t ∈ TC:

∑
z∈Z

∑
t ′∈Pt

capexz,t ′ ≤ Budgett . (15)

Note that the basis of this formulation enables to
consider different objective functions that are mean-
ingful for a network operator, such as minimizing

• the total weighted sum of renting, opex and mi-
gration costs

min ∑
z∈Z

∑
t∈T

α · rentz,t +β ·opexz,t +λ ·migz,t ,

(16)

• the total weighted sum of renting and migrated
Fiber lines

min ∑
z∈Z

∑
t∈T

α ·urent
z,t +β ·umig

z,t , (17)

• the total number of not used co-financer Fiber
lines

min ∑
z∈Z

∑
t∈T

d̄z,t −uinv
z,t , (18)

where α,β,λ ∈ R.

Moreover, these objective functions can be used as
metrics to evaluate the solution of the problem, con-
sidering other KPIs as mentioned in the introduction.

For the sake of clarity, we consider a small-size
example with one single zone (denoted by z) and a
4-periods time horizon T = {1,2,3,4} with a unique
investment committee positionned at the second pe-
riod (TC = {2}) where we choose to invest on the
first slice (with Q1 = 5%). Table 1 provides a fea-
sible solution so as to illustrate both the decision no-
tation and the cost computation mechanisms. Note
that, under the assumption that unitary renting costs
are strictly greater than unitary operationnal costs
(SUBz,t,i <RENTz,t ,∀t ∈ T,∀i∈ I), this solution is not
optimal as using uinv

z,3 = d̄z,3 = 45 co-financed lines at
period 3 (and thus renting urent

z,3 = 17 Fiber lines) in-
stead of using uinv

z,3 = 39 co-financed lines (and thus

Table 1: Illustration of notation and feasible solution to the
MP-FWIS-O problem.

T 0 1 2 3 4

Dz,t 0 500 800 900 1000
dz,t 0 20 37 61 49

cupg
z,t,i - 0 cupg

z,2,1 = 1 0 0
ctot

z,t,i ctot
z,0,0 = 1 ctot

z,2,0 = 1 ctot
z,2,1 = 1 ctot

z,3,1 = 1 ctot
z,4,1 = 1

qz,t 0% 0% 5% 5% 5%
d̄z,t - 0 40 45 50

capexz,t - 0 40 CAPEXz,2 5 CAPEXz,3 5 CAPEXz,4

uinv
z,t 0 0 37 39 49

opexz,t - 0 37 SUBz,2,1 39 SUBz,3,1 49 SUBz,4,1

urent
z,t 0 20 0 22 0

rentz,t - 20 RENTz,1 0 22 RENTz,3 0

umig
z,t - 0 20 0 10

migz,t - 0 20 MIGz,2 0 0

renting urent
z,3 = 22 Fiber lines) would lead to a lower

objectif cost.
In this study, our focus is primarily on the objec-

tive function (16) with α,β and λ equal to 1, as these
3 types of costs are operationnal costs.

In additon, we will denote
P (Z,T,TC, I,Q,D,d,Budget) the polytope asso-
ciated to (in)equations (1) to (15).

In the following section, we will study the com-
plexity of the MP-FWIS-O problem.

3 PROBLEM COMPLEXITY

From a complexity point of view, the MP-FWIS-O
problem becomes polynomial when the budget con-
straints are relaxed and the objective is to minimize
certain costs such as the total renting cost, the total
migration cost and the total OPEX cost. In such sce-
narios, the problem can be efficiently and optimally
solved in polynomial time (Cook, 1971). However,
when facing strict budget constraints, the problem be-
comes more complex, and finding an optimal solution
within polynomial time becomes challenging. In gen-
eral, we believe that this problem is NP-hard, meaning
that it is computationally difficult to solve optimally
in polynomial time (Cook, 1971). In particular, the
knapsack problem can be viewed as a specific case of
the problem when limited to a single investment com-
mittee period. The knapsack problem is a well-known
combinatorial optimization problem, where the goal
is to select a subset of items with maximum value
while respecting a capacity constraint. The knapsack
problem has shown to be NP-hard. It can be seen as a
mathematical representation of the budget-constraint.
The knapsack’s capacity corresponds to the budget
constraint, and the items represent various investment
options or slices that can be chosen within that con-
straint. The objective is to find the combination of
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items that maximizes the overall value or utility, sim-
ilar to how one would aim to optimize multiple costs
within a limited budget.

4 KEY ENHANCEMENTS

In this section, we investigate properties of the MP-
FWIS-O problem and derive potential enhancements
for the basic formulation provided in Section 2, lead-
ing us to propose a reformulation for the problem. In
addition we provide valid inequalities for both formu-
lations.

4.1 Properties on Optimal Solutions

First, we introduce some properties related to the op-
timality of solutions.

