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Abstract: As the demand for privacy in visual data management grows, safeguarding sensitive information has become
a critical challenge. This paper addresses the need for privacy-preserving solutions in large-scale visual data
processing by leveraging federated learning. Although there have been developments in this field, previous re-
search has mainly focused on integrating object detection with anonymization or federated learning. However,
these pairs often fail to address complex privacy concerns. On the one hand, object detection with anonymiza-
tion alone can be vulnerable to reverse techniques. On the other hand, federated learning may not provide
sufficient privacy guarantees. Therefore, we propose a new approach that combines object detection, feder-
ated learning and anonymization. Combining these three components aims to offer a robust privacy protection
strategy by addressing different vulnerabilities in visual data. Our solution is evaluated against traditional cen-
tralized models, showing that while there is a slight trade-off in accuracy, the privacy benefits are substantial,
making it well-suited for privacy sensitive applications.

1 INTRODUCTION

The rapid growth of visual data has raised significant
privacy concerns, particularly in domains like health-
care, surveillance, social media, and autonomous ve-
hicles. Regulatory frameworks such as the General
Data Protection Regulation (GDPR) mandate strict
protection of identifiable information, enforcing pri-
vacy standards in data handling.

Conventional approaches for managing visual
information rely on centralized machine learning,
where data is collected and processed in a single loca-
tion. However, this setup can expose sensitive infor-
mation to risks such as unauthorized access (Shokri
and Shmatikov, 2015). Even anonymization tech-
niques can be insufficient against sophisticated at-
tacks, including model inversion and adversarial at-
tacks, which can reconstruct sensitive information de-
spite masking or encryption efforts (Fredrikson et al.,
2015; Goodfellow et al., 2014). These challenges
highlight the need for decentralized solutions that pri-
oritize privacy and scalability (Bharati et al., 2022).

Federated Learning (FL) (McMahan et al., 2023)
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offers a promising alternative by enabling decentral-
ized model training without sharing raw data, inher-
ently enhancing privacy. However, integrating FL
with AI-driven visual data tools, particularly for label-
ing and anonymization, remains underexplored. Most
studies address privacy through anonymization (An-
drade, 2024) or federated learning (Yu and Liu, 2019),
but fail to combine these approaches. This leaves vul-
nerabilities when data must be shared or processed
across multiple devices or organizations.

To bridge this gap, we propose a framework com-
bining FL, object detection, and anonymization. Ob-
ject detection identifies sensitive regions, such as
faces and license plates, while FL eliminates the need
to share raw data. Detected sensitive regions are then
masked using anonymization techniques, providing a
multi-layered defense against privacy breaches. To
our knowledge, this paper presents the first approach
combining these three components. Our key contri-
butions are highlighted as follows.

• Visual Data Labeling in a Cutting Edge FL
Framework: we use a recent and straightforward
FL technology with a well-known object detec-
tion algorithm for an efficient and secure visual
data labeling system.

• Anonymization Layer: we apply obfuscation
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techniques to anonymize sensitive visual data in
the federated environment.

• Performance Evaluation: we conduct compre-
hensive experiments to evaluate the performance
and scalability of the proposed solution.

2 LITERATURE REVIEW

This paper explores three main domains: object
detection, anonymization techniques, and federated
learning (FL). In this section, we review each area and
highlight our contributions to the state-of-the-art.

2.1 Object Detection

Object detection is widely studied, particularly fo-
cusing on features such as color, texture, and spa-
tial relationships to improve visual data labeling
tasks (Veltkamp and Tanase, 2000; Ericsson et al.,
2022; Bouchakwa et al., 2020). Recent advances em-
phasize self-supervised learning, which scales well
with unlabeled data (Ericsson et al., 2022). De-
spite improvements, achieving high labeling accu-
racy and efficiency remains challenging (Zou et al.,
2023). While automated methods dominate, manual
and semi-automated labeling continue to play a role
in ensuring quality, particularly in critical applications
requiring high accuracy (Girshick et al., 2014). Deep
learning approaches dominate modern object detec-
tion and can be classified into two categories: one-
stage and two-stage algorithms (Zou et al., 2023).

