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Abstract: Diffusion models generate realistic results for raster images. However, vector image generation is not so
successful because of significant differences in image structure. Unlike raster images, vector ones consist
of paths that are described by their coordinates, colors, and stroke widths. The number of paths needed
to be generated is unknown in advance. We tackle the vector image synthesis problem by developing a
new diffusion-based model architecture, that we call VectorWeaver, including two transformer-based stacked
encoders and two transformer-based stacked decoders. For training the model, we collected a vector im-
ages dataset from public resources, however, its size was not enough. To enrich and enlarge it we pro-
posed new augmentation operations specific for vector images. To train the model, we designed a spe-
cific loss function, which allowed the generation of objects with smooth contours without artifacts. Qual-
itative experiments demonstrate the superiority and computational efficiency of the proposed model com-
pared to the existing vector image generation methods. The vector image generation code is available
at https://github.com/CTLab-ITMO/VGLib/tree/main/VectorWeaver.

1 INTRODUCTION

Image generation methods have been developing
rapidly in recent years. New diffusion-based (Saharia
et al., 2022; Xu et al., 2022; Wu et al., 2024; Du et al.,
2023) and transformer-based (Chang et al., 2022; Yu
et al., 2022) approaches have achieved excellent gen-
eration quality. However, training of these models re-
quires hundreds of GPU days to obtain an image of
1024x1024 pixels.

An alternative to raster images is vector graphics,
whose scalability allows to achieve a sufficient image
resolution. However, there was no progress in gener-
ating vector images until recently. It was possible to
generate vector images containing only points or thin
curves (Frans et al., 2021; Li et al., 2020). In contrast,
artists usually draw vector images with color-filled
shapes. Despite serious differences between vector
graphics and raster graphics, VectorFusion (Jain et al.,
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2022) based on Stable Diffusion (Rombach et al.,
2022) was proposed to generate a raster image and
then vectorize it using Layer-wise Image Vectoriza-
tion (LIVE) approach (Ma et al., 2022). Main dis-
advantages of using LIVE vectorization are its long
generation time and requirement of hyperparameters
tuning for each case. At the same time, other vector-
ization approaches also have serious disadvantages,
such as non-optimal shape generation – inappropriate
shape number and their redundant complexity (Dzi-
uba et al., 2023). Therefore, we choose another ap-
proach of vector image generation without referring
to raster domain.

Vector image generation and text-to-image syn-
thesis in vector format is challenged by the com-
plete difference in the structure of images in the raster
and vector domains. While raster images are a ma-
trix of pixels, vector images contain a set of shapes
that need to be displayed on the canvas. One of the
most popular vector graphics formats is SVG format,
which is based on the XML text format. However,
generating such images directly in text format, for
example, using LLM, is a very difficult task (Tim-
ofeenko et al., 2023), especially because of the re-
quirement to conform to a regular file structure with
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(a) (b)
Figure 1: (a) The general scheme of VectorWeaver. Four transformer models are trained, two for encoding and two for
decoding. We denote embeddings with the colored rectangles in the scheme. Note that in our model diffusion is used
in the innermost latent space. (b) Images unconditionally generated by the proposed custom-trained VectorWeaver model.
Generation of random latent vector is performed using the diffusion model, the entire image is synthesised using VAE Decoder
(SVG and Path Decoders).

many shapes and their attributes. Currently there is
no such high-quality model, which could generate di-
verse and high-quality images in terms of structure
and content. Therefore, in our research we focus on
generating images consisting only of shapes formed
from Bézier curves with their attributes. A non-trivial
issue remains both the selection of the number of
shapes applied to the canvas and the number of curves
they should consist of. As a result, the existing ex-
cessive variability and uncertainty create instability
when generating images. Another problem is the low
prevalence of vector graphics, which results in a small
amount of qualitative and detailed vector images in
the public domain

In this paper we solve aforementioned problems
and make the following contributions:

• We propose a new computationally efficient ar-
chitecture for vector image generation based on
diffusion process and transformer-based VAE ca-
pable to process path sequences of an arbitrary
length, which we call VectorWeaver. The model
achieved competitive performance on the task of
unconditional vector image generation.