Proposition 1. For each zone z ∈ Z, period t ∈ T and
slice i ∈ I , let us define

Dz,t,i =
⌊Qi ·Dz,t⌋

Qi
.

Then, equation

d̄z,t = ∑
i∈I

Qi ·Dz,t,i · ctot
z,t,i,∀z ∈ Z,∀t ∈ T (5.1)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

Note that integrating equations (5.1) instead of (5) in
the formulation ensures the integrality of variables d̄.

Proposition 2. Assuming a hierarchy in costs pa-
rameters (typically we have SUBz,t,i < RENTz,t ∀z ∈
Z ∀t ∈ T, ∀i∈ I), the integrality of variables uinv, urent

and umig is ensured in any optimal solution when cupg

and ctot are integers.

Based on this property, we will replace constraints (5)
by (5.1) and relax the integrality constraints on the
variables d̄, uinv, urent and umig in the reformulation
given in Section 4.3.

Proposition 3. For any zone z ∈ Z, let us define

Q̃z = min{Qi, i ∈ I : max
t∈T

dz,t

Dz,t
≤ Qi}.

Then, assuming strictly positive unitary CAPEX costs
(CAPEXz,t > 0,∀z ∈ Z,∀t ∈ T ), there exists an opti-
mal solution which satisfies:

qz,t ≤ max(Q̃z;qz,0), ∀z ∈ Z,∀t ∈ T.

In the rest of the article, we define q̄z =
min(Qmax

z ;max(Q̃z;qz,0)).

4.2 Compactness

For the reformulation proposed in Section 4.3, we aim
at decreasing the number of variables and constraints
compared to the one provided in Section 2. For this,
we consider variables cupg

z,t,i, ctot
z,t,i, qz,t , umig

z,t and migz,t

only for periods in TC. Therefore, we introduce func-
tion the following fonction C which provides the pe-
riod corresponding to latest committee anterior to t
within the time horizon (and 0 if no commitee oc-
cured):

C :

∣∣∣∣∣∣
T −→ TC ∪{0}

t 7−→
{

0 if TC ∩{1, ..., t}= /0

max[TC ∩{1, ..., t}] otherwise

On the other hand, several former constraints need
consequently to be modified accordingly. The follow-
ing propositions present reformulated constraints that
will be utilized in the reformulation, while remaining
valid for P (Z,T,TC, I,Q,D,d,Budget).
Proposition 4. Consider a zone z ∈ Z and a period
t ∈ TC. Then, the following inequalities

qz,t = qz,C(t−1)+∑
i∈I

Qi · cupg
z,t,i (1̃)

qz,t ≤ q̄z (4̃)

capexz,t =CAPEXz,t ∑
i∈I

Qi ·Dz,t · cupg
z,t,i

+Qi ·
(
Dz,t −Dz,t−1

)+ · ctot
z,C(t−1),i (8.1)

umig
z,t = ⊮{∆dz,t≤0}(u

inv
z,t −uinv

z,t−1)

+⊮{∆dz,t>0}(u
rent
z,t−1 −urent

z,t ) (1̃3)

migz,t ≥ MIGz,t ·umig
z,t −dz,t ∑

i∈I\{0}
ctot

z,t,i − ctot
z,C(t−1),i (1̃4)

are valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).
Proposition 5. Consider a zone z ∈ Z and a period
t ∈ T \TC. Then, the following inequalities

d̄z,t = ∑
i∈I

Qi ·Dz,t,i · ctot
z,C(t),i, (5̃)

capexz,t =CAPEXz,t ∑
i∈I

Qi ·
(
Dz,t −Dz,t−1

)+ · ctot
z,C(t−1),i,

(8.2)

opexz,t = ∑
i∈I

SUBz,t,i · ctot
z,C(t),i ·u

inv
z,t , (1̃1)

are valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).
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Remark1: Inequalities (4) have been revised at the
light of Proposition 3, incorporating the changes
made by considering only periods TC.
Remark2: Equation (8) needs to be modified by con-
sidering it only for t ∈ TC and introducing additional
equations for the rest of periods in T \TC as follows:

capexz,t =CAPEXz,t ∑
i∈I

Qi ·
(
Dz,t −Dz,t−1

)+ · ctot
z,t−1,i.

