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Abstract: Plant species exhibit subtle distinctions, requiring a reduction in intra-class variation and an increase in inter-
class differences to improve accuracy. This paper addresses plant species classification using a limited number
of labelled samples and introduces a novel Local Foreground Selection(LFS) attention mechanism. Based on
the proposed attention Local Foreground Selection Module(LFSM) is a straightforward module designed to
generate discriminative support and query feature maps. It operates by integrating two types of attention: local
attention, which captures local spatial details to enhance feature discrimination and increase inter-class differ-
entiation, and foreground selection attention, which emphasizes the foreground plant object while mitigating
background interference. By focusing on the foreground, the query and support features selectively highlight
relevant feature sequences and disregard less significant background sequences, thereby reducing intra-class
differences. Experimental results from three plant species datasets demonstrate the effectiveness of the pro-
posed LFS attention and its complementary advantages over previous feature reconstruction methods.

1 INTRODUCTION

Automatic plant species classification is essential for
ecology and biodiversity conservation. It is a fine-
grained image classification problem, characterized
by subtle differences between species. Large intra-
class variations arise from differences in background,
illumination and pose, while inter-class variations
tend to be minimal due to similar morphology. Conse-
quently, effective training must focus on learning dis-
criminative features to enhance classification perfor-
mance. Few-shot fine-grained image classification is
particularly challenging due to limited training data,
necessitating the optimization of both inter-class and
intra-class variations. Conventional few-shot learning
(Snell et al., 2017) (Sung et al., 2018) typically ad-
dresses only class-level differences, which limits its
effectiveness for fine-grained classification tasks. Re-
cent few-shot fine-grained classification methods use
feature reconstruction (Wertheimer et al., 2021) (Do-
ersch et al., 2020), where support features reconstruct
query features to enhance class separation to optimize
inter-class and intra-class variations.

In this study, we present a novel Local Foreground
Selection (LFS) attention mechanism, designed to lo-
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calize discriminative regions through a dual-action at-
tention approach that generates distinct features. It
effectively reduces background effects while empha-
sizing the foreground, along with capturing essen-
tial local discriminative details. This is achieved by
combining local attention, which extracts local spa-
tial context to enhance inter-class variation, and fore-
ground selection attention, which minimizes intra-
class variation by highlighting foreground object and
reducing background effects. The novelty of the
LFS attention lies in its integration of local and fore-
ground selection attention, which together outper-
forms their individual results. This attention mech-
anism produces highly discriminative features, facili-
tating the reconstruction of support and query features
in existing few-shot fine-grained classification meth-
ods (Wertheimer et al., 2021) (Wu et al., 2023). Our
main contributions can be summarized as follows:

• In this study, we propose a novel Local Fore-
ground Selection attention designed to optimize
both inter-class and intra-class variations.

• The proposed attention is incorporated into a vi-
sion transformer encoder, creating the Local Fore-
ground Selection Module (LFSM), which pro-
duces discriminative feature maps.

• The LFSM module significantly improves perfor-
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mance for plant images with natural background,
when combined with state of the art feature recon-
struction approaches.

2 RELATED WORKS

Metric Based Few-Shot Learning. Metric learn-
ing is a widely used approach for few-shot learn-
ing. Prominent metric-based methods include Match-
ing Networks (Vinyals et al., 2016), Prototypical Net-
works (Snell et al., 2017), and Relation Networks
(Sung et al., 2018). These methods transform train-
ing data into feature vectors within a shared feature
space, where the similarity between two feature vec-
tors is measured by their distance. Metric learning ap-
proaches for fine-grained image classification lever-
age euclidean or cosine distances as metric. Recent
approaches include low-rank pairwise bilinear pool-
ing to learn effective distance metrics (Huang et al.,
2021b) and focus area location mechanisms for iden-
tifying similar regions among objects (Sun et al.,
2021). Techniques like multi-attention meta-learning
(MattML) (Zhu et al., 2020) and local descriptor-
based image-to-class measures (Li et al., 2019) en-
hance feature metrics for better classification. Non-
linear data projection networks (NDPNet) (Zhang
et al., 2021) improve similarity measures through ad-
vanced projections, while bi-similarity network (Li
et al., 2020) employ dual similarity checks for more
discriminative features. Additionally, target-oriented
alignment networks (TOAN) (Huang et al., 2021a)
align support and query images to minimize intra-
class variance and maximize inter-class variance, con-
tributing to more robust classification performance.