• We do not use vectorization approaches and dif-
ferentiable rasterization. Instead, we adapt exist-
ing loss functions for vector graphics domain. We
also involve the adversarial loss to improve the
smoothness of the generated images.

• We propose augmentation operations specific for
vector graphics.

2 RELATED WORK

2.1 Vector Graphics and Images
Vectorization

The basic idea of vector graphics is to store images
as a sequence of shapes to be drawn on the can-
vas. SVG is the most popular vector graphics format,
which defines the image using the XML markup. The
main tags describing figures are <circle>, <ellipse>,
<rect>, <polygon>, but the most universal tag cov-
ering all these types of shapes is <path>, an arbi-
trary line. To draw such a shape, commands moveTo,
lineTo, cubicCurveTo, and others with the corre-
sponding coordinates are used. Thus, the task of gen-
erating a vector image is reduced to generating a se-
quence of path tags, each of which is a sequence of
these commands.

The main purpose of vector graphics is to sketch
simple, often abstract, images; mostly demanded in
design, for example, are logos, fonts, and icons.
The key feature and advantage of vector images over
bitmaps is the preservation of resolution quality re-
gardless of scale. However, the process of rendering
vector graphics suffers in the presence of a large num-
ber of details and figures, therefore, generated images
should be quite compact and not over complicated.

An important milestone in the vector graphics do-
main was DiffVG (Li et al., 2020), a library for the
differentiable rasterization of vector images. The
main contribution of DiffVG is transparent – after
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vector images rasterization, we can use bitmap losses
to process them. DiffVG proves its efficiency by of-
fering the VAE and GAN models, both generating the
parameters of a vector image, whose rasterization is
similar to the input image. However, these two mod-
els allow generating only simple vector fonts, gener-
ating more complex images might require additional
losses and approaches.

One of the first works using DiffVG was the
Im2Vec vectorizer (Reddy et al., 2021). The pro-
posed VAE is a modification of the model proposed
earlier in DiffVG. The authors paid special attention
to the generation of closed figures and implemented
a new method that samples and sequentially deforms
the base circle. The authors claimed that collecting
large datasets of vector images ceased to be a neces-
sity, however, the experiments show that the thesis can
hold true only for simple images consisting of a very
small number of shapes.

The LIVE vectorizer (Ma et al., 2022) also ex-
tended opportunities of DiffVG. It iteratively adds
a new path to the image, which is further sequen-
tially optimized. It became possible to obtain vec-
tor analogs of raster images containing the specified
number of paths. However, this approach is very time-
consuming and vectorization even of a simple image
can be performed in more than tens of minutes.

Another iterative approach is used in the CLIPGen
vectorizer (Shen and Chen, 2021). The idea is to train
a class-guided model to predict if a new layer with
generated parameters should be added to the current
vector image. However, this approach only works for
very simple images and performs vectorization very
slowly.

An overview of vectorization methods is provided
in the article (Dziuba et al., 2023). The authors
find that modern approaches are either highly time-
consuming or not versatile. Therefore, we conclude
that vectorization is undesirable to use when generat-
ing vector images.

2.2 Vector Graphics Generation

Variational autoencoders (VAE) (Kingma and
Welling, 2019) were among the first popular architec-
tures for generating raster graphics. To memorize and
sample objects, it was originally proposed to predict
the mean and standard deviation, which defines the
continuous space of normal distribution. However,
the VQ-VAE (Van Den Oord et al., 2017) work
showed that additional quantization helps to improve
convergence without losing the diversity of generated
images.

The advent of techniques for generating raster im-

ages was followed by the emergence of methods for
synthesizing vector graphics. Among them, VAEs
were chosen as the main architecture for generating
vector graphics.