(8.2)

4.3 Reformulation

Based on the previous results, we reformulate the MP-
FWIS-O problem as follows:

min ∑
z∈Z

∑
t∈T

rentz,t +opexz,t + ∑
t∈TC

migz,t , (1̃6)

subject to

qz,t = qz,C(t−1)+∑
i∈I

Qi · cupg
z,t,i,∀z ∈ Z,∀t ∈ TC, (1̃)

∑
i∈I

cupg
z,t,i = 1,∀z ∈ Z,∀t ∈ TC, (2̃)

qz,t ≤ q̄z,∀z ∈ Z,∀t ∈ TC, (4̃)

d̄z,t = ∑
i∈I

Qi ·Dz,t,i · ctot
z,C(t),i, ∀z ∈ Z ∀t ∈ T, (5̃)

uinv
z,t +urent

z,t = dz,t ,∀z ∈ Z,∀t ∈ T, (6)

uinv
z,t ≤ d̄z,t ,∀z ∈ Z,∀t ∈ T, (7)

capexz,t =CAPEXz,t ∑
i∈I

Qi ·Dz,t · cupg
z,t,i

+Qi ·
(
Dz,t −Dz,t−1

)+ · ctot
z,C(t−1),i,∀z ∈ Z,∀t ∈ TC, (8.1)

capexz,t =CAPEXz,t ∑
i∈I

Qi ·
(
Dz,t −Dz,t−1

)+ · ctot
z,C(t−1),i,

∀z ∈ Z,∀t ∈ T \TC, (8.2)

qz,t = ∑
i∈I

Qi · ctot
z,t,i,∀z ∈ Z,∀t ∈ TC, (9̃)

∑
i∈I

ctot
z,t,i = 1,∀z ∈ Z,∀t ∈ TC, (1̃0)

opexz,t = ∑
i∈I

SUBz,t,i · ctot
z,C(t),i ·u

inv
z,t ,∀z ∈ Z,∀t ∈ T, (1̃1)

rentz,t = RENTz,t ·urent
z,t ,∀z ∈ Z,∀t ∈ T, (12)

umig
z,t = ⊮{∆dz,t≤0}(u

inv
z,t −uinv

z,t−1)+⊮{∆dz,t>0}(u
rent
z,t−1 −urent

z,t ),

∀z ∈ Z,∀t ∈ TC, (1̃3)

migz,t ≥ MIGz,t ·umig
z,t −dz,t ∑

i∈I\{0}
ctot

z,t,i − ctot
z,C(t−1),i,

∀z ∈ Z,∀t ∈ TC, (1̃4)

∑
z∈Z

∑
t ′∈Pt

capexz,t ′ ≤ Budgett ,∀z ∈ Z,∀t ∈ TC, (15)

cupg
z,t,i,c

tot
z,t,i ∈ {0,1},∀z ∈ Z,∀t ∈ TC,∀i ∈ I,

capexz,t ,rentz,t ,opexz,t ,urent
z,t ,uinv

z,t ≥ 0,∀z ∈ Z,∀t ∈ T,

qz,t ,u
mig
z,t ,migz,t ≥ 0,∀z ∈ Z,∀t ∈ TC.

Note that equations (1̃1) need to be linearized, as
previously mentioned.

The formulations presented in Section 2
and in this section will be respectively re-
ferred to as MILPI and MIPLII. Moreover, let
P̃ (Z,T,TC, I,Q,D,d,Budget) denote the polytope
associated with Formulation MILPII, representing the
convex hull of solutions obtained by satisfying all the
constraints previously presented in our reformulation,
while imposing integrality constraints for certain
variables.

4.4 Valid Inequalities

In what follows, we will introduce several valid in-
equalities to enhance the linear relaxation of our
formulations. These inequalities are intended to
strengthen the bounds of the linear relaxation. By
incorporating these additional constraints, we can
achieve more accurate and efficient solutions.

Based on inequalities (4), we introduce the fol-
lowing inequality ensuring the non selection of cer-
tain slices i in I having a Qi bigger than the maximum
investement rate q̄z.

Proposition 6. Consider a zone z ∈ Z. Then, the fol-
lowing inequality

∑
t∈TC

∑
i∈I

Qi>q̄z

ctot
z,t,i + ∑

i∈I
Qi+qz,0>q̄z

cupg
z,t,i = 0, (19)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

Proposition 7. Consider a zone z ∈ Z and a period
t ∈ T . Let i be a slice in I. Then, the following in-
equalities

ctot
z,t,i ≤ ∑

i′∈I
Qi′≥Qi

ctot
z,t+1,i′ , (20)

ctot
z,t,i + ∑

i′∈I
Qi′>Qi

ctot
z,t−1,i′ ≤ 1, (21)

ctot
z,t,i + ∑

i′∈I
Qi′<Qi

ctot
z,t+1,i′ ≤ 1, (22)

are valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

They ensure the growth in the co-investment rate be-
tween each two consecutive periods. For this, we
propose further valid inequalities used to ensure the
growth in the co-investment rate during the entire
temporal horizon T .