Feature Reconstruction Method. While metric-
based methods necessitate the creation of a single vec-
tor that preserves spatial locations, feature reconstruc-
tion approaches address this limitation. DeepEMD
(Zhang et al., 2020) does not perform matching at the
image level like traditional metric learning methods;
instead, it partitions the image into a set of local rep-
resentations. Optimal matching is conducted on these
representations from two images to assess similarity,
with Earth Mover’s distance. In the Feature Recon-
struction Network (FRN) (Wertheimer et al., 2021),
feature maps are reconstructed by pooling support set
feature maps into a matrix, where each column rep-
resents the concatenated feature maps of a channel.
For classification, each location in the query image’s
feature map is reconstructed using a weighted sum
of the support features from the corresponding class.
The LCCRN (Li et al., 2023) network enhances local

information extraction by introducing a local content
extraction module, while a separate embedding mod-
ule preserves appearance details. Bi-FRN (Wu et al.,
2023) adopts a feature reconstruction strategy which
reconstructs query images from support images and
vice versa. This results in a feature pool derived from
both support and query images, with pooled features
mutually reconstructed from one another.

Attention Mechanism. The transformer self-
attention (Vaswani et al., 2017) has been incorporated
into several few-shot learning methods. The Few-shot
Embedding Adaptation with Transformer (FEAT)
(Ye et al., 2020) utilizes it to perform task-specific
embedding adaptation. This approach employs a
set-to-set function to derive more discriminative
instance representations and models interactions
among images within each set. The CTX model
(Doersch et al., 2020) proposes a self-supervised
learning framework combined with a Cross Trans-
former, representing images as spatial tensors and
generating query-aligned prototypes. CTX uses self-
attention to identify the spatial attention weights of
support and query images, facilitating the learning of
query-aligned class prototypes. The Few-shot Cosine
Transformer (FS-CT) (Nguyen et al., 2023) intro-
duces cosine attention, which produces an effective
correlation map between support and query images,
outperforming softmax attention. Additionally,
the Bi-directional Feature Reconstruction Network
(Bi-FRN) (Wu et al., 2023) utilizes self-attention to
generate discriminative query and support features.

3 METHOD

Classification of plant species represents a fine-
grained visual classification (FGVC) task, charac-
terized by subtle differences among various species.
This challenge is compounded by large intra-class
variations and minimal inter-class differences that
must be addressed. Additionally, plant classification
is conducted on images within their natural environ-
ments, necessitating the removal of background ef-
fects. We propose a novel attention-based module de-
signed to generate discriminative feature maps for use
with existing few-shot fine-grained approaches using
feature reconstruction approaches. This novel mod-
ule can enhance the performance of prior works (Wu
et al., 2023) (Wertheimer et al., 2021). The over-
all framework of our method is illustrated in Figure
1. For an episode, the support and query samples
are passed through feature embedding where feature
maps are obtained. To obtain discriminative feature
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maps suitable for fine grained classification we refine
them with our proposed attention mechanism and pass
them through the Local Foreground Selection mod-
ule (LFSM). Subsequently, the output of the LFSM
is fed into the feature reconstruction networks (Wu
et al., 2023) (Wertheimer et al., 2021), which recon-
struct query and support features. Finally, the similar-
ity metric computes the euclidean distance between
the original and reconstructed feature maps.

Figure 1: Local Foreground Selection aware Attentive Fea-
ture Reconstruction Network.

Problem Formulation. For a given dataset D, it is
divided into Dtrain, Dval and Dtest such that the cat-
egories in these sets are disjoint. Few-shot classifi-
cation performs the task of C-way and K-shot clas-
sification on Dtest by learning the knowledge from
Dtrain and Dval . The task is performed such that C
classes from the test set are selected. From each of
these classes only K labelled samples are selected
which serve as the support samples(S) and M unla-
belled samples are selected which form part of the
query samples(Q). In this few-shot task the classifi-
cation accuracy is determined on Dtest .