One of the first simplest models is the SVG-
VAE (Lopes et al., 2019), designed to generate fonts.
A character is represented as exactly one <path>,
and thus the task is to generate only one sequence of
path commands. To memorize the drawing style of
the characters, the authors trained a conditional VAE.
The second model generates the commands sequence
of the output symbol, taking the previously predicted
style of the reference character and the label of the
new character as input.

To generate images containing several shapes, the
DeepSVG architecture was proposed (Carlier et al.,
2020); it is also a VAE using a two-step method of
encoding and decoding an image. The first step en-
codes each image path, then the second step encodes
the set of previously encoded paths. After that, decod-
ing is performed twice in the reversed way. DeepSVG
allowed generating images containing several shapes
as well memorizing and synthesizing various param-
eters of shapes, for example, color, opacity, and width
of the strokes. A serious disadvantage of these ap-
proaches is that they strongly depend on the size of
the training dataset, the collection of which is a non-
trivial task. The authors train an autoencoder that
translates vector parameters into a latent space with-
out using rasterization. They represent each segment
as a token in a transformer (Vaswani et al., 2017).
However only small vector images (with maximum
of five paths) generation was presented, therefore, the
model is poorly applicable to the generation task.

In DeepVecFont (Wang and Lian, 2021), the au-
thors proposed to generate an additional raster image
by carrying out iterative optimization of the resulting
vector image at the end, bringing it closer to the raster
analog. This approach helps straighten the uneven-
ness of the vector image lines.

One of the attempts to use GAN for vector graph-
ics synthesis was the CoverGAN (Efimova et al.,
2022), designed to generate a vector image for a cover
based on the user’s music track and given emotions.
The authors developed the idea of Im2Vec and used
circles as well as ovals, triangles, and other regular
shapes as basic shapes for the variety of the results.

Iterative optimization has become another area
of developing models for generating vector im-
ages. CLIPDraw (Frans et al., 2021) and StyleCLIP-
Draw (Schaldenbrand et al., 2022) consider the gen-
eration and the style transfer according to a given text
description as a sequential process of changing the
current vector image, starting with a randomly gen-
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erated one. The CLIP model (Radford et al., 2021)
is used as a loss function, which allows evaluating
the text-to-image relationship. Generated images are
drawn with “strokes” and are having a lot of shapes,
which is not acceptable for vector graphics.

There is also a paper (Yan, 2023) that attempts
to combine ideas from the works of DeepSVG and
DeepVecFont. It proposes to generate an image not
only with a two-level VAE, but also at the same time
generate a raster copy of it and finally make a fine
tuning of the vector image referring to the raster one.
However, qualitative results were obtained only for
simple font images.

The models discussed in this section lack suffi-
cient quality. Furthermore, the use of DiffVG imposes
significant limitations due to its instability and the
inability to optimize image batches simultaneously.
However, we find the concept of DeepSVG, which
employs a two-tier VAE, to be quite intriguing, and
we incorporate it into our work.

2.3 Image Generation with Diffusion
Models

Diffusion models (Ho et al., 2020) are the state-of-
the-art for generating raster images (Saharia et al.,
2022). Its idea is to train a model to remove noise
added to images. The training consists of two stages.
At the first stage, called the forward pass, noise is
added to a slightly forgotten image. This operation is
repeated a large number of times (usually T = 1000).
The second stage, called the backward pass, is pre-
dicting the original image from the noisy one.

After training, we can feed the model with random
noise and after T steps of denoising obtain realistic
images.

The idea behind the Latent Diffusion (Rombach
et al., 2022) is that it is unnecessary to train the model
to remove noise from the original image. Instead, we
can train an autoencoder once and then operate not
with the image space, but with the latent space.

This approach has been applied to generate vec-
tor images in VectorFusion (Jain et al., 2022). It uses
the Stable Diffusion to generate a raster image, then
vectorizes it using LIVE (Ma et al., 2022), and fi-
nally fine-tunes it using the Sample Distribution Loss.
Despite the increased generation quality, the prob-
lems remain the same as in CLIPDraw, because the
Stable Diffusion model is also trained on raster im-
ages, which results in an image drawn “with strokes””
(homogeneous areas are covered with several shapes,
which is considered low-quality in vector graphics).
Moreover, this method inherits all drawbacks of the
LIVE method, for example, such as high image gen-

eration time and the requirement for pre-setting hy-
perparameters.