Proposition 8. Consider a zone z ∈ Z and two peri-
ods t, t ′ ∈ T with t ′ > t. Let i be a slice in I. Then, the
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following inequality

ctot
z,t,i + ∑

i′∈I
Qi′<Qi

ctot
z,t ′,i′ ≤ 1, (23)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

Based on this, we introduce a conflict graph Gz
I,T for

each zone z ∈ Z. Two nodes vi,t and vi′,t ′ are linked
by an edge in Gz

I,T if t = t ′ or t ′ > t and Qi > Qi′ .
Using this, we introduce the following clique-based
inequalities.

Proposition 9. Consider a zone z ∈ Z. Let C be a
clique in the conflict graph Gz

I,T . Then, the following
inequality

∑
vi,t∈C

ctot
z,t,i ≤ 1, (24)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

Using the same conflict graph, we introduce the so-
called odd-cycle inequalities.

Proposition 10. Consider a zone z ∈ Z. Let H be an
odd-cycle in the conflict graph Gz

I,T . Then, the follow-
ing inequality

∑
vi,t∈H

ctot
z,t,i ≤

|H|−1
2

, (25)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

We propose also another conflict graph for each zone
z∈ Z which is related to the rate max q̄z constraint (in-
equalities (4)). For this, we consider a conflict graph
Grate

z . Two node vi,t and vi′,t ′ are linked by an edge in
Grate

z if Qi +Qi′ +qz,0 > q̄z.

Proposition 11. Consider a zone z ∈ Z. Let vi,t and
vi′,t ′ be two linked nodes in the conflict graph Grate

z .
Then, the following inequality

cupg
z,t,i + cupg

z,t ′,i′ ≤ 1, (26)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

Using this, we introduce some clique inequalities
as already done for the conflict graph Gz

I,T .

Proposition 12. Consider a zone z ∈ Z. Let C be a
clique in the conflict graph Grate

z . Then, the following
inequality

∑
vi,t∈C

cupg
z,t,i ≤ 1, (27)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

Proposition 13. Consider a zone z ∈ Z. Let H be
an odd-cycle in the conflict graph Grate

z . Then, the
following inequality

∑
vi,t∈H

cupg
z,t,i ≤

|H|−1
2

, (28)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

On the other hand, we propose some valid inequali-
ties to ensure the non selection of certain investment
slices having a rate smaller or greater than the current
investment rate at each period and for each zone.

Proposition 14. Consider a zone z ∈ Z and a period
t ∈ T . Let i be a slice in I. Then, the following in-
equality

∑
i′∈I

Qi′<Qi

ctot
z,t,i′ + cupg

z,t,i ≤ 1, (29)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

This strengthen the link between the investment up-
grade slice and the cumulative investment slice at
each period.

Proposition 15. Consider a zone z ∈ Z and a period
t ∈ T . Then, the following inequality

∑
i∈I

f inv
z,t,i = uinv

z,t , (30)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).

This ensures that the number of co-owned invested
Fiber lines used in zone z ∈ Z at period t ∈ T is equal
to the total number of co-owned invested Fiber lines
used over all slices i ∈ I in zone z ∈ Z at period t ∈ T .
Notice that there is only one slice i which is selected
as the cumulative investment slice for zone z and pe-
riod t. This means that the variable f inv

z,t,i takes the
value of uinv

z,t when ctot
z,t,i = 1.

Let’s now shift our focus to the capex budget con-
straints. Consider a committee period t ∈ TC and an
investment slice i ∈ I. A subset of zones A in Z is said
to be a cover for the CAPEX budget of committee t
and slice i if the total CAPEX cost of these zones over
all periods in Pt exceeds the CAPEX budget Budgett .
Moreover, it is said to be a minimal cover for the com-
mittee t when for each a ∈ A, the subset A\{z} does
not define a cover for the committee t. This means
that we should not invest in all zones A together at
period t. Otherwise, the budget constraint (15) is vi-
olated. Based on this, we introduce the following so-
called cover-based inequalities.
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Proposition 16. Consider a committee period t ∈ TC

and a investment slice i ∈ I. Let A be a minimal cover
for the CAPEX budget of committee t. Then, the fol-
lowing inequality

∑
z∈A

cupg
z,t,i ≤ |A|−1, (31)

is valid for the polytope
P (Z,T,TC, I,Q,D,d,Budget).
This ensures that there is at least one zone z ∈ A that
cannot be upgraded together with other zones in A.
Remark3: notice that all the inequalities intro-
duced in this section are also valid for the polytope
P̃ (Z,T,TC, I,Q,D,d,Budget) associated with formu-
lation II. The only modification required is to replace t
with C(t), t +1 with C(t +1) and t −1 with C(t −1).
Additionally, when defining the conflict graph Gz

I,T ,
we should consider only the periods in TC.