3.1 Feature Embedding

The first step is to extract feature maps of support and
query samples. Following literature we use the Conv-
4 and ResNet-12 networks as backbones to obtain fea-
ture maps. The architectures of these networks are the
same as in (Wertheimer et al., 2021). For a C-way and
K-shot task C× (K +M) images are input to the em-
bedding module where features are extracted.

3.2 Local Foreground Selection Module

The LFSM module is responsible for generating dis-
criminative features for support and query pools. For
a C-way, K-shot task, the extracted features from the
embedding module are represented as ui = fθ(ui) ∈
Rd×h×w, where d denotes the number of channels,
h is the height of the feature maps, and w repre-
sents the width. The input features to the LFSM
are denoted as ui, while the output from this mod-
ule is yi ∈ Rd×r. Within the LFSM module, the in-

put features ui are transformed into r local features
[u1

i ,u
2
i ,u

3
i , . . . ,u

r
i ]+Epos, which are then fed into a vi-

sion transformer encoder.
The LFSM constructs discriminative feature maps

utilizing the proposed Local Foreground Selection
(LFS) attention embedded within a vision transformer
encoder. Originally, vision transformer employs self-
attention but instead we introduce LFS attention. It
performs two tasks: the local attention task and fore-
ground selective attention task. The local attention
is to emphasize the local details of the plant object
which increases inter-class differences. The pres-
ence of natural background in plant images increases
intra-class variations, we aim to mitigate its impact
by using a foreground selection attention. The fore-
ground selection attention filters out sequences asso-
ciated with the background of the target plant object,
ensuring that only the important tokens relevant to the
foreground are retained. The two attentions—local
and foreground selection—are aggregated and gen-
erate distinct features for fine grained classification.
The architecture of the LFS module is presented in
the Figure 2 and a comparison of the heatmap result-
ing from the LFS attention with the output of the fea-
ture embedding is visualized in Figure 3.

Local Attention. The local attention mechanism
integrates convolutions into the vision transformer
block to effectively model local spatial context. In-
stead of position-wise linear projections for Multi-
Head Self-Attention we use convolutional projections
for the attention operation. Specifically, depth-wise
separable convolutions are utilized for these projec-
tions, which are applied to derive the queries (Q), keys
(K), and values (V). The feature maps, reshaped ear-
lier in the LFSM module, serve as input for the depth-
wise convolutional projections. This function returns
the attention scores to the vision transformer encoder.

Foreground Selection Attention. The purpose of
foreground selection attention is to enable a focus
on the plant object rather than the background, as it
does not contribute to fine-grained classification. In
transformer self-attention, all tokens are assigned rel-
evance weights that reduce the influence of less im-
portant tokens. Tokens not associated with the plant
object receive lower attention scores; however, these
background tokens still exert some influence. To fur-
ther diminish their impact, these tokens are discarded,
allowing the feature maps to concentrate on the plant
object, thereby aiding in the classification of subtle
class differences. The foreground selection attention
generates relevance scores by selecting tokens based
on a defined threshold, discarding those below it. The

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

534



Figure 2: Local Foreground Selection Module where features are fed into the vision transformer and outputs feature pool.

dot product of Q and KT creates an attention score
matrix with dimensions m×m. The relevance of all
tokens is then evaluated relative to one another and
stored in the relevance matrix, where the relevance of
the ith token with respect to the jth token is denoted
by the matrix element relevancei, j. Relevance scores
are calculated for each row of the attention matrix.
Tokens representing the plant object yield high rele-
vance scores, while those associated with the back-
ground have low scores. Consequently, the relevance
scores higher than the threshold are preserved, while
lower relevance scores are set to zero. To implement
this, we arrange the rows in descending order. After
sorting the ith row of the relevance matrix, we identify
the (m×FS-ratio)th index, where the FS-ratio deter-
mines the number of tokens selected and ranges from
0.1 to 1.0. The relevance score at this selected in-
dex is recorded as the threshold for comparison. A
comparison is then made between relevancei, j and the
threshold; if relevancei, j exceeds the threshold, it is
retained, otherwise set to zero. The relevance matrix
is then normalized by softmax function. The matrix
multiplication of the attention score and V is calcu-
lated to get the weighted sum over V as indicated by
the following equation. This process is mathemati-
cally illustrated in the following equations:

relevance =
QKT
√

dk
(1)

index = argsort(−relevancei) [FS-ratio×m] (2)

relevancei =

{
relevancei, if > relevancei[index]
0, otherwise (3)

FS-Attention = softmax(relevancei)V (4)

After getting the Foreground Selection attention(FS-
attention) we replace all the non-zero weights to one.
In this way the elements of the matrix are either zero
or one. The background related tokens are made zero
and plant object tokens are made one. This takes the

form of a binary matrix in which the relevance score
positions that contribute to the object are represented
by ones and the non-contributing scores that represent
the background are zero.

FS-Attention =

{
1 if FS-Attention > 0
0 otherwise

Local Foreground Selection Attention. The local
foreground selection attention is a bi-functional at-
tention mechanism designed to capture local details
of the plant object, as reflected in the local atten-
tion matrix. The foreground selection attention in-
dicates which locations within the attention matrix
have scores originating from the plant object ver-
sus the background. In the vision transformer en-
coder, the attention scores derived from local atten-
tion are element-wise multiplied with the foreground
selection attention matrix. This ensures that regions
with lower relevance score corresponding to the back-
ground are set to zero, effectively discarding them.
Consequently, the resulting attention matrix contains
values that specifically pertain to the plant object.
Utilizing attention scores from local attention, rather
than self-attention, enhances the representation of lo-
cal details of the plant object. This targeted attention
improves focus on the plant object while minimiz-
ing background interference, ultimately leading to in-
creased accuracy. After getting the attention weights
the generated features are obtained by iterative Layer
Normalization and Multi Layer Perceptron producing
feature pools as output.

ŷi = Attention
(
yiW Q

α ,yiW K
α ,yiWV

α

)
, ŷi ∈ Rr×d

(5)
Where W Q

α ,W K
α and WV

α are learnable weight param-
eters having size d × d. The ŷi are obtained using
the following equation from Multi Layer Perceptron
(MLP) and Layer Normalization (LN).

ŷi = MLP(LN (yi + ŷi)) (6)
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Figure 3: Heat map comparing the original feature maps
to our proposed Local Foreground Selection attention on
Oxford Flower-102 dataset.

4 EXPERIMENTAL RESULTS
AND ANALYSIS

Datasets. The plant species classification problem
is considered with natural background images from
three datasets. The Oxford Flower-102 dataset (Nils-
back and Zisserman, 2008) is a benchmark for few-
shot fine-grained classification, featuring 102 flower
categories. The iNaturalist 2019 dataset (Van Horn
et al., 2018), known for its long-tailed distribution, fo-
cuses on a subset of 348 plant species from the Plantae
category, each containing 50–1000 images. Similarly,
the Plant Net 300-K dataset (Garcin et al., 2021), orig-
inally comprising 1081 plant species, uses a subset of
252 species having 50–1000 images for few-shot clas-
sification. All images across the datasets are resized
to 84×84 without any bounding box cropping.

Implementation Details. The experiments are con-
ducted using GeForce 3090 GPU, implemented with
Pytorch on Conv-4 and ResNet-12 backbones. All
methods including the baseline, state-of-the art and
ours are trained from scratch. The training of our
method is performed for 1200 epochs using SGD with
Nesterov momentum of 0.9. The initial learning rate
is taken as 0.1 and weight decay is 5e-4. Learning
rate decreases by a scaling factor of 10 every 400
epochs. For Conv-4 models, we train using 30-way
5-shot episodes, query images per class are 15. For
ResNet-12 models the training episodes are 15-way
5-shot. Testing for both backbones is performed for 1-
shot and 5-shot. Data augmentation methods like cen-
tre crop, random horizontal flip and colour jitter are
used. The best-performing model are selected based
on the validation set every 20 epochs. For all exper-

iments, we report the mean accuracy of 10,000 ran-
domly generated tasks on Dtest with 95% confidence
intervals on the standard 1-shot and 5-shot settings.