One-stage detectors predict object locations and
classes in a single step, optimizing speed and compu-
tational efficiency. These models are ideal for real-
time tasks such as autonomous driving and surveil-
lance. Examples include YOLO (Jocher et al., 2020),
SSD (Liu et al., 2016), and RetinaNet (Lin et al.,
2017). These methods leverage advanced techniques
like focal loss and transformers to improve perfor-
mance in diverse applications.

Two-stage detectors identify regions of interest
first and refine predictions in the second step, pri-
oritizing accuracy over speed. Examples include R-
CNN (Girshick et al., 2014), Faster R-CNN (Ren
et al., 2015) and Mask R-CNN (He et al., 2017).
These algorithms excel in scenarios such as medical
imaging and satellite imagery (Chen et al., 2019).

2.2 Anonymization Techniques

Anonymization has gained importance with stricter
privacy regulations. Traditional techniques, such as

blurring and masking, balance privacy and utility but
can be vulnerable to attacks like re-identification (Se-
nior, 2009; Ren et al., 2018). Advanced approaches
use Generative Adversarial Networks (GANs) to re-
place sensitive features with synthetic versions, en-
hancing privacy without compromising context (Todt
et al., 2022). Recent studies show that realistic meth-
ods outperform traditional anonymization in main-
taining data utility (Hukkelås and Lindseth, 2023).

However, advanced methods often require higher
computational resources, limiting their applicability
in real-time systems. The trade-off between privacy
and usability highlights the need for lightweight so-
lutions that integrate seamlessly with decentralized
learning frameworks.

2.3 Federated Learning

FL enables decentralized training of machine learn-
ing models by exchanging updates instead of raw
data. This reduces privacy risks while supporting col-
laboration among data owners (Guan et al., 2024).
The two most common FL settings include Horizontal
(HFL) and Vertical Federated Learning (VFL).

HFL involves datasets with similar features but
different users. For example, several hospitals, each
with their patient records with similar attributes, such
as blood test results or medical images, can use HFL
to collaboratively train a shared model. Each hospi-
tal trains a local model on its dataset and only trans-
mits the learned model parameters to a central server,
ensuring that sensitive data is not shared (Kaissis
et al., 2020). On the other hand, VFL is used when
datasets share common users but different features,
e.g., combining demographic and genetic data. Tech-
niques like Private Set Intersection (PSI) ensure se-
cure matching without revealing sensitive data (An-
gelou et al., 2020). Recent advancements incorporate
encryption and differential privacy to strengthen se-
curity in VFL (Yang et al., 2023; Liu et al., 2024).

2.4 Current Research Directions

Efforts to integrate object detection with either FL
or anonymization show promising results, but limita-
tions remain. For instance, Andrade (2024) focus on
anonymization without addressing FL, while Yu and
Liu (2019) leverage FL but fail to include anonymiza-
tion layers, exposing sensitive data. Similarly, Memia
(2023) use YOLOv8 in FL without an anonymization
step. Our work builds on these studies, especially the
latter, by integrating all three components: object de-
tection, FL, and anonymization.

To our knowledge, we are the first to combine
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these three components in which besides leveraging
an AI model through FL, we apply an anonymization
layer on the detected sensitive visual data.

3 VISUAL DATA PROTECTION
AND LABELING

This section outlines the experimental evaluation pro-
cedure. We detail the methodology, providing an
overview of the high-level architecture of the pro-
posed system, including the algorithm used to train
the model and a description of the dataset.

3.1 Methodology

We aim to develop a robust framework that ensures
data privacy, facilitates accurate object detection, and
maintains the integrity of the anonymized data for
analysis. As such, we present our proposed method-
ology in Figure 1 1.

Figure 1: Methodology for sensitive data detection and
anonymization using federated learning.

The overall process is divided into several steps:

• Local Model Training: in the first step, each par-
ticipant trains a local object detection model on
their private visual data.