Another work (Zhang et al., 2023) applies Sta-
ble Diffusion with vectorization methods, in order to
change the input vector image according to the trans-
mitted text description. Using Stable Diffusion, the
method first generates a target bitmap based on the
text condition, then, based on dual features extracted
from deep networks, the input vector image is adapted
to the target bitmap and the final optimization of this
vector image is performed. In addition to the fact that
this method is too narrowly focused and does not al-
low generating vector images unconditionally or by
textual condition, the use of a pre-trained diffusion
raster model leads to problems similar to those that
arise with vectorizing approaches.

One of the latest works, which uses the diffu-
sion process, is SVGDreamer (Xing et al., 2024) - an
optimization-based method for creating vector images
on text prompts. The authors introduce semantic-
driven image vectorization method (SIVE), which
aim is to distinguish well the background and fore-
ground objects and to optimize them with the guid-
ance of attention maps, obtained from Text-to-Image
Diffusion model. After that Vectorized Particle-based
Score Distillation (VPSD) is used to finetune previ-
ously generated image. The authors show pleasant re-
sults, however, the resulting images contain too many
shapes and the whole process is quite highly loaded.
The main problem with the approach is the use of vec-
torization, which is difficult to correctly configure for
automatic use.

Nevertheless, the use of diffusion approaches has
significantly improved the quality of vector image
generation. We also use a diffusion model in our
work.

2.4 Vector Image Generation with
LLMs

A promising approach to generating vector graphics
may be the use of large language models (LLMs).
Since a vector image in SVG format is a text file, it
would be possible to train a language model to gen-
erate such files. There are studies (Nishina and Mat-
sui, 2024; Zou et al., 2024; Xu and Wall, 2024; Cai
et al., 2024) devoted to evaluating the quality of SVG
image generation using open, well-known pre-trained
chat models. The conclusion of them is that the qual-
ity of image generation is very strongly influenced by
prompt engineering, but at the same time it is almost
impossible to achieve high-quality results without se-
rious finetuning of models for generating vector im-
ages.

VectorWeaver: Transformers-Based Diffusion Model for Vector Graphics Generation

187



We found only one paper (Wu et al., 2023) ded-
icated to SVG generation using LLM. The authors
trained a Transformer-Decoder model to generate
SVG text tokens in an autoregressive way based on
a text condition. Although the authors demonstrate
good results in their work, we observed that the model
likely memorized the dataset on which it was trained
and it shows poor results for unseen data. As a result,
even for simple text queries like ”horse”, ”flower”
or ”dog” we obtained distorted images. The model
struggles to comprehend complex text queries and
generate diverse images. Nevertheless, we believe
that this approach holds great promise; however, it
requires a substantial high-quality dataset, which is
currently lacking.

3 METHOD

Our approach aims to avoid vector image rasterization
to solve the problem of “drawing with strokes” (when
vector shapes are unclosed or a lot of them form one
homogeneous area) by using transformers to train an
autoencoder and a diffusion model to generate image
embedding in a latent space. The main task here is to
train a highly qualitative autoencoder because the task
of training a diffusion model to generate embeddings
in a latent space has already been solved (Rombach
et al., 2022). To train the autoencoder, we need to
collect a dataset large enough to train a model, cre-
ate augmentations and loss functions for the vector
graphics domain and develop an optimal architecture
for fast learning.

In Section 3.1, we provide a detailed overview of
our data processing. We then discuss in Section 3.2
our approach as a whole, followed by an in-depth ex-
amination of its components: the encoding of paths
and entire images in Section 3.3, as well as the pre-
diction and decoding of paths based on the internal
representation in Section 3.4. Subsequently, we delve
into the details of applying the latent diffusion model
in Section 3.5 and in Section 3.6 discuss the loss func-
tions implemented in our study.