4.1 Comparison with State-of-the-Art

The accuracy of our method is tested for plant species
classification via few-shot learning. Experiments are
conducted on the above mentioned three plant species
datasets. We obtain results on the state-of-the art
methods ourselves using their official codes. The
state-of-the-art methods that we compare our method
to include ProtoNet (Snell et al., 2017), DN4 (Li et al.,
2019), CTX (Doersch et al., 2020), FRN (Wertheimer
et al., 2021), LCCRN (Li et al., 2023), BiFRN (Wu
et al., 2023), BSFA (Zha et al., 2023) and FSCT
(Nguyen et al., 2023). A comparison of the perfor-
mance of our method with the state-of-the-art meth-
ods is reflected in Table 1 for Conv-4 backbone and
Table 2 for ResNet-12 backbone. For the Conv-4
backbone our method outperforms all other state of
the art methods for all three plant species dataset. If
we carefully observe we can see that the performance
of our method with FRN (Wertheimer et al., 2021)
significantly improves from 2-7 %. The 1-shot per-
formance improves significantly for all three datasets.
The accuracy also increases appreciably for 5-shot as
well. When our method is used with BiFRN (Wu
et al., 2023) our local foreground selection attention
works well for both 1-shot and 5-shot as it removes
the effect of background and focus on local details.
For the ResNet-12 backbone also the performance of
our method is better for 5-way 5-shot and 5-way 1-
shot for all three datasets. The accuracy improves by
1-6 % when our attention mechanism is introduced
with FRN and BiFRN. The LFS attention used with
FRN outperforms all state of the arts as well as our
LFS with BiFRN. This show that our attention mech-
anism gives highly discriminative feature maps that
are suitable for feature reconstruction. Even though
FRN performs unidirectional feature reconstruction
the LFS attention make its performance comparable
to the bi-directional feature reconstruction in BiFRN.

4.2 Ablation Study

The Effectiveness of Local Foreground Selection
Attention. Our proposed LFS attention improves
the overall accuracy when used with both FRN and
BiFRN. So, we test its effectiveness of as compared
to self attention, local attention and foreground selec-
tion attention(FS-attention) . A comparison is pre-
sented with the baseline i.e ProtoNet (Snell et al.,
2017) and other aforementioned attentions. Our lo-
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Table 1: Comparison with state-of the-art for 1-shot and 5-shot classification of plant species on Conv-4 backbone.

Method Oxford Flower-102 iNaturalist19 Plant Net 300-K
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Proto(Snell et al., 2017) 59.19±.22 83.10±.14 54.40±.23 76.21±.16 54.83±.22 77.60±.15

DN4(Li et al., 2019) 51.86±.21 69.13±.21 38.88±.15 49.23±.13 40.45±.16 55.41±.23

CTX(Doersch et al., 2020) 70.52±.91 80.82±.71 46.96±.94 63.18±.79 49.69±.88 65.67±.76

FRN(Wertheimer et al., 2021) 69.40±.20 87.45±.12 62.08±.22 80.19±.15 62.01±.22 80.81±.14

BiFRN(Wu et al., 2023) 75.11±.17 89.55±.15 64.54±.20 81.89±.12 62.65±.23 81.56±.17

LCCRN(Li et al., 2023) 71.38±.21 85.70±.14 64.47±.23 80.36±.16 63.50±.22 80.55±.15

BSFA(Zha et al., 2023) 71.42±.47 83.85±.33 60.51±.53 75.85±.40 62.57±.50 77.16±.36

FSCT-Cosine(Nguyen et al., 2023) 66.30±.87 82.04±.68 51.83±.96 64.46±.83 52.07±.96 66.03±.75

FSCT-Softmax(Nguyen et al., 2023) 62.96±.91 76.22±.70 50.09±.95 62.04±.74 49.84±.95 62.12±.82

Ours: LFS + BiFRN 75.71±.10 90.30±.13 65.36±.15 82.59±.11 63.51±.20 82.19±.14

Ours: LFS + FRN 76.46±.20 89.94±.13 66.62±.22 82.76±.15 64.67±.20 82.31±.14

Table 2: Comparison with state-of the-art for 1-shot and 5-shot classification of plant species on ResNet-12 backbone.

