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Abstract: Parkinson's disease (PD) is a progressive neurodegenerative disorder that originally affects the motor system. 
Therefore, early diagnosis is essential for effective intervention. Classic diagnostic approaches heavily rely 
on clinical observations and manual feature extraction, limiting the detection of subtle early vocal 
impairments. This research examines machine learning (ML) techniques, namely Support Vector Machines 
(SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), for early identification of PD 
through the analysis of spectrogram images derived from voice recordings. Mel-Frequency Cepstral 
Coefficients (MFCC), Short-Time Fourier Transform (STFT), and Mel-Spectrograms were extracted. The 
improvement of the model was introduced by the Synthetic Minority Over-sampling Technique (SMOTE) 
and hyperparameter tuning using GridSearchCV (Grid Search with Cross-Validation). Implementing the 
above methods resulted in significant performance improvements, with XGBoost achieving an accuracy of 
95 ± 0.02 on the PC-GITA dataset and SVM attaining 90.74 ± 0.04 on the Neurovoz dataset. Local 
Interpretable Model-agnostic Explanations (LIME) enhanced model transparency by identifying the 
significant regions in spectrograms that most influence predictions. This analysis illustrates the efficacy of 
ML models utilizing SMOTE and GridSearchCV, particularly when augmented by LIME for interpretability, 
in improving early detection of PD, thereby presenting a feasible approach for clinical implementation. 

1 INTRODUCTION 

Parkinson's disease, or PD, is a neurodegenerative 
illness that affects about 1% of people over 60 around 
the world (Dorsey et al., 2018). The condition is 
marked by a group of motor symptoms, such as 
tremors, rigidity, and slow movement, as well as a 
number of non-motor symptoms, such as cognitive 
decline and changes in speech and voice (Bloem et 
al., 2021). These symptoms significantly affect the 
quality of life for patients with PD and provide 
considerable obstacles for healthcare personnel in the 
prompt and efficient administration of medication. 

Early PD diagnosis is paramount, as it allows for 
implementing therapeutic interventions that can 
markedly enhance patient outcome (Murman, 2012). 
Still, the present diagnostic techniques—which 
mostly rely on clinical assessments and patient-
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reported symptoms—often insufficient short for early 
PD (Gullapalli & Mittal, 2022), particularly in cases 
of subtle or unrecognized voice impairments. 

People with PD show particular changes in their 
vocal features, including a decrease in pitch 
variability, changes in speech pace, and articulation 
problems (Harel et al., 2004). While audio recordings 
allow one to record these changes, conventional 
analysis techniques may rely on hand feature 
extraction, which might not fully capture the intricacy 
of voice patterns, therefore restricting their efficacy 
in automated assessments (Klempíř & Krupička, 
2024). 

Due to technological developments, speech 
analysis— as a non-invasive and easily available 
technique for early disease diagnosis—has been 
developed. Analyzing acoustic features including 
pitch, jitter, and shimmer shows that it is possible to 
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distinguish PD patients from healthy people. 
However, many research using these features depend 
on traditional ML models, which need for hand 
feature engineering and might not be sufficient in 
capturing the whole spectrum of auditory features 
(Badhan & Kaur, 2024). 

Building on these developments, researchers aim 
to leverage the strengths of ML methods to assess 
their performance in identifying early PD signs using 
spectrogram images of voice recordings. Optimal for 
ML-based analysis, spectrograms graphically depict 
audio signals and capture both frequency and time-
domain information. 

Using the PC-GITA and Neurovoz datasets, this 
work contrasts the performance of several ML 
models—including SVM, RF, and XGBoost—to 
identify early-stage PD from continuous vowel 
recordings of the vowel "a". We used SMOTE and 
GridSearchCV hyperparameter adjustment to solve 
class imbalance and optimize model performance. 

To enhance model interpretability, we employed 
LIME in the best-performing ML models. This method 
helps to distinguish how ML models interpret speech 
data for early PD detection and helps to identify which 
areas of the spectrograms most contributed to the 
model's capacity. This understanding is crucial for 
identifying the vocal features that separate PD patients 
from healthy controls (HC), thus validating the model's 
predictive capabilities. 

This work attempts to evaluate, using voice 
analysis, whether ML techniques are more effective 
for early PD identification. This comparison 
underscores the potential of ML techniques could 
automatically extract complex properties. 