1Icons: “Object Detection” by Edward Boatman https:
//thenounproject.com/icon/object-detection-6109597/ and
“Object Detection” by Nanang A Pratama https://
thenounproject.com/icon/object-detection-6943616/ from
Noun Project.

• Local Model Updates Transmission: partici-
pants send only the model updates (e.g. learned
weights or gradient) to a central server after train-
ing.

• Model Aggregation: the central server aggre-
gates the updates from all participants to refine a
global model. Federated averaging is often used
to combine local models iteratively, improving
the global model’s performance at each training
round.

• Deployment of the Trained Model: once the
global model reaches satisfactory performance, it
can be deployed for tasks like processing new im-
ages or video frames in real time, benefiting from
the collective knowledge gathered during training.

• Sensitive Data Detection: the deployed model
uses object detection algorithms to identify and
label targeted classes in visual data.

• Anonymization: finally, after detection, the sen-
sitive data is anonymized.

In summary, this system utilizes federated learn-
ing (FL) to train the model across multiple devices
without centralizing the data. The object detec-
tion component identifies and locates sensitive ar-
eas within the visual content, such as faces or li-
cense plates. To ensure that privacy is maintained, an
anonymization process will then be applied to these
sensitive areas, masking or altering them to prevent
identification. We aim to create a scalable and se-
cure solution that can be used in various applica-
tions, from surveillance and healthcare to social me-
dia and content-sharing platforms, where privacy and
data protection are fundamental.

3.2 Methods

Our methodology integrates FL with Flower (Beutel
et al., 2020), object detection using YOLOv8 (Jocher
et al., 2023), and Gaussian blur for anonymization.

Among the several object detection methods,
YOLOv8 presents superior speed and accuracy, mak-
ing it well-suited for real-time applications. Its adapt-
ability across diverse datasets and scenarios ensures
generalization, while its efficiency reduces compu-
tational demands, enabling deployment on edge de-
vices. Also, the efficiency of YOLOv8 minimizes
computational demands on edge devices, making the
system more accessible in distributed environments
that do not require high-end hardware.

We use Flower for FL due to its flexibility and
compatibility with machine learning libraries like Py-
Torch and TensorFlow. Its efficient communica-
tion protocols minimize data transfer overhead, while
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its modular architecture simplifies integration with
YOLOv8. Flower supports dynamic participant selec-
tion, ensuring scalability and stability during training.

Two aggregation methods were tested:

• FedAvg (McMahan et al., 2017) which com-
putes a simple average of updates, offering com-
putational efficiency but slower convergence in
heterogeneous settings.

• FedOpt (Reddi et al., 2020) which dynamically
adjusts learning rates during aggregation, improv-
ing convergence and performance stability.

For anonymization, Gaussian blur was chosen
for its simplicity, computational efficiency, and com-
patibility with FL environments. While advanced
techniques like GANs or differential privacy pro-
vide stronger guarantees, their higher computational
costs make them less practical for distributed sys-
temst (Chung et al., 2024).

3.3 Data

We used the Open Images Dataset V6 Krasin et al.
(2017) 2, focusing on ”Vehicle registration plate” and
”Human face” annotations. Bounding box coordi-
nates were normalized for YOLOv8 compatibility.

Our dataset contains 29,690 images, divided into:

• Training Set: 14,485 images (48.8%)

• Validation Set: 3,848 images (13.0%)

• Testing Set: 11,357 images (38.2%)

To simulate a realistic FL environment, the dataset
was partitioned across three participants, each access-
ing a distinct subset. This distribution maintains pri-
vacy and prevents centralization while reflecting real-
world data partition. Thus, we can also study perfor-
mance under limited data availability per participant.

4 RESULTS

This section presents the experimental evaluation of
our proposed methodology. First, we establish a base-
line using a centralized model to compare perfor-
mance against federated learning (FL). Then, we ana-
lyze the effects of training rounds, aggregation meth-
ods, and computational costs on FL performance. Fi-
nally, we assess the anonymization layer’s effective-
ness in preserving privacy while retaining utility for
object detection tasks.

2Publicly accessible at https://storage.googleapis.com/
openimages/web/visualizer/index.html

The experiments were conducted on a high-
performance virtual machine with a 16-core CPU,
128 GB of RAM, and an NVIDIA GeForce RTX 3090
GPU (24 GB VRAM).

4.1 Baseline Model

First, we trained the YOLOv8 model on the entire
dataset using a centralized approach, where all data is
stored and processed in one location. Standard hyper-
parameters were used to optimize bounding box re-
gression, class prediction, and distribution focal loss.

We evaluate the model’s performance using preci-
sion, recall, and mean average precision (mAP). Pre-
cision measures the ratio of true positives to predicted
positives, while recall captures the ratio of true pos-
itives to actual positives. The mAP evaluates perfor-
mance across multiple confidence thresholds, includ-
ing mAP50 and mAP50-95.

Table 1 presents the results regarding the test set.
The model’s performance improves as the number
of epochs increases, reaching its maximum at 200
epochs. This trend indicates that the model was suc-
cessfully learning and optimizing over time. How-
ever, we observe that using 100 epochs, the central-
ized model provides lower loss, but the remaining
metrics are generally slightly worse than training the
model with 150 epochs.

4.2 Federated Learning Setting

We now evaluate the performance of the proposed
FL framework by analyzing key factors such as train-
ing epochs, aggregation methods, and communication
costs in comparison with the baseline.

4.2.1 Epoch Variation on Model Performance

The number of epochs represents a critical hyper-
parameter in machine learning, as it determines the
number of times the learning algorithm will work
through the entire training dataset. Typically, increas-
ing the number of epochs can lead to enhanced model
performance, as it allows the model more opportuni-
ties to adjust its parameters and reduce errors. The
baseline results confirm this. However, in FL, increas-
ing the number of epochs may result in minimal per-
formance gains while considerably extending training
time due to communications in this procedure. Ta-
ble 2 shows the results using the same epoch variation
as previously and the aggregation method FedAvg.

In general, we verify the same trend as before: the
higher the number of epochs, the better the perfor-
mance of the federated model. This is particularly ev-
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Table 1: Performance metrics for the baseline model (centralized) across varying epochs.

Epochs mAP50 mAP50-95 Recall Precision Loss Training Time (sec)
25 76.07% 51.21% 72.21% 81.00% 0.00039 1,740
50 78.52% 54.01% 75.46% 83.20% 0.00039 3,357

100 79.41% 55.25% 76.44% 82.01% 0.00036 6,421
150 79.69% 55.36% 76.43% 84.21% 0.00038 9,910
200 80.05% 56.11% 77.34% 84.32% 0.00037 12,760

Table 2: Performance metrics results for the federated model with 5 rounds across varying epochs.

Epochs mAP50 mAP50-95 Recall Precision Loss Training Time (sec)
25 62.55% 43.79% 48.71% 75.03% 0.00040 8,047
50 56.23% 38.69% 51.09% 67.53% 0.00042 15,606

100 63.77% 44.85% 50.84% 78.85% 0.00040 30,359
150 64.70% 45.01% 58.88% 72.12% 0.00040 38,183
200 74.68% 52.32% 68.52% 77.82% 0.00042 49,633

ident in mAP50, mAP50-95 and recall, which com-
pared to the baseline, these metrics present higher
differences between the 25 and 200 epochs. Nev-
ertheless, we observe some fluctuations, especially
in precision with an increase of less than 3% be-
tween 25 epochs and 200 epochs. Also, the met-
ric loss presents higher fluctuations. These outcomes
may be attributed to the communication and aggre-
gation model in FL. Despite the reached peak at 200
epochs, the federated model generally underperforms
the baseline. This may be attributed to the distributed
nature of data in FL, which may hinder its ability to
generalize as effectively as the baseline model.

Consequently, the run time for 200 epochs is four
times longer than the baseline. Therefore, it is essen-
tial to assess the trade-off between the utility gains
over higher epochs and the computational resources
required to achieve them, making it crucial to tailor
the choice of epochs to the specific needs and con-
straints of the targeted application.

4.2.2 After-Effect of Adding More Rounds

We also analyzed the impact of increasing communi-
cation rounds, setting the number of rounds to 3, 4,
5, 6, 7, and 8, with 200 training epochs. This setup
evaluates how performance evolves with successive
rounds of communication between edge devices and
the central server. Table 3 summarizes the results.

Performance generally improves with more
rounds, particularly between 3 and 5 rounds, where
mAP50 and recall increase by over 40%. How-
ever, after 5 rounds, gains diminish, with mAP50 and
mAP50-95 rising by less than 1.5% and precision im-
proving only marginally (0.37%).

Training time also increases with more rounds.
Between 3 and 5 rounds, runtime grows by approx-
imately 16.8 seconds, while adding rounds up to 8 in-
creases runtime by another 18 seconds. Despite near-

ing baseline performance, the computational costs
for 8 rounds are nearly 5 times higher than central-
ized training. These results highlight a trade-off be-
tween performance improvements and resource de-
mands, emphasizing the need to balance communi-
cation rounds with computational efficiency.

4.2.3 Aggregation Methods

Focusing on the best results achieved previously, we
compare the performance of FedAvg and FedOpt. Ta-
ble 4 presents the comparative analysis of the perfor-
mance of such aggregation methods over 8 rounds.

In general, both methods demonstrate similar per-
formance values. The maximum is reached at 200
epochs. However, FedOpt shows a consistent im-
provement of the loss metric over epochs, while Fe-
dAvg shows the same behavior for mAP50. Addi-
tionally, we observe that FedOpt presents a better
mAP50-95, precision and loss. In contrast, FedAvg
presents better results for the remaining metrics.

Despite the high similarity between the two ag-
gregation methods, we continue to experiment with
FedOpt due to its superior optimization techniques,
especially when dealing with potential variations in
data quality between participants. FedOpt allows for
more efficient convergence and provides stability in
training. These characteristics make it more suitable
for scenarios where the quality and availability of par-
ticipant data may be uncertain.

4.3 Anonymization Layer

After the best-federated setting selection, we demon-
strate the effectiveness of the anonymization layer.
Thus, we obfuscated detected sensitive regions, such
as faces and license plates, using Gaussian blur. Fig-
ure 2 illustrates the process, highlighting anonymized
areas with green bounding boxes.
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Table 3: Performance metrics results for the federated model with 200 epochs over different rounds.

Round mAP50 mAP50-95 Recall Precision Loss Training Time (sec)
3 28.84% 19.21% 24.30% 36.17% 0.00040 32,834
4 56.41% 40.95% 50.73% 76.77% 0.00039 43,386
5 74.68% 52.32% 68.52% 77.82% 0.00042 49,633
6 74.42% 52.29% 68.09% 78.76% 0.00040 60,545
7 76.01% 53.44% 71.09% 77.75% 0.00039 61,601
8 76.69% 53.57% 71.27% 73.92% 0.00039 67,798

Table 4: Performance metrics results using FedAvg and FedOpt over different epochs and 8 rounds.

Method Epochs mAP50 mAP50-95 Recall Precision Loss Training Time (sec)
25 73.35% 52.93% 70.32% 84.36% 0.00043 13,328
50 72.34% 50.85% 66.54% 76.01% 0.00042 25,199

FedOpt 100 75.11% 52.42% 66.05% 75.69% 0.00041 48,591
150 73.62% 51.49% 67.86% 76.47% 0.00040 57,734
200 76.31% 53.81% 70.83% 79.14% 0.00037 68,205
25 71.27% 52.23% 67.34% 76.17% 0.00041 13,307
50 72.48% 50.93% 68.49% 74.64% 0.00040 25,176

FedAvg 100 75.62% 53.47% 69.58% 80.26% 0.00042 48,317
150 76.51% 53.24% 69.43% 73.75% 0.00040 58,780
200 76.69% 53.57% 71.27% 73.92% 0.00039 67,798

Figure 2: A visual representation of the anonymization
layer applied to an image. The green bounding boxes high-
light the areas where anonymization was applied, specifi-
cally targeting license plates and faces.

While the anonymization layer protects privacy, it
is also essential to maintain the data utility for down-
stream object detection. The anonymization process
was carefully designed to minimize the loss of critical
information that is necessary for model performance.
For example, blurring license plates retains the overall
structure of vehicles, allowing the model to maintain
detection accuracy for scene analysis.

In summary, integrating object detection with FL
enables secure visual data processing without trans-
ferring raw data. While some performance loss is ob-
served compared to centralized models, these losses
are minor. The anonymization layer further strength-
ens privacy protection by masking sensitive features
effectively, as shown in Figure 2.

4.4 Discussion

This section discusses the challenges and implications
of deploying federated learning (FL) systems, focus-

ing on scalability, communication efficiency, ethical
considerations, and privacy risks. We also highlight
limitations and propose directions for future research.

Performance Loss and Detection Risks. FL intro-
duces slight performance losses compared to central-
ized models. However, our results show that the loss
is marginal. For example, the mAP50 of the federated
model (76.69%) is close to the baseline (80.05%).
Optimizing hyperparameters and aggregation meth-
ods mitigates risks of missed detections. Qualita-
tive evaluation confirms that the anonymization layer
effectively masks sensitive features while preserving
contextual information for downstream tasks.

Scaling Participants. Increasing the number of
participants can improve performance by using more
data, but it also introduces challenges. For research
purposes, data was divided among participants, re-
ducing dataset size per node and slightly lowering
accuracy compared to centralized training. In real-
world applications, data scarcity can be mitigated us-
ing techniques such as data augmentation or federated
data synthesis to enhance model performance.

Communication Overhead. FL requires partici-
pants to exchange model updates, which may lead
to increased communication costs as the number of
rounds or participants grows. Table 3 highlights this
compromise between performance and computational
resources. Future work should investigate techniques
such as model compression and asynchronous up-
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dates (Wang et al., 2024) to reduce overhead, particu-
larly in resource-constrained environments.

Scalability and Deployment Challenges. Scaling
FL systems raises issues such as participant dropout,
variable participation rates, and inconsistent data
availability (Memia, 2023). These factors can affect
model performance and integrity. Future work should
explore fault-tolerant algorithms and dynamic partic-
ipant management strategies to handle such variabil-
ity. Regulatory compliance, particularly with frame-
works like GDPR, must also be addressed to ensure
deployments align with legal standards while main-
taining privacy protections.

Ethical Considerations and Bias. FL models may
amplify biases present in training data (Mohri et al.,
2019), leading to unfair outcomes. This is high rele-
vant in the context of visual data, where biases can re-
sult in the misidentification or inadequate anonymiza-
tion of specific ethnic groups, potentially leading to
unfair outcomes. Future research should focus on
developing bias mitigation techniques and fairness-
aware learning methods to prevent disparities. Also,
transparency in model development, including data
sources and bias mitigation measures, is critical to
building trust and ensuring ethical outcomes.

Privacy Risks. Although anonymization masks
identifiable features, risks of re-identification remain,
especially if unique visual markers, such as cloth-
ing patterns or tattoos, are not sufficiently obfus-
cated (Fredrikson et al., 2015). Advanced anonymiza-
tion techniques like synthetic data generation and dif-
ferential privacy should be explored to address these
vulnerabilities (Hukkelås and Lindseth, 2023). Future
research could also focus on AI models capable of de-
tecting and masking unique visual characteristics au-
tomatically, further strengthening privacy protections.

5 CONCLUSIONS

This paper presents the first framework that inte-
grates object detection and federated learning with
anonymization to enhance privacy in visual data man-
agement. By enabling decentralized model training,
FL ensures privacy without sharing raw data, while
YOLOv8 achieves efficient object detection of sen-
sitive information. Our results demonstrate that de-
spite some performance losses of the federated model
compared to the baseline model (centralized), our so-
lution is highly efficient in detecting critical regions

such as faces and license plates. The detected regions
are protected with an anonymization layer that effec-
tively masks these identifiable features.
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