3.1 Dataset Collection

One of the main problems in the vector graphics do-
main is the lack of large open collections of data.
While Stable Diffusion was trained on the LAION
dataset (Schuhmann et al., 2022) consisting of five
billion images, papers on the generation of vector
images use less than one million images. For ex-
ample, DeepSVG was trained on the SVG-Icons8
dataset (Carlier et al., 2020) consisting of 100,000

images.
To train the initial version of our model, we need

images with a maximum of 20 paths, because al-
most all typical vector icons satisfy this condition.
We cannot use vectorizers due to the following rea-
sons: (1) they generate too many paths (Dziuba et al.,
2023) for simple images (software algorithms (Tian
and Günther, 2022)); (2) they are extremely time-
consuming (LIVE, ClipGen); (3) our experiments
with Im2Vec showed that it is very unstable and is
unable to memorize and vectorize images containing
more than 10 shapes.

To collect the largest dataset, we searched for im-
ages from open sources on the Internet. The most
of search results are giant maps, diagrams, and other
images containing thousands of paths. They are too
complicated and are not of interest to generate. We
managed to collect 10M images, most of which were
unsuitable for high-quality image generation as they
have curved lines, fonts, diagrams, and other clipart.
Therefore, we train our autoencoder model in two
stages: at first, we use all the collected data (with aug-
mentations) to train the model to operate with vector
shapes in a basic way, and on the second stage we
employ only high-quality data for the finetuning.

However, the amount of collected data is still not
enough to train such a model. To overcome this, we
created the following augmentations to expand our
dataset:

1. Images mixing (one path from each of the 20 im-
ages),

2. Path random shuffling within an image,

3. Adding anchor points on existing paths,

4. Reversing the order of anchor points in paths,

5. Cyclic shift of anchor points in cyclic paths,

6. Random colors change,

7. Adding random noise to coordinates of anchor
points.

Most of these augmentations spoil the images but it
should help the model to better understand the struc-
ture of vector images and avoid overfitting. In addi-
tion, we used randomly generated images to enlarge
the dataset; their effect is considered in the Discussion
section.

The proportions of data augmentations in the
dataset were as follows: approximately 80% con-
sisted of augmented images, 5% were random images,
and the remaining were original vector images. This
balanced approach helps enhance the model’s robust-
ness by providing a diverse set of training examples,
which is crucial for improving performance and re-
ducing overfitting.
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To fine-tune the model, we additionally collected
0.5M of images from open trusted sources1. At the
fine-tuning stage, we used only such augmentations
that did not change the final image, such as (3), (4),
and (5).

3.2 Autoencoder

We follow the DeepSVG (Carlier et al., 2020) dou-
ble staged encoding and decoding approach. At first,
we transform each path of the image to correspond-
ing embeddings using Path Encoder. Then we com-
bine these embeddings using SVG Encoder and ob-
tain the representation of the entire image. The decod-
ing process is made in reverse order. All paths at the
encoding and decoding stages are processed indepen-
dently. We train two transformers, one for encoding
and decoding paths (Path Encoder/Decoder) and one
for processing the entire image representation (SVG
Encoder/Decoder). The general scheme of our model
training is presented in Fig. 1a. We call it Vector-
Weaver because the second transformer “weaves” the
resulting vector images from curve embeddings.

3.3 Encoding Process

Path Encoder. To encode a path, we must first repre-
sent all its anchor point coordinates as tokens. Al-
though the coordinates are float values, a common
practice is to discretize them and use with a special
dictionary as in (Nash et al., 2020; Esser et al., 2021).
Inspired by this approach, we divided each axis by
N = 64 equal segments. Following this discretiza-
tion, we trained the embedding dictionary. Namely,
we employ two dictionaries, the first one for x coor-
dinates and the second for y coordinates. Besides, we
use the float value of the actual coordinate position
within its segment not to lose information about the
real location of the point (float in-block coordinates).