The present paper focuses on: 
• The utility of spectrogram images for 

classification purposes.  
• A comparative analysis of ML techniques 

for the early detection of PD.  
• Model interpretability through LIME. 

The framework of this research is presented in the 
next parts. With a focus on spectrogram production, 
feature extraction, and model training, Section 2 
presents the framework for the materials and 
methodology. Section 3 offers a comprehensive 
review of the evaluation metrics critical for dataset 

assessment. Last but not least, Section 4 presents a 
thorough examination of the results, contrasting the 
performance of ML models and stressing important 
results; it also includes the conclusions of the study 
and suggestions for next studies. 

2 MATERIALS AND METHODS 

This paper illustrates the proposed framework, which 
employs a systematic methodology for early 
classifying PD based on speech datasets, as shown in 
Figure 1. It entails gathering voice data from patients 
with PD and HC participants for analysis, followed 
by data preprocessing. The feature extraction step 
commences, extracting attributes such as MFCC, 
STFT spectrogram, and Mel-spectrogram from the 
audio data, converting them into spectrogram images, 
and balancing the dataset utilizing SMOTE. 
Following data balancing, the next step is to employ 
GridSearchCV to refine the hyperparameters of the 
ML models and evaluate their efficacy. We organize 
each phase to guarantee that the models can 
proficiently discriminate between HC and individuals 
with PD utilizing speech data, therefore facilitating 
the early detection and diagnosis of the disease. 

2.1 Parkinson’s Disease Dataset 

Two extensively referenced (PD) datasets were 
employed in this study: PC-GITA (Orozco-Arroyave 
& Noth, n.d.) and Neurovoz (Mendes-Laureano et 
al., 2024). Each database comprises individuals with 
PD and HC subjects. Neurologists have employed the 
Unified Parkinson's Disease Rating Scale (UPDRS) 
and the Hoehn and Yahr scale (H&Y) to identify and 
categorize the Patients. The databases exhibit 
variations in demographics and sizes, as outlined in 
Table 1.   

All recordings utilized in this study were at an 
early stage (UPDRS stages 1-2). Under controlled 
environmental settings, data recordings were 
conducted in all instances. The staff instructed each 
participant to execute several speech activities. This 
study examines sustained phonation of the vowel /a/. 
Each patient was recorded three times. 

Table 1: Demographic information, including gender and age ranges for the PC-GITA and Neurovoz corpora. 

Corpus  
Subjects Age (Years)  

Female  Male Female Male  
PD  HC  PD HC PD HC PD  HC 

Neurovoz  16  23  15 24 56–86 58–86 41–80  53–77 
PC-GITA 17  25  19 25 44–75 43–76 33–77  31–86 
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Figure 1: Proposed model for early PD classification.

2.2 Data Pre-Processing 

All recordings from the PC-GITA and Neurovoz 
datasets were resampled to 16 kHz utilizing the 
librosa library to maintain uniformity in the sampling 
rate. EBU R128 loudness normalization was 
implemented utilizing the ffmpeg-normalize library 
(Ffmpeg-Normalize, n.d.) to attain uniform loudness 
levels, enhancing conventional peak-based 
normalization. 

The spectrogram features were retrieved and 
saved as 224x224-pixel image files. These images 
were organized by class label (HC for healthy 
controls, PD for Parkinson's disease) then normalized 
to the range [0, 1] by dividing pixel values by 255. 
80% of the dataset was used for training, and 20% 
was used for testing. The dataset was divided into 
training and test sets at random. 

2.3 Feature Extraction 

2.3.1 MFCC Coefficients 

MFCCs were extracted with 13 MFCC coefficients 
per frame and their derivatives in order to capture the 
envelope of a sound's short-term power spectrum 
(Mishra et al., 2024). These factors are perfect for 
differentiating between PD patients and HC because 
they accurately capture the timbral features of speech. 