5 BRANCH-AND-CUT
ALGORITHM

Based on the previous formulation, an exact algo-
rithm is developed using a Branch-and-Cut approach
to solve the problem. The algorithm solves a sequence
of linear programs using a cutting-plane method at
each node of the Branch-and-Bound (B&B) algo-
rithm. At each iteration, the cutting-plane method
generates additional inequalities (called cuts) if the
current solution violates some valid inequalities. It is
important to note that the cutting-plane algorithm pro-
vides an optimal solution for the linear relaxation of
the problem, which may not be feasible for the orig-
inal problem if it violates the integrality constraints.
In such cases, the algorithm proceeds to the branch-
ing step, where the problem is divided into subprob-
lems by branching on integer variables. This process
continues until an optimal solution is obtained.

On the other hand, and as discussed before, our
valid inequalities are derived from three well-known
classes: cover, clique and odd-cycle inequalities. The
separation problem for cover and clique inequali-
ties (Schrijver, 1986) are well known to be NP-Hard
(Nemhauser and Wolsey, 1988). (Nemhauser and
Sigismondi, 1992) proposed a greedy algorithm to ob-
tain an approximate solution for these problems. This
has been adapted to provide an approximate solution
for solving the separation problem of our cover and
clique inequalities. However, the separation prob-
lem for odd-cycle inequalities can be solved exactly
in polynomial time as shown by Grötschel et al. in
(Grötschel et al., 1988). These findings remain appli-
cable to the valid inequalities presented in this work.

6 COMPUTATIONAL STUDY

We implemented the two formulations previously de-
scribed, using the Pyomo package with Python as pro-
gramming language. For each MILP, we developed a
Branch-and-Cut algorithm to solve the problem. To
solve each MILP formulation, we relied on CPLEX
12.9, benefiting from its own cuts to obtain tighter
bounds for the linear relaxation, thereby enhancing
the performance of the Branch-and-Cut algorithm.

6.1 Test Setting

The tests have been run on a server with 256GB RAM
and 32 threads running in parallel. The maximum
CPU time has been set up to 1 hours (3600 sec).

To assess the efficiency of our approaches, we
conducted experiments using different instances size
with varying the number of zones, the time horizon
size, and the number of committee periods. Specif-
ically, we considered |Z| ∈ {25,100,250,500} zones
and |T | ∈ {12,36,120} monthly periods, with |TC| ∈
{1,3,10} committees (one committee per year): Each
instance (size) is thus characterized by a triplet
(|Z|, |T |, |TC|) and denoted as |Z| |T | |TC|.

Moreover in order to simulate relevent CAPEX
budgets, we first investigated reference scenarios:

• WITHOUT UPGRADE: in this scenario, we did
not allow any new co-investment during the time
horizon, which means that the cumulative invest-
ment rate of each zone z ∈ Z remains constant
at qz,0 throughout the entire horizon T . Con-
sequently, CAPEX costs are constant and only
those induced by the growth of the number of con-
nectable customers incurr. Let B0|Z|,|T |,|TC |)t rep-
resent the total CAPEX paid for each committee
t ∈ TC (covering all CAPEX costs incurred over
all periods in Pt ) in each instance (|Z|, |T |, |TC|).

• INFINITE CAPEX : here, we did not take into
account the budget constraint (15). The purpose
of this was to calculate the CAPEX budget re-
quired to achieve the minimum value for the sum
of the renting, opex and migration cost (16). Con-
sequently, this value provides the lower bound
for the general case when considering the bud-
get constraint (15). Let B1|Z|,|T |,|TC |)t represent the
CAPEX budget paid for each committee t ∈ TC in
each instance (|Z|, |T |, |TC|).
Notice that the optimal solution for scenario

WITHOUT upgrade is trivial. This problem can be
solved in polynomial time, specifically in O(|Z| · |T |).
The optimal decision for each zone z ∈ Z is as follows

• cupg
z,t,i = 0 for all i ∈ I with Qi > 0%,

Models and Algorithms for the Optimization of Multi-Period Fiber Wholesale Investments Strategies

141



• ctot
z,t,i = 1 if Qi = qz,0 and 0 if not,

• qz,t = qz,0 and umig
z,t = migz,t = 0,

• if RENTz,t ≥ SUBz,t then uinv
z,t = min(dz,t , d̄z,t) and

urent
z,t = d −min(dz,t , d̄z,t),

• if RENTz,t ≤ SUBz,t then urent
z,t =min(dz,t , d̄z,t) and

uinv
z,t = d −min(dz,t , d̄z,t).

However, the problem becomes more complex in
the INFINITE CAPEX scenario, leading to a sub-
stantial increase in the number of potential feasible
solutions. For this, the MILPI is used to solve the
problem. Relying on the results of these two ref-
erence scenarios, we propose three additional ones
with different CAPEX budgets to further investi-
gate the behavior of our branch-and-cut algorithm.
These scenarios are denoted by Bα% with α ∈
{100%,75%,50%,25%,0%} where B100% (resp.
B0%) corresponds to scenario INFINITE CAPEX
(resp. WITHOUT UPGRADE). For each scenario
Bα%, the CAPEX budget for each committee t ∈ TC

is calculated as B0|Z|,|T |,|TC |)t + α ∗ (B1|Z|,|T |,|TC |)t −
B0|Z|,|T |,|TC |)t ).