To create a token, we use the positions (indices)
of the anchor points inside its path and the position
(index) of this path in the SVG file. These discrete in-
dices are mapped to continuous learnable vectors us-
ing dictionaries. All features (discretized coordinates
tokens, float in-block values and their positional en-
codings) are passed through linear layers resulting in
the final token.

Additionally, we provide the transformer with in-
formation about the filling attribute of this path. To
do this, we trained three dictionaries of tokens, each
consisting of 255 embeddings. Using them, we trans-
late the RGB color into a set of three tokens for the

1https://freesvg.org/ and https://www.svgrepo.com/
collections/

transformer. The overall path encoding scheme can be
seen in Fig. 2. Summarizing, in path encoder we use
these types of tokens: tokens of segment coordinates,
positional encodings of segments, colour encodings
(RGB), token of the path position in the whole image.

We use the transformer encoder here to en-
rich these tokens with information about each other.
Therefore, after enriching all the embeddings via the
transformer encoder, we combine them into one com-
mon embedding path using concatenation and a small
multi-linear neural network.

SVG Encoder. Having passed all n paths through
the Path Encoder, we can obtain embeddings of all
paths. It remains to combine them into a common em-
bedding for the entire image. To do this, we use the
transformer decoder (using of decoder is simply an
implementation detail for generating two tokens, we
could also use an encoder instead of decoder), hav-
ing previously added positional embeddings to the to-
kens, as can be seen in Fig. 3.

The SVG encoder predicts two embeddings - µ
and σ - that are parameters of the normal distribu-
tion from which the final embedding of the image is
sampled. We use a standard reparameterization trick,
which also helps the diffusion model perform better.
The diffusion model removes noise from the embed-
ding of the image. Without reparametrization trick it
may not do it perfectly and miss the real latent embed-
ding. However, the reparameterization trick guaran-
tees that some area around each embedding µ is also
decoded into the image we need. Therefore, during
the training of the diffusion model, we set σ = 0 in
order to predict better central vectors of the latent dis-
tribution.

3.4 Decoding Process

SVG Decoder. First of all, we need to obtain informa-
tion about each path from the embedding of the entire
image (sampled from the latent space). Moreover, we
need to understand how many paths the original im-
age has.

To solve this problem, the transformer predicts not
only the embeddings of the paths but the probabil-
ity of their existence (technically, we use and train
a small network on each generated path embedding
for that). We impose a large loss on this part, which
severely penalizes the model for throwing out real
paths or drawing non-existent ones.

The SVG decoder is a regular transformer de-
coder, which should solve a one-to-many problem, as
presented in Fig. 4a.

Path Decoder. The remaining part is the predic-
tion of the vector image parameters. The embedding
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Figure 2: Path encoding scheme. The figure shows which characteristics of the shape we use and how we transform them into
an embedding of the entire shape. Namely, we encode to tokens discretized shape coordinates, their float in-block coordinates,
shape color, shape position in the entire image. Additionally, we utilize positional encoding for the coordinates.

Figure 3: SVG encoding scheme. This is a single trans-
former that combines several shapes embeddings into pa-
rameters of the normal distribution that defines the entire
image.

obtained from SVG Decoder is transformed to a fixed
set of tokens. We also utilize positional encoding
for these tokens. The sequence of tokens is passed
to Transformer Encoder in order to enrich them with
neighboring tokens. In the end we use a pair of linear
layers to obtain information about initial vector image
attributes.

3.5 Latent Diffusion

After training the autoencoder, we separately train an
unconditional diffusion model which operates in the
latent space of the trained VAE. We generated and
sampled target embeddings of the images from our
dataset using VAE Encoder (Path and SVG Encoders)
and trained the diffusion model to predict these em-
beddings from their noised equivalents. We used a
15-layer DenseNet for this task.

Noteworthy, all diffusion models allow adding
generation by prompts easily. For instance, for the
purpose of text-based generation, it is enough just to
feed text to the input of a network that removes noise
from the vector embeddings considering text-features.
However, due to the fact that our dataset does not have
high-quality text descriptions, text generation using
our model remains unresolved. We plan to solve this
issue, for example, by expanding our dataset using
text descriptions derived from raster Vision-Language
models. Therefore, at the moment the generation with
our model is unconditional and only one noisy vector
is supplied.
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(a) (b)

Figure 4: Blocks of Decoding layer. (a) SVG decoding scheme. This block transforms latent code to paths embeddings with
flags which indicates if a path has to be visible or not. (b) Path decoding scheme. This layer follows the SVG Decoder block
and predicts path parameters (coordinates and colors) of each generated path embedding.

3.6 Losses

As mentioned above, we impose cross-entropy loss
LCE with a large weight on determining the number
of paths in the decoder. In fact, this is a very simple
task for the model and this loss converges already at
initial steps.

To preserve the image structure, we impose MSE
loss LMSEx,y on the coordinates, thereby, forcing the
model to give the same output as it receives at the
input. However, we found that this approach alone is
not good enough and requires improvement, such as
the use of other loss functions, because the lines in the
generated images were not precise enough.

This effect is simpler to illustrate on raster images.
Training a raster convolutional autoencoder with the
MSE loss results in blurry images. It occurs because
the model is easier to learn a smooth transition instead
of sharp color change at the objects boundaries, while
the MSE loss remains quite low. Similarly, in the case
of vector images, long straight lines can be made a
little more crooked, without affecting the loss greatly.
Such images are discussed in the Discussion section.

To solve the problem with crooked contours, we
used a standard trick, adding an adversarial discrim-
inator. The idea is to add a loss Ladv from the scor-
ing model to the overall loss, discriminator is adver-
sarially trained to determine the input of the autoen-
coder from its output. The discriminator can easily
determine smooth transitions that a given raster image
is fake, motivating thus the autoencoder to generate
sharper images. Such an approach was also applied
in the original Stable Diffusion.

The discriminator architecture is similar to the in-
troduced VAE Encoder (Path and SVG Encoders).
The only difference is that it lacks discretization mod-
ules to maintain backpropagation through the outputs
of the model. Such an encoder has a weaker gener-
alizing ability and learns worse, but it easily detects
errors that the MSE loss is blind to.

We also added an MSE loss for color detection,
LMSEcolor , and the KL loss for VAE, LKL. As a result,
the total loss is:

L = λ ·LCE +LMSEx,y +Ladv +LMSEcolor +LKL. (1)

4 EXPERIMENTS AND RESULTS

4.1 Experimental Evaluation

The training our model, VectorWeaver, was per-
formed on 8 NVIDIA Tesla A100 GPU with 80 GB
of memory during 14 days. The fine-tuning was per-
formed using 2 NVIDIA Tesla A100 with 32 GB of
memory for one day. The AdamW optimization al-
gorithm was chosen for training with learning rate
cos(5e−6). The generation results are presented in
Fig. 1b and Fig. 5. The diffusion process is presented
in Fig. 7.

We compared our model with DeepSVG trained
on our vector images dataset and VectorFusion, which
needs no training. We measured basic generation
metrics FID and Inception Score (IS). We conducted
a survey asking participants to rate the vector im-
ages generated by the proposed model, DeepSVG,
and VectorFusion on a scale of 1 to 5 (1 stands for
completely inappropriate, 5 stands for the perfect fit).
100 assessors took part in the survey. The results of
the vector image generation with the three methods
are presented in Fig. 6. Moreover, we compared the
execution time of these methods. The comparison re-
sults are presented in Tab. 1. Additionally, we present
examples of image interpolation 8 provided by our
model.

Due to the lack of colors and crooked contours,
DeepSVG was always considered by assessors as the
worst option. Since VectorFusion generates realistic
and complex images, assessors sometimes rate it bet-
ter than the proposed method. However, its gener-

VectorWeaver: Transformers-Based Diffusion Model for Vector Graphics Generation

191



Figure 5: 100 randomly selected images generated by VectorWeaver.

Table 1: Comparison of DeepSVG, VectorFusion, and our method using IS and FID metrics, normalized survey results and
algorithms running times.

Method IS↑ FID↓ Assessors’
score↑

Avg time
per img, s

DeepSVG 1.53 30.7 0.19±0.03 0.06
VectorFusion 1.2 15.1 0.48±0.05 1800
VectorWeaver 1.8 4.3 000...777999±0.03 3

ated images often contain artifacts, and the drawing
is obtained “with strokes”. In 90% of cases, asses-
sors called our generation the best. We also measured
the Inception Score. The results of all three models
turned out to be quite low because the Inception net-
work was trained on a raster dataset. However, our
result was the best apparently due to a smaller num-
ber of artifacts and greater simplicity of the images.
We obtained similar results with the FID metric.

In comparison with DeepSVG the main advantage
of our model is the quality of generation. VectorFu-
sion generates complex vector images with a large
number of “strokes”, but it takes much time. In pa-
per (Jain et al., 2022), the authors stated that it takes
30 minutes to generate one image. In our case, the
diffusion model inference and decoder application re-
quires only 3 seconds on average.

4.2 Discussion

Training Without the Discriminator Loss. At the
initial stage, we trained our model without adversar-
ial loss. As seen in Fig. 9, the results are much awrier
compared with the ones generated with adversarial
loss use. The discriminator sees uneven joints on the
lines and detects the image as synthetic.

However, such images seem to be more human-
made, they look as if a person drew them in an image
editor. This can be used as a generator of images in
such a specific style.

Training on Random Images. In Subsection 3.1,
we mentioned adding random images to the dataset
(the coordinates of the paths are random noise). They
help prevent the model’s overfitting because it is
forced to remember them as well. If the model starts
to generalize random images poorly, then the loss on
this part of the dataset grows. In practice, 5 percent of
the images in our dataset were generated randomly.
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Figure 6: Qualitative comparison of vector image generation results using our VectorWeaver model, DeepSVG, and Vector-
Fusion.

Figure 7: The diffusion process. Each line corresponds to a generation of a single image. We start with random noise in a
latent space and remove it until we come to a good result. We produce 1000 steps and show every hundredth.

Limitations. At the moment, our method oper-
ates with images consisting of no more than 20 paths
defined by no more than 20 anchor points. The selec-

tion of the number of paths was dictated by the lim-
ited computational resources. However, we believe
that our approach would generalize to more compli-
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Figure 8: Example of interpolation with our model between two randomly generated images from left to right.

Figure 9: 100 examples of generation without adversarial loss.

cated images if we train the model using more com-
putational resources.

Unfortunately, it is currently difficult to assem-
ble a high-quality and large dataset of text and im-
age pairs, therefore, we made the generation uncon-
ditional. However, once such a dataset is assem-
bled, one can easily add text generation by adding
CLIP (Radford et al., 2021) model as a text feature
extractor for a diffusion model.

5 CONCLUSION

In this work, we have proposed a method to gener-
ate vector images based on the diffusion process and
stacked transfomer-based autoencoders. Our method,
VectorWeaver, operates exclusively within the vector
image domain. As a result, it avoids many of the chal-
lenges associated with transforming images between
raster and vector formats. Moreover, to enlarge train-
ing dataset, we have proposed vector image augmen-
tations. We have demonstrated that our model is capa-
ble of generating vector images consisting of an arbi-
trary number of paths and compared it with DeepSVG
and VectorFusion. The comparison showed that our
model generates smoother vector images and does it
600 times faster than VectorFusion. We trained the
proposed model to generate colored icons, but it can
be trained to generate more complex images.

In the future, we plan to add more augmentations,
make the model text-conditional and to train it with
more resources. We expect the proposed architecture

to serve as a strong baseline for further research in the
little-explored field of vector graphics.
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