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Abstract: Generalized Few-shot Semantic Segmentation (GFSS) targets to segment novel object categories using a few
annotated examples after learning the segmentation on a set of base classes. A typical GFSS training involves
two stages - base class learning followed by novel class addition and learning. While existing methods have
shown promise, they often struggle when novel classes are significant in number. Most current approaches
freeze the encoder backbone to retain base class accuracy; however, freezing the encoder backbone can po-
tentially impede the assimilation of novel information from the new classes. To address this challenge, we
propose to use an incremental learning strategy in GFSS for learning both encoder backbone and novel class
prototypes. Inspired by the recent success of Low Rank Adaptation techniques (LoRA), we introduce incre-
mental learning to the GFSS encoder backbone with a novel weight factorization method. Our newly proposed
rank adaptive weight merging strategy is sensitive to the varying degrees of novelty assimilated across various
layers of the encoder backbone. In our work, we also introduce the incremental learning strategy to class
prototype learning for novel categories. Our extensive experiments on Pascal-5i and COCO-20i databases
showcase the effectiveness of incremental learning, especially when the novel classes outnumber base classes.
With our proposed Weight Factorization based Incremental Learning (WFIL) method, a new set of state-of-
the-art accuracy values is established in Generalized Few-shot Semantic Segmentation.

1 INTRODUCTION

Supervised training of semantic segmentation (SS) re-
quires large labelled training data. This is often chal-
lenging in many scenarios since the labelling pro-
cess is quite labour intensive due to the pixel level
labelling requirements. Few-shot Semantic Segmen-
tation (FSS) methods address this issue to a certain
extent with the design of architectures that utilizes the
labels from a limited set of support images to perform
segmentation on a query image. Generalized few-shot
Semantic Segmentation (GFSS) assumes a more real-
istic setting where segmentation is initially learnt on a
set of base classes with large number of labelled data.
GFSS further adapts the network to learn segmenta-
tion on a set of novel classes with limited labels with
the objective of performing accurate segmentation on
both base and novel classes.

There are primarily two challenges involved with
GFSS training - i) Achieving good segmentation ac-
curacies on novel classes with limited labels ii) Hold-
ing the accuracy of base classes while learning novel
classes. Prior works in GFSS (Tian et al., 2022a),
(Liu et al., 2023b),(Huang et al., 2023),(Liu et al.,
2023a) have focussed on avoiding detoriation of accu-

racy of base classes by freezing the encoder backbone
network while learning novel classes. This limits
the capacity of encoder back bone to represent novel
classes especially when the novel classes are signif-
icant in number. Direct fine-tuning of encoder back-
bone while training novel classes is not recommended
as it affects the base class accuracy. We suggest util-
ising an incremental learning technique for GFSS to
overcome this restriction. Our method avoids impact-
ing base class accuracy with a specially designed Low
Rank Adaptation (LoRA) based weight merging strat-
egy.

The major contributions of our proposed work
can be summarized as follows:

i) We introduce a novel incremental learning
framework for learning the new classes without
compromising on the base class accuracy by utilizing
LoRA based fine-tuning framework
ii) We design a novel weight initialization strategy
for LoRA based fine tuning suited for the proposed
incremental learning frame work
iii) We also propose a novel weight merging strategy
across various encoder layers considering different
rates of ’knowledge assimilation’ in encoder layers.
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iv) Finally, we adapt the novel class prototype
learning to our proposed incremental learning
framework

2 PAST WORKS

The works on few-shot semantic segmentation (FSS)
(Shaban et al., 2017) have gained much interest after
the success of several few-shot learning (Finn et al.,
2017)(Ravi and Larochelle, 2017) methods. Few-
shot Semantic Segmentation uses just a few available
annotated support images to provide a dense pixel
level label prediction for the query images. FSS tech-
niques(Dong and Xing, 2018)(Rakelly et al., 2018)
primarily relied on a dual-branch architecture, in
which a query image is segmented using learned pro-
totypes from support images. Many of the later works
investigated on various sophisticated methods to as-
similate knowledge from support samples to improve
query image segmentation (Li et al., 2021)(Liu et al.,
2022b)(Tian et al., 2022b) (Wang et al., 2019)(Yang
et al., 2020)(Zhang et al., 2021). These methods in-
cluded building multiple prototypes per class each ac-
tivating different regions of the query image, using
Graph CNNs to establish correspondences between
support and query images (Wang et al., 2020), im-
printing weights for new classes (Siam et al., 2019),
and utilising vision transformers to better transfer
category information (Liu et al., 2022a)(Lu et al.,
2021)(Zhang et al., 2022).

Even with significant work done on FSS, the
simultaneous segmentation of both base and novel
classes in an image remained a challenge for few-shot
segmentation techniques. To address this issue, Tian
et al. developed the Generalised Few-shot Semantic
Segmentation (GFSS) technique in their pioneering
work(Tian et al., 2022a). Their method segments both
known and new object classes from an image in one
step, without needing paired support images. It uses
contextual information from the support and query
images to improve the classifier for segmenting the
new object classes. Some other recent works in GFSS
include: (Liu et al., 2023b) proposing graph network-
based class contrastive loss minimizing intra-class
variations, maximizing inter-class dissimilarity; (Ha-
jimiri et al., 2023) using DIaM to maximize mu-
tual information between features-predictions while
ensuring consistency with prior model via KL di-
vergence; (Huang et al., 2023) employing fore-
ground perception module, kernel techniques for ob-
served classes, prototype learning for novel objects;
(Lu et al., 2023) using Transformer-based calibra-
tion module balancing base-novel class predictions,

Figure 1: Training framework of proposed system. Novel
classes are divided to T subsets and incrementally learnt
using LoRA based backbone adaptation.

trained episodically using cross-covariance between
features-scores.

The current state-of-the-art GFSSeg method (Liu
et al., 2023a) builds a set of orthogonal prototypes,
each of which represents a semantic class, and makes
predictions for each class independently based on the
features projected onto its prototype. This technique
builds upon all of the seminal work on GFSS. More-
over, by employing a residual of feature projection
as the background representation, it tackles semantic
shifting, which occurs when the backdrop no longer
contains pixels from novel classes during the updat-
ing phase.

3 PROPOSED WORK

3.1 Few Shot Segmentation with
Orthogonal Prototypes

Our proposed method named as WFIL (Weight Fac-
torization based Incremental Learning), tries to over-
come the limitations of novel class learning in prior
works by incrementally absorbing the additional in-
formation regarding novel categories into the neural
network architecture learnt for base classes. Though
our proposed strategy is generic enough to be incor-
porated to different GFSS architectures, we use the
architecture in (Liu et al., 2023a) as a baseline to
our experiments.(Liu et al., 2023a) learns orthogonal
class prototypes for novel categories using specially
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designed orthogonal loss functions and achieves state-
of-the-art accuracies in genaralized few shot segmen-
tation. With an objective to retain