Table 2: MILPI Vs MILPII using PARAM 1.
Instances MILP I MILP II

Bα% Name Nd Gap TT Nd Gap TT

B
10

0%

25 12 1 1 0,00 2,4 1 0,00 7,2
25 36 3 1 0,00 9,9 1 0,00 3,1

25 120 10 6253 0,00 234,3 1 0,00 13,1
100 12 1 236 0,00 34,9 1 0,00 4,4
100 36 3 5925 0,00 305,8 3 0,00 23

100 120 10 6265 0,00 907,5 1 0,00 68,9
250 12 1 6406 0,00 287,5 1 0,00 116,1
250 36 3 6654 0,00 837,57 7 0,00 67,9
500 12 1 6367 0,00 1009,2 135 0,00 134,3
500 36 3 9310 116,2 3 600 131 0,00 194,1

B
75

%

25 12 1 1 0,00 4,9 1 0,00 3,5
25 36 3 621010 0,003 3 600 2178275 0,002 3600

25 120 10 1 0,00 1,7 1 0,00 1,2
100 12 1 38263 0,00 92,8 14296 0,00 26,9
100 36 3 188045 0,003 3600 1530152 0,001 3600

100 120 10 5387 0,00 43,5 3246 0,00 19,1
250 12 1 1480 0,00 136,8 986 0,00 72,5
250 36 3 44798 0,002 3600 53548 0,00 3600
500 12 1 9429 0,00 611,4 38889 0,00 982
500 36 3 5926 0,2 3600 24416 0,8 3600

B
50

%

25 12 1 9 0,00 4,3 1 0,00 10,2
25 36 3 5517 0,00 36,7 190069 0,00 125,2

25 120 10 1 0,00 1,7 1 0,00 1,2
100 12 1 9167 0,00 29 2655 0,00 19,8
100 36 3 226990 0,002 3600 900624 0,001 3600

100 120 10 1 0,00 22,7 1 0,00 11,5
250 12 1 67917 0,00 652,6 43693 0,00 211,2
250 36 3 126391 0,00 3600 74672 0,00 915,7
500 12 1 36106 0,00 1 371,2 47726 0,00 1 411
500 36 3 12005 0,01 3600 10404 0,37 3600

B
25

%

25 12 1 2235 0,00 7,2 1268 0,00 92,6
25 36 3 8723 0,00 40,3 25405 0,00 21,7

25 120 10 1 0,00 1,7 1 0,00 1,2
100 12 1 9038 0,00 25,8 642 0,00 17,5
100 36 3 188045 0,003 3600 1530152 0,001 3600

100 120 10 116 0,00 19,8 29 0,00 9,4
250 12 1 3508340 0,0001 3600 3531930 0,0001 3600
250 36 3 70612 0,001 3600 76767 0,001 3600
500 12 1 7496 0,00 433,5 15472 0,00 307,2
500 36 3 17990 0,003 3600 14637 0,005 3600

Table 3: MILPI Vs MILPII using PARAM 2.
Instances MILP I MILP II

Bα% Name Nd Gap TT Nd Gap TT

B
10

0%

25 12 1 1 0,00 103,8 1 0,00 270,5
25 36 3 1 0,00 2,2 1 0,00 1,7

25 120 10 1 0,00 8,3 1 0,00 4,3
100 12 1 1 0,00 3,8 1 0,00 1,7
100 36 3 1 0,00 8,8 1 0,00 5,3

100 120 10 1 0,00 37,7 1 0,00 23,1
250 12 1 1 0,00 9,3 1 0,00 4,6
250 36 3 1 0,00 30,8 1 0,00 14,9
500 12 1 1 0,00 24,4 1 0,00 10,4
500 36 3 1 0,00 79,7 3 0,00 40,5

B
75

%

25 12 1 1 0,00 292,9 1 0,00 0,8
25 36 3 105355 0,00 177,1 149396 0,00 86,7

25 120 10 1 0,00 1,7 1 0,00 1,2
100 12 1 1178 0,00 11,9 35 0,00 4,7
100 36 3 12042 0,00 155,2 18610 0,00 82,8

100 120 10 1 0,00 13,1 1 0,00 7,4
250 12 1 1005 0,00 45,7 312 0,00 14,2
250 36 3 6575 0,00 556,7 5432 0,00 97,3
500 12 1 6650 0,00 329,2 5671 0,00 98,8
500 36 3 50874 0,07 3600 75729 0,06 3600