2.3.2 STFT Spectrograms 

The STFT spectrogram is an effective tool for 
analyzing and visualizing time-varying frequency 
content in audio signals. It converts all recordings into 
the time-frequency domain, facilitating the 
examination of the dynamic evolution of frequency 
content in a given signal (Xuan, 2023). In this work, 
windows (n-fft) of 32 milliseconds in length were 
computed using STFT representations chosen to 
achieve a balance between computing efficiency and 
sufficient temporal and frequency precision. To 
ensure constant signal length, the hop length was set 
at 8 milliseconds and the maximum padding length 
(max_pad_len) was changed to 100. The time-
frequency representation extracted was used as input 
to feed to the ML model. 

    
a. HC speaker                                  b. PD patient 

Figure 2: STFT spectrograms of the vowel /a/speech signal 
pronounced by HC speaker (a) and a patient with PD (b). 
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2.3.3 Mel-Spectrograms 

The Mel-spectrogram is a popular used representation 
of audio data that measures the power of a signal on 
the Mel scale, which more accurately approximates 
the human auditory system's reaction to different 
frequencies. This work created Mel-spectrograms 
with a filter bank of 40 Mel bands. This method 
transforms the power spectrogram to a log scale, 
resulting in a reliable representation of audio features 
relevant for speech analysis and disease detection. 

After extracting features from the MFCC with 
their derivatives, STFT and Mel-spectrograms, the 
spectrograms were flattened into one-dimensional 
vectors, thus ensuring compatibility with ML models. 
In this stage, the two-dimensional spectrograms are 
converted into a format that numerical array-input 
models may use. A full feature set representing each 
audio sample was created by merging the resulting 
flattened vectors. To make sure that all relevant 
auditory features were used for classification, these 
feature vectors were fed into the ML pipeline.  

2.4 Classification Methods 

Following previous stages, we used ML techniques, 
including SVM, RF, and XGBoost, to identify early 
PD, building on earlier stages. To improve the 
performance of the model and find the ideal 
hyperparameters, SMOTE and GridsearchCV were 
used to all of the ML models. Kernel types, the 
number of estimators, and learning rates were 
explored to determine the most effective models for 
the early detection of PD. 

2.4.1 Support Vector Machine (SVM) 

A supervised ML algorithm that is widely utilized for 
classification tasks. It works by finding a hyperplane 
that optimally differentiates data points belonging to 
disparate classes within a high-dimensional space. 
SVM is efficacious in high-dimensional settings and 
exhibits resilience to overfitting, particularly when 
the number of features surpasses the number of 
observations. Employing an array of kernel functions 
(linear, polynomial, radial basis function) can handle 
both linear and non-linear classification (Bind et al., 
2015). 

2.4.2 Random Forest (RF) 

An ensemble learning method based on decision 
trees. During the training phase, it builds multiple 
trees, each using a random subset of the data. The 
outputs of these trees are then combined using 

majority voting, resulting in an improved 
classification. The method is versatile, capable of 
handling large datasets with high dimensionality, and 
resistant to noise and overfitting (Breiman, 2001). 

2.4.3 Extreme Gradient Boosting (XGBoost) 

A robust gradient-boosting algorithm that builds 
models stage-wise, with each new tree correcting 
errors from the previous ones by focusing on 
misclassified examples. It uses regularization to 
minimize overfitting and use optimization techniques 
such as parallelization and tree pruning to improve 
performance and speed. XGBoost excels at processing 
structured data and consistently outperforms other 
algorithms in ML contests (Wang et al., 2022). 

2.4.4 Synthetic Minority Over-sampling 
Technique (SMOTE) 

There are few PD samples than HC samples in the 
dataset, which creates an imbalance. A solution to this 
problem is to oversample members of the minority 
class in order to achieve distributional parity. 
Improving the class distribution is possible via 
instance replication, but it does not provide any new 
information. SMOTE addresses this issue by 
producing new samples using linear interpolation of 
existing minority class instances, hence generating 
synthetic data points along the trajectory of the 
feature space (Brownlee, 2020). For a certain 
minority instance 𝑥  a synthetic sample 𝑥𝒏𝒆𝒘 is 
generated by interpolating between 𝑥𝒊 and one of its 
k-nearest neighbors 𝑥𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫, where λ is a random 
value within the interval [0,1]. 𝑥𝒏𝒆𝒘 = 𝑥 + 𝝀(𝑥𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫 − 𝑥𝒊) (1)

2.4.5 Hyperparameter Tuning 
(GridSearchCV) 

GridSearchCV is a widely utilized method for 
hyperparameter optimization in ML models. 
Hyperparameters are predefined configurations set 
prior to model training, encompassing the Kernel, C, 
gamma, number of estimators, learning rate, and 
max_depth. Determining the ideal values for these 
parameters can substantially enhance model 
performance (Jumanto et al., 2024).  