Method Oxford Flower-102 iNaturalist19 Plant Net 300-K
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Proto(Snell et al., 2017) 75.23±.20 88.43±.13 72.44±.29 87.37±.21 69.96±.21 86.34±.13

DN4(Li et al., 2019) 68.62±.21 74.19±.21 58.08±.15 59.37±.13 56.45±.16 65.41±.13

CTX(Doersch et al., 2020) 77.12±.91 83.62±.71 55.36±.94 60.58±.79 59.61±.88 70.47±.76

FRN(Wertheimer et al., 2021) 79.20±.20 90.10±.11 74.62±.23 87.52±.14 72.52±.21 86.33±.14

BiFRN(Wu et al., 2023) 77.75±.17 89.94±.15 72.24±.16 87.20±.12 70.84±.15 86.52±.12

LCCRN(Li et al., 2023) 78.95±.19 92.60±.10 74.96±0.21 87.65±.12 72.63±.22 86.50±.15

BSFA(Zha et al., 2023) 77.02±.44 89.06±.26 76.23±.48 87.31±.30 74.21±.49 86.63±.29

FSCT-Cosine(Nguyen et al., 2023) 63.10±.87 85.16±.68 58.85±.96 61.86±.83 62.14±.96 71.83±.75

FSCT-Softmax(Nguyen et al., 2023) 59.29±.91 79.52±.70 59.79±.95 58.84±.74 60.01±.95 67.12±.82

Ours: LFS + BiFRN 79.77±.12 90.87±.10 72.95±.15 87.67±.11 71.04±.15 86.70±.14

Ours: LFS + FRN 79.85±.20 93.50±.11 79.61±.11 93.33±.15 77.42±.15 88.71±.14

cal foreground selection attention(LFS-attention) per-
forms better with the combination of both local and
foreground selection attention. They do not give the
best results when used alone which is the evidence
that LFS-attention is more effective. The results are
shown in Table 3 and comparison is made for two
datasets. The results reflect that our proposed LFS-
attention is a superior approach for few-shot fine-
grained classification.

The Effect of FS-Ratio. FS-ratio defined in the
foreground selection attention part defines the num-
ber of tokens that will be accepted. By incorporating
FS-ratio we can see the impact of number of tokens
that will be accepted to provide the best results. The

accuracy of classification based on different FS-ratio
varies according to the backbone and the dataset. This
is reflected in the Table 4 and Table 5. This presents
evidence for the effect of number of background to-
kens accepted in the local foreground selection at-
tention. The results in the tables present the perfor-
mance on different FS-ratio ranging from 0.1 to 1.0.
The FS-ratio that gives the best performance is high-
lighted with bold letters, for each method and the re-
spective dataset. For Oxford Flower-102 the best re-
sults are given by FS-ratio 0.3 for FRN(Conv-4) and
0.5 for BiFRN(Conv-4). For ResNet-12 backbone
the FS-ratio 0.1 gives best results for both FRN and
BiFRN methods. For the iNaturalist 2019 the Conv-4
gives best results with FS-ratio 0.3 for FRN and 0.5
for BiFRN. While for ResNet-12, 0.3 FS-ratio works

Local Foreground Selection Aware Attentive Feature Reconstruction for Few-Shot Fine-Grained Plant Species Classification

537



Table 3: Ablation study for effectiveness of LFS attention on Oxford Flowers102 and iNaturalist 2019 datasets.