B
50

%

25 12 1 1 0,00 290,1 1 0,00 0,7
25 36 3 73738 0,00 180,2 67812 0,00 33,6

25 120 10 1 0,00 1,7 1 0,00 1,2
100 12 1 61 0,00 11,1 46 0,00 4,1
100 36 3 20017 0,00 235,9 12837 0,00 84,9

100 120 10 13 0,00 16,7 1 0,00 7,4
250 12 1 5459 0,00 106,7 5430 0,00 33,4
250 36 3 8352 0,00 224,8 617 0,00 35,2
500 12 1 5609 0,00 258,4 362291 0,00 1 970,7
500 36 3 40163 0,00 2 868,1 43120 0,00 1 990,3

B
25

%

25 12 1 1159 0,00 68,6 761 0,00 41,8
25 36 3 8903 0,00 28,3 8132 0,00 7,3

25 120 10 1 0,00 1,7 1 0,00 1,2
100 12 1 1 0,00 4,5 5 0,00 3,9
100 36 3 25023 0,00 233,9 8548 0,00 57,5

100 120 10 1 0,00 11,2 1 0,00 7,2
250 12 1 6416 0,00 95,3 319 0,00 13,5
250 36 3 6301 0,00 267,3 9614 0,00 118,3
500 12 1 6360 0,00 215,3 13762 0,00 104,3
500 36 3 5652 0,00 754,2 29215 0,00 2390,9

6.2 Numerical Results

In Tables 2-5, we present a comparison between our
two MILP using different parameterizations related to
the values of qz,0 and q̄z for zone Z. The parameteri-
zations are defined as follows:

• PARAM 1: qz,0 = 0% and maximum investment
rate q̄z is unbounded for all zones,

• PARAM 2: qz,0 = 0 and q̄z is bounded for all
zones, as specified in inequalities (4̃),

• PARAM 3: qz,0 ≥ 5% for certain zones and q̄z is
bounded for all zones, as indicated in inequalities
(4̃),

• PARAM 4: qz,0 ≥ 5% for certain zones, with q̄z =
Qmax

z for all zones.

We report 3 criteria in the computational study:

• the number of nodes in the B&C tree (Nd),

• the optimality gap (Gap), given in %, which rep-
resents the relative error between the lower bound
and best upper bound obtained at the end of the
resolution,

• the total CPU time computation (TT), given in
seconds.
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Table 4: MILPI Vs MILPII using PARAM 3.
Instances MILP I MILP II

Bα% Name Nd Gap TT Nd Gap TT

B
10

0%

25 12 1 1 0,00 0,2 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5

25 120 10 1 0,00 2,7 1 0,00 1,5
100 12 1 1 0,00 1,2 1 0,00 1,2
100 36 3 1 0,00 3,6 1 0,00 1,9

100 120 10 1 0,00 1 0,00 7,6
250 12 1 1 0,00 2,9 1 0,00 1,6
250 36 3 1 0,00 9,9 1 0,00 5,5
500 12 1 1 0,00 6,2 1 0,00 3,3
500 36 3 1 0,00 17,9 1 0,00 11,1

B
75

%

25 12 1 1 0,00 0,2 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5

25 120 10 1 0,00 3,5 1 0,00 3,2
100 12 1 1 0,00 1,2 1 0,00 0,6
100 36 3 1 0,00 3,1 1 0,00 1,8
250 12 1 1 0,00 2,9 1 0,00 1,6
250 36 3 1 0,00 10,3 1 0,00 5,6
500 12 1 1 0,00 6,2 1 0,00 3,2
500 36 3 1 0,00 20,7 1 0,00 11

B
50

%

25 12 1 1 0,00 0,2 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5

25 120 10 1 0,00 3,3 1 0,00 1,5
100 12 1 1 0,00 1,2 1 0,00 0,6
100 36 3 1 0,00 3,6 1 0,00 1,9
250 12 1 1 0,00 2,7 1 0,00 1,6
250 36 3 1 0,00 10,1 1 0,00 5,6
500 12 1 1 0,00 6,4 1 0,00 3,2
500 36 3 1 0,00 20,7 1 0,00 10,5

B
25

%

25 12 1 1 0,00 0,2 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5

25 120 10 1 0,00 3,5 1 0,00 1,5
100 12 1 1 0,00 1,2 1 0,00 0,6
100 36 3 1 0,00 3,6 1 0,00 1,9
250 12 1 1 0,00 2,9 1 0,00 1,6
250 36 3 1 0,00 9,9 1 0,00 5,1
500 12 1 1 0,00 6,3 1 0,00 3,2
500 36 3 1 0,00 20,5 1 0,00 11