GridSearchCV is a method for systematically 
exploring a predefined set of hyperparameter values 
to identify the optimal configuration. It requires three 
key elements: 
 The estimator represents the model to be 

trained. 
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 A parameter grid is a list of hyperparameters 
and their potential values. 

 CV: The number of folds in K-fold cross-
validation. We set k = 5. 

3 EVALUATION METRICS 

The key evaluation metrics for classification models 
are accuracy, precision, recall, and F1-score: 
 Accuracy measures the proportion of correctly 

classified instances: 
 Accuracy =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
 

(2)

 Precision indicates the proportion of predicted 
positives that are positive: 

 Precision =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 
 

(3)

 Recall measures the proportion of actual 
positives correctly identified: 

 Recall =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 
 

(4)

 F1-score balances precision and recall, 
particularly for imbalanced datasets: 

 

 F1 − score =  2 𝑇𝑃2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
 

(5)

4 RESULTS AND DISCUSSION 

Tables 2 and 3 present a comparative performance of 
ML models for early PD detection from the two 

disjoint datasets without and with the application of 
SMOTE. The analysis is based on performance 
metrics, including accuracy, F1 score, precision, and 
recall, all with standard deviation, to highlight the 
strengths and weaknesses of the models across these 
datasets. 

The models showed different success over the 
two datasets according to the results acquired 
without applying SMOTE (Table 2). The XGBoost 
model showed the best level of accuracy in the PC-
GITA dataset—82.85 ± 0.05 Followed by the SVM 
(80.77 ± 0.05). While the XGBoost model showed 
the highest precision (86.67 ± 0.08), the SVM model 
also had the highest F1-score (77.27 ± 0.08) and 
recall (73.42 ± 0.09). Its F1-score and recall were, 
however, rather lower than those of SVM and RF. 
The results imply that XGBoost shows a superior 
balance between accuracy and precision. With an 
accuracy of 78.85 ± 0.07 and a recall of 59.09 ± 0.14 
RF model showed the lowest performance among 
the three. The results show that the RF model 
showed more trouble than the other models handling 
class imbalance. 

With an accuracy of 72.09 ± 0.06, an F1 score of 
70 ± 0.04, and a recall of 66.67 ± 0.12, SVM displays 
the best performance in the Neurovoz dataset. With 
XGBoost attaining the lowest accuracy (69.37 ± 0.04) 
and recall (52.38 ± 0.10), the results for XGBoost and 
RF were inferior; yet, its precision was greater than 
those of other models with 78.57 ± 0.04. These results 
show that although SVM showed superior 
performance in handling data without SMOTE, 
XGBoost, and RF showed more amazing difficulty in 
addressing the class imbalance, especially with the 
recall. 

 

Table 2: Performance results without SMOTE from each dataset using the ML models for the early prediction of PD. 

Dataset Model Accuracy F1_score Precision Recall 

PC-GITA 
SVM 80.77 ± 0.05 77.27 ± 0.08  79.86 ± 0.11 73.42 ± 0.09 
RF 78.85 ± 0.07 70.27 ± 0.13 85.91 ± 0.09 59.09 ± 0.14 

XGBoost 82.85 ± 0.04 70.27 ± 0.08 86.67 ± 0.08 59.68 ± 0.06 

Neurovoz 
SVM 72.09 ± 0.06 70 ± 0.04 73.68 ± 0.03 66.67 ± 0.08 
RF 70.79 ± 0.05 66.67 ±0.05 72.22 ± 0.07 61.90 ±0.12 

XGBoost 69.37 ± 0.04 62.86 ± 0.07 78.57 ± 0.04 52.38 ± 0.10 

Table 3: Performance results with SMOTE from each dataset using the ML models for the early prediction of PD. 

Dataset Model Accuracy  F1_score Precision Recall 

PC-GITA 
SVM 90 ± 0.03 89.60 ± 0.04 96.30 ± 0.05 83.87 ± 0.06 
RF 86.66 ± 0.05 86.14 ± 0.06 96 ± 0.03 77.42 ± 0.07 

XGBoost 95 ± 0.02 95.08 ± 0.03 96.67 ± 0.02 93.55 ± 0.04 

Neurovoz 
SVM 90.74 ± 0.04 90.71 ± 0.05 96.15 ± 0.04 86.21 ± 0.05 
RF 83.33 ± 0.06 84.21 ± 0.07 85.71 ± 0.05 82.76 ± 0.06 