Backbone Method
Oxford Flower-102 iNaturalist19

1-shot 5-shot 1-shot 5-shot
Conv-4 Baseline 59.19±.22 83.10±.14 54.40±.22 76.21±.17

FRN
(Conv-4)

Self-attention 74.20±.20 87.96±.13 64.21±.21 81.21±.14
Local attention 74.89±.18 88.20±.13 64.68±.25 81.51±.11
Selective attention 75.15±.17 88.65±.14 64.92±.20 81.70±.12
LFS-attention 76.46±.20 89.94±.13 66.62±.22 82.76±.15

BiFRN
(Conv-4)

Self-attention 75.11±.17 89.55±.15 64.54±.20 81.89±.12
Local attention 74.91±.17 89.60±.15 65.03±.20 82.28±.12
Selective attention 74.84±.17 89.79±.15 64.91±.20 82.36±.12
LFS-attention 75.71±.10 90.30±.13 65.36±.15 82.59±.11

ResNet-12 Baseline 70.99±.20 86.99±.13 64.59±.29 81.65±.21

FRN
(ResNet-12)

Self-attention 79.01±.20 91.50±.11 77.69±.11 90.52±.16
Local attention 78.88±.16 91.89±.12 78.12±0.15 91.26±.13
Selective attention 78.95±.21 92.26±.15 78.54±.12 91.98±.17
LFS-attention 79.85±.20 93.50±.11 79.61±.11 93.33±.15

BiFRN
(ResNet-12)

Self-attention 77.75±.17 89.94±.15 72.24±.16 87.20±.12
Local attention 78.31±.17 90.08±.15 71.97±.16 87.12±.12
Selective attention 77.75±.28 88.79±.15 72.44±.16 87.27±.12
LFS-attention 79.77±.12 90.87±.10 72.95±.15 87.67±.11

Table 4: Performance with different select ratios on Oxford
flowers-102 dataset for 5-shot and 1-shot.

FRN FS-ratio/ Oxford flower-102
0.1 0.3 0.5 0.7 0.9

Conv
5-shot 89.42 89.94 88.83 89.30 88.70
1-shot 76.03 76.46 75.26 75.16 74.20
ResNet
5-shot 93.50 93.37 93.04 92.88 93.12
1-shot 79.85 79.73 79.43 79.46 79.45
BiFRN FS-ratio/ Oxford flower-102
Conv
5-shot 89.69 89.32 90.30 89.44 89.91
1-shot 74.96 74.64 75.71 74.51 74.91
ResNet
5-shot 90.87 90.40 89.90 89.81 90.24
1-shot 79.77 78.97 77.83 78.55 78.51

best for both FRN and BiFRN. In this way differ-
ent datasets have different suitable FS-ratio for each
method and the relevant backbone.

5 CONCLUSION

In this paper we propose a novel Local Foreground
Selection(LFS) attention based module called Lo-
cal Foreground Selection Module (LFSM), tailored

Table 5: Performance with different select ratios on iNatu-
ralist 19 dataset for 5-shot and 1-shot.

FRN FS-ratio/ iNaturalist 2019
0.1 0.3 0.5 0.7 0.9

Conv
5-shot 82.69 82.76 82.48 82.52 82.40
1-shot 66.15 66.62 66.14 65.83 66.01
ResNet
5-shot 93.21 93.33 92.82 93.06 92.82
1-shot 79.44 79.61 78.81 79.12 78.69
BiFRN FS-ratio/ iNaturalist 2019
Conv
5-shot 82.39 82.05 82.59 81.82 82.50
1-shot 65.00 64.43 65.36 64.63 65.18
ResNet
5-shot 86.68 87.67 86.59 87.37 85.92
1-shot 70.99 72.95 70.98 72.19 70.25

to generate discriminative query and support fea-
tures suitable for few-shot fine grained classifica-
tion. The proposed attention optimizes large intra-
class and small inter-class variations for the plant
species classification task. The Foreground Selection
attention works by highlighting the foreground and
reducing the effect of background which contributes
to alleviate the high intra-class variations. Secondly,
we extract local spatial details to focus on the fine-
grained details of the plant object with the local atten-
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tion. Combining the local and foreground selection
attentions enhances accuracy. The proposed LFSM
module complements feature reconstruction methods
and improve performance evident on plant species
datasets and the ablation studies also validate the ef-
fectiveness of LFS attention.
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