The results indicate that our two mixed integer linear
programs exhibit excellent performance, successfully
solving nearly all instances to optimality within just
a few minutes. For this, 94.1% (resp. 92.2%) of in-
stances are solved to optimality by the second (resp.
first) formulation. Furthermore, the second formu-
lation yields better results for 50% of instances that
remain unsolved to optimality by both formulations.
It also successfully solves several instances to opti-
mality that the first formulation does not. Regard-
ing the CPU time computation, the second formula-
tion significantly outperforms the first, achieving so-
lutions in shorter CPU times for 85.62% of instances.
We observe also that 68.62% (resp. 40.10%) of in-
stances are solved to optimality in under 15 seconds
by the second (resp. first) formulation. On the other
hand, the branching tree associated with the Branch-
and-Cut algorithm when using the second formula-
tion shows a reduced number of nodes for 24.18% in-
stances compared to the first formulation. Also, the
second formulation solves 3.27% of instances to op-
timality at the root of the branching tree, while the
first formulation requires more nodes for the same
instances (i.e., branching is required to achieve op-
timal solutions). This clearly shows the advantages
of the second formulation in effectively solving the
problem. Additionally, we observed that the problem

Table 5: MILPI Vs MILPII using PARAM 4.
Instances MILP I MILP II

Bα% Name Nd Gap TT Nd Gap TT

B
10

0%

25 12 1 1 0,00 0,3 1 0,00 0,2
25 36 3 1 0,00 0,5 1 0,00 0,5

25 120 10 1 0,00 1,9 1 0,00 1,8
100 12 1 1 0,00 1,3 1 0,00 0,9
100 36 3 1 0,00 3,2 1 0,00 2,1
250 12 1 1 0,00 2,9 1 0,00 1,7
250 36 3 1 0,00 6,2 1 0,00 5,7
500 12 1 1 0,00 6,2 1 0,00 3,5
500 36 3 1 0,00 12,2 1 0,00 11,7

B
75

%

25 12 1 1 0,00 0,3 1 0,00 0,2
25 36 3 1 0,00 1 1 0,00 0,5

25 120 10 1 0,00 2,6 1 0,00 2,1
100 12 1 1 0,00 1,3 1 0,00 0,8
100 36 3 1 0,00 2,6 1 0,00 2
250 12 1 1 0,00 3 1 0,00 1,7
250 36 3 1 0,00 6,3 1 0,00 5,8
500 12 1 1 0,00 6,3 1 0,00 3,5
500 36 3 1 0,00 11,8 1 0,00 11,6

B
50

%

25 12 1 1 0,00 0,3 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5

25 120 10 1 0,00 2,4 1 0,00 1,9
100 12 1 1 0,00 1,1 1 0,00 1
100 36 3 1 0,00 3,4 1 0,00 2
250 12 1 1 0,00 3 1 0,00 1,7
250 36 3 1 0,00 6 1 0,00 5,6
500 12 1 1 0,00 6,3 1 0,00 3,5
500 36 3 1 0,00 11,9 1 0,00 11,6

B
25

%
25 12 1 1 0,00 0,3 1 0,00 0,2
25 36 3 1 0,00 0,9 1 0,00 0,5

25 120 10 1 0,00 2,4 1 0,00 1,9
100 12 1 1 0,00 1,1 1 0,00 0,9
100 36 3 1 0,00 3,5 1 0,00 2,1
250 12 1 1 0,00 2,9 1 0,00 1,7
250 36 3 1 0,00 5,9 1 0,00 5,6
500 12 1 1 0,00 6,4 1 0,00 3,5
500 36 3 1 0,00 12,4 1 0,00 11,6

becomes increasingly complex to solve to optimality
when the parameter qz,0 is set to zero, and the in-
equalities in (4̃) are relaxed for all zones in Z. This
complexity arises from the combinatorial nature of
the problem, resulting in a significant increase in the
number of potential feasible solutions.

Since nearly all instances have been solved to opti-
mality, we cannot assess the impact of our additional
valid inequalities on the B&C algorithm’s effective-
ness. This limits our evaluation of their influence on
solution times and overall performance. We need to
generate more complex instances that challenge op-
timal solutions with our formulations. Further com-
putational studies are essential to determine how our
valid inequalities can accelerate solution times for in-
stances solved to optimality without them.

7 CONCLUSION

In this paper, we have addressed the strategic deci-
sion problem of a telecommunication operator which
aims at efficiently planning its future investments in
Fiber access of geographical areas that are currently
undeployed. We have introduced two mixed integer
linear programs to model the problem. Additionally,
we presented several classes of valid inequalities for
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the associated polytopes. These results are used to
develop a Branch-and-Cut algorithm for solving the
problem. An extensive computational study was con-
ducted to assess the algorithm’s performance across
various instances and scenarios. While our approach
has proven effective, it would be beneficial to investi-
gate the impact of our valid inequalities in the context
of larger and more complex instances. Such an analy-
sis could yield valuable insights into the strengths and
weaknesses of both approaches.
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