XGBoost 80.62 ± 0.07 81.36 ± 0.06 80 ± 0.08  82.76 ± 0.03  
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When SMOTE (Table 3) was used, the 
performance of all models improved, especially SVM 
and XGBoost, across both datasets. When tested on 
the PC-GITA dataset, the SVM was enhanced. Its 
accuracy went from 80.77 ± 0.05 to 90 ± 0.03 and its 
F1 score went from 77.27 ± 0.08 to 89.60 ± 0.04. The 
accuracy went up a lot, from 79.86 ± 0.08 to 96.30 ± 
0.05, and the recall went up a lot, too, from 73.42 ± 
0.09 to 83.87 ± 0.06. It's clear from these results that 
SMOTE facilitated enhanced the SVM's performance 
by reducing class mismatch, which is a key part of 
finding rare PD cases in the dataset. 

XGBoost significantly improved performance, 
with accuracy increasing from 82.85 ± 0.04 to 95 ± 
0.02, F1 score went from 70.27 ± 0.08 to 95.08 ± 0.03, 
and recall went from 59.68 ± 0.06 to 93.55 ± 0.04. 
Based on these results, it looks like the synthetic data 
that SMOTE created helped XGBoost a lot, 
especially when it came to memory. This means that 
the model became better at finding positive cases of 
PD. Even though RF's accuracy went up from 78.85 
± 0.07 to 86.66 ± 0.05, its F1 score and recall went up 
less than those of SVM and XGBoost. As expected, 
the recall went up from 59.09 ± 0.14 to 77.42 ± 0.07. 
This indicates that SMOTE enhanced performance 
for RF, albeit not to the same extent as for SVM and 
XGBoost. 

The enhancements on the Neurovoz dataset were 
more modest but still significant. The SVM's recall 
improved from 66.67 ± 0.08 to 86.21 ± 0.05, and its 
accuracy increased from 72.09 ± 0.06 to 90.74 ± 0.04. 
These results indicate that SVM experienced 
substantial benefits from SMOTE, as evidenced by its 
improved generalization across the entire dataset and 

significant increases in recall. In addition, XGBoost 
exhibited an increase, with accuracy increasing from 
69.37 ± 0.04 to 80.62 ± 0.07 and recall increasing 
from 52.38 ± 0.10 to 82.76 ± 0.03. However, the 
model's susceptibility to the challenge was suggested 
by the fact that the XGBoost enhancement was less 
pronounced on Neurovoz than on PC-GITA. 

Figure 3 illustrates the ROC-AUC curves of the 
three ML models—SVM, RF, and XGBoost—
generated on the PC-GITA dataset. In subplot (a), the 
AUCs for SVM and XGBoost are 0.90 and 0.88, 
respectively, indicating excellent discriminatory 
performance without SMOTE. Nevertheless, the RF 
model exhibits slightly superior predictive capacity, 
with an AUC of 0.90. These findings show that all 
three models can efficiently identify PD patients from 
HC, with RF doing the best without SMOTE. In 
subplot (b), the use of SMOTE improved the 
performance of all three models. The SVM and 
XGBoost models both have a good AUC of 0.96, 
suggesting exceptional classification skill across 
thresholds. 

Moreover, RF has superior performance, with an 
AUC of 0.91, highlighting its capacity to tackle class 
imbalance via SMOTE. The observed enhancement 
across models demonstrates that oversampling using 
SMOTE significantly improves the model's 
robustness, especially in datasets with class 
imbalance. Both SVM and XGBoost exhibit 
exceptional and consistent performance on the PC-
GITA dataset, rendering them optimal choices for 
early PD identification. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: AUC-ROC curve of the three ML models in PC-GITA dataset without and with SMOTE. 

 

(a) Without SMOTE (b) With SMOTE 
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Figure 4: AUC-ROC curve of the three ML models in Neurovoz dataset without and with SMOTE. 

Figure 4 demonstrates the effectiveness of the 
models on the Neurovoz dataset, as evidenced by the 
AUC-ROC curves. In subplot (a), before to the 
application of SMOTE, the SVM attains a maximum 
AUC of 0.79, which, although satisfactory, indicates 
a reduction in performance relative to PC-GITA. 
XGBoost achieves an AUC of 0.73, whereas RF has 
the lowest performance at 0.70. These findings 
indicate that the Neurovoz dataset poses additional 
hurdles, most likely due to variability and underlying 
characteristics in patient data. Subplot (b) shows that 
applying SMOTE improves AUC scores significantly 
across all models, illustrating the relevance of 
resolving class imbalance. SVM once again earns the 
highest AUC (0.96), demonstrating its resilience and 
reliability. The RF model shows a significant 
improvement, with an AUC of 0.92, demonstrating 
that it can adjust to class-balanced data. XGBoost has 
an AUC of 0.89, which indicates improved 
performance in this context.  

The importance of SMOTE in addressing class 
imbalance is emphasized by these findings, 
particularly in the context of the Neurovoz dataset. 
GridSearchCV was also instrumental in the 
optimization of hyperparameters for all models, 
which exacerbated the performance enhancements 
observed with SMOTE. Furthermore, fine-tuning 
parameters such as kernel type and regularization 
strength improved SVM's capacity to generalize, 
contributing to the model's consistently high AUC. 
Similarly, with XGBoost, GridSearchCV enhanced 
the learning rate and maximum tree depth, allowing 
the model to catch more complicated patterns in the 
data. After applying SMOTE, RF gained much 
improved performance from optimal tree depth and 
the number of estimators. These hyperparameter 
adjustments highlighted the joint effectiveness of 

SMOTE and GridSearchCV by helping the models 
match their performance with the features of every 
dataset. Several significant observations arise from 
results analysis. The application of SMOTE, 
illustrated in subplot (b), significantly enhanced AUC 
values for all models and datasets, thereby addressing 
class imbalance concerns. Second, SVM's 
dependability for early PD identification was 
confirmed by its consistent achievement of the 
greatest AUC across datasets (0.96). XGBoost 
demonstrated exceptional efficacy, particularly on 
PC-GITA, despite minor performance fluctuations. 
RF, despite its initial subpar performance, 
successfully adjusted to SMOTE and achieved 
impressive results on the Neurovoz dataset. 
Nonetheless, SMOTE facilitated the recovery of all 
models, resulting in robust outcomes. 

In summary, the SVM model proves to be the 
most resilient and reliable across both datasets and 
situations, positioning it as a formidable candidate for 
clinical applications. XGBoost and RF exhibit 
potential, especially when customized to the distinct 
features of certain datasets. The synergistic effect of 
SMOTE and GridSearchCV underscores their 
significance in improving model efficacy for 
unbalanced datasets, especially with early PD 
detection. 

4.1 Local Interpretable  
Model-Agnostic Explanations 
(LIME) 

In this study, we employed LIME to interpret the best 
model, XGBoost, predictions in classifying PD in 
early-stage and HC patients. A post-hoc 
interpretability method was developed to explain 

(a) Without SMOTE (b) With SMOTE 
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every prediction complex and black-box model. It 
achieves this by constructing local, interpretable 
models that approximate the behavior of the black-
box ML models within some small neighborhood 
around the data point being explained (Molnar, 2020).  

LIME was selected for this work because it is a 
model-agnostic technique. Hence, it can be easily 
applied to any ML algorithm (e.g. XGBoost, SVM). 
It will also provide local explanations that will enable 
the analysis of exactly which features of the input 
data- namely, Mel-spectrograms- the model is 
considered most influential for classifying each 
patient as either PD or HC. This capability is critical 
when applied clinically, for which there is an urgent 
need to understand the underlying decision-making 
process of ML models to build trust among health 
professionals and ensure the validity of model 
outputs. 

LIME works by perturbing the input data, slightly 
modifying the spectrogram, and observing how the 
model's prediction changes. Then, it builds a more 
straightforward interpretable model example; a linear 
model approximates the decision boundary of the 
complex model in the vicinity of the input data point. 
Formally, this can be presented as: 
 

 

ξ(x) = 𝑎𝑟𝑔𝑚𝑖𝑛 L(f, g, ௫ሻ + Ω(gሻ (6)
 

Where : 
• f is the original black-box model (XGBoost in 

our study). 
• g is the interpretable local surrogate model. 
• ௫ is a proximity measure that assigns higher 

weights to data points close to the instance 
x. 

• L (f, g, πx) ensures that the local surrogate 
model g approximates the complex model f 
behavior. 

• Ω(g) enforces interpretability by ensuring the 
surrogate model remains simple. 

In our analysis, LIME has been applied to explain 
the predictions made through XGBoost upon 
spectrograms from PC-GITA and Neurovoz datasets. 
The spectrograms represent time-frequency 
representations of speech recordings, where XGBoost 
was tasked with classifying the spectrograms as 
belonging to either PD or HC patients. With LIME, 
we can visualize those regions within the Mel-
spectrograms that contribute the most toward model 
predictions and, in turn, provide an interpretable 
explanation for each decision made by this class. 

Figures 5 and 6 present LIME explanations for PD 
and HC patients of the PC-GITA and Neurovoz 
datasets, respectively. 

Figure 5 illustrates that the XGBoost model 
utilized four essential regions inside the Mel-
spectrogram to categorize PD patients in the PC-
GITA dataset. The locations marked in red signify 
areas where the model identified auditory traits 
indicative of PD, including diminished frequency 
variability, lower vocal intensity, and delayed speech. 
These features signify vocal abnormalities typically 
linked to PD, such as monotone speech and 
dysarthria. The localized features of these 
emphasized regions indicate that the model 
concentrates on distinct portions of the spectrogram 
to discern PD-specific speech patterns. 

Furthermore, the model found five separate areas 
that assisted with sort the PC-GITA dataset into 
groups of HC patients. The red areas show the sound 
features that show a healthy vocal system. These 
include changing pitches quickly and clearly, and 
regular speech. These traits show normal speaking 
range and flow, which is very different from the stiff 
and repetitive speech patterns seen in people with PD. 
Focusing on these key areas shows that the model 
uses variations in frequency and intensity to tell the 
difference between normal and Parkinsonian 
speaking. 

 
Figure 5: LIME explanations for both PD and HC from PC-
GITA dataset.   
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By contrast, in the case of the Neurovoz dataset, 
XGBoost depended on a broader set of regions in both 
PD and HC Mel-spectrograms. In the case of the HC 
patients from this dataset, three regions were 
underlined by the model within the spectrogram. This 
wider distribution of salient regions reflects the 
greater complexity and variability inherent in healthy 
speech patterns. Healthy subjects thus had dynamic 
pitch modulation, more variance over time, and a 
wider range of vocal frequencies, while the 
dependence of the model on several regions indicates 
that this is a level at which complexity needs to be 
captured for accurate classification. 

The model also focused on three salient regions in 
the Mel-spectrogram for PD patients in the Neurovoz 
dataset. These will highlight the spectrogram parts 
that the model focused on because of speech features 
typical for a PD, such as reduced tempo and 
frequency modulation. More regions suggest that 
Neurovoz contains more subtle or dispersed 
Parkinsonian features, and the model needs to 
consider more significant parts of the spectrograms to 
make a more confident classification. 

 
Figure 6: LIME explanations for both PD and HC from 
Neurovoz dataset.   

Comparing the results from the PC-GITA with the 
Neurovoz datasets, it is apparent that this model 
requires fewer regions in the dataset on which it was 

trained to differentiate between PD and HC patients. 
This fact could support the claim that the acoustic 
features are more salient in the PC-GITA dataset; 
therefore, the model can rely on fewer key areas for 
classification. In contrast, the intensive distribution of 
important regions in the Neurovoz dataset suggests 
that more dispersed and subtle features need to be 
captured by the model. These differences are likely 
attributable to variations in the demographics of 
speakers, languages, or recording conditions between 
the two datasets. 

LIME has provided much more insight for the 
clinician into the model's decision-making process, 
and the highlighted regions in the Mel-spectrograms 
point to specific vocal features relevant in a clinical 
sense for distinguishing PD from HC patients. For 
instance, monotonic speech, reduced articulation, or 
slowed speech are well-established indicators of PD 
and parameters that the model has paid much 
attention to agree with the clinical expectation. With 
interpretable explanations, LIME ensures the 
XGBoost model provides transparent predictions that 
the patient can clinically validate. This 
interpretability is necessary for embedding the ML 
model into clinical decision-making to enable early 
detection of PD. 

4.2 Comparative Analysis with 
Previous Studies 

Results obtained with the proposed model are 
compared to several recent related works on the early 
detection of PD using ML models and speech 
features, focusing on the accuracy achieved in 
detecting PD from the sustained phonation of the 
vowel /a/ across different models and datasets 
outlined in Table 4. During the last few years, various 
studies have investigated the potential of ML models 
in diagnosing PD through speech signal processing. 
These works have extracted different acoustic 
features from voice records and applied various ML 
techniques to attain higher diagnostic accuracy. 

Recently, Wodzinski et al. (Wodzinski et al., 
2019) conducted a serious study on the use of MFCC 
features that were then converted into spectrogram 
images for analysis. The method was based on a 
ResNet convolutional neural network model, which 
treated the problem as an image classification task. 
This research utilized the PC-GITA dataset for its 
study and powered an accuracy of 91.7% regarding 
detecting PD on the sustained phonation of the vowel 
sound /a/. They have used deep learning techniques to 
show how voice data can generally be analyzed to 
detect diseases. 
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Table 4: Comparison of performance of the proposed model with previous studies. 

References Input Model Dataset Accurac
y 

Wodzinski M. et 
al. 

MFCCs transforming them into
Spectrogram images ResNet PC-GITA 91.7% 

Nayak S. S. et al. 
MFCC + Mel-

spectrogram + Spectralcontrast +  
Chromagram + Tonnetz with GA

SVM PC-GITA 94% 

Ibarra E. J. et al. Mel-scale spectrograms 2D-CNN Neurovoz 74.9%

Our work 
MFCCs with their derivatives+ STFT 

spectrograms + Mel-spectrograms 
transforming them into Spectrogram 

images 

XGBoost PC_GITA 95% 

SVM Neurovoz 90.74% 

Similarly, another work by Nayak et al. (Nayak et 
al., 2023) featured a much higher dimensionality 
feature set upon combining MFCC, Mel-
spectrogram, Spectral Contrast, Chromagram, and 
Tonnetz features. These features were optimized by 
GA so that the features traits of voice signals would 
not go unnoticed. For this ML model, SVM was 
applied with an accuracy as high as 94% on the PC-
GITA dataset. The current study underlined the 
effectiveness of conventional ML models once 
combined with optimized feature selection methods. 

Meanwhile, Ibarra et al. (Ibarra et al., 2023) 
applied deep learning by using Mel-spectrograms as 
the input to the 2D CNN model. Their research was 
done with the Neurovoz dataset, which has voice 
recordings in many different languages; thus, it is 
more diverse than PC-GITA on the one hand. The 
model, however, performed worse, with a 
performance accuracy of 74.9%. This decrease in the 
accuracy could be due to difficulties the model has 
faced with generalizing due to the various languages 
and features of the voices. Nevertheless, the presented 
study gave insight into the perspective of performing 
a language-independent PD screening. 

This work adopted a representation combining 
MFCCs with their derivatives, STFT spectrograms, 
and Mel-spectrograms. Adopting the SMOTE 
technique to overcome the data imbalance and 
GridSearch for hyperparameter tuning resulted in the 
proposed XGBoost, trained on PC-GITA, reaching an 
accuracy of 95%, outperforming the state-of-the-art 
ML algorithms. On the other hand, our SVM model, 
trained on Neurovoz, yielded an accuracy of 90.74%, 
proving the benefits of using intense feature 
extraction and balancing techniques. 

Our approach tends to outperform other types in 
the proposed PC-GITA dataset, showing the 
effectiveness of incorporating ML with rich acoustic 
features and a strong preprocessing technique. This 

comparison underlines our approach's potential for 
enhancing early PD detection by voice analysis and 
ML. 

5 CONCLUSION 

The examination performed in this paper outlines the 
capability of ML algorithms focused on SVM and 
XGBoost for early detection of PD by analyzing 
spectrograms extracted from speech recordings. 
Feature extraction techniques were enhanced based 
on MFCCs with their derivatives, STFT, and Mel-
Spectrograms combined with class balancing through 
SMOTE and hyperparameter tuning via 
GridSearchCV, allowing our models to produce 
promising results for two datasets. XGBoost was the 
top classifier with an AUC of 95% in the PC-GITA 
dataset. On no account did SVM fail to prove its 
worth in both datasets and qualify as one of the ideal 
candidates for clinical usage. By applying LIME, the 
interpretability of the models was advanced and 
provided helpful insight into the most predictive 
vocal features, catering to a significant requirement 
for the model's clinical deployment. Nonetheless, 
variations in model performance across different 
datasets outline the necessity of optimization for 
particular datasets and further exploration of feature 
extraction techniques. Subsequent efforts should 
prioritize enhancing dataset variety, refining models, 
and including more acoustic cues to augment 
generalization and the precision of early PD detection 
systems. These discoveries will facilitate the 
development of non-invasive diagnostic instruments 
that allow for early identification and prompt 
intervention in PD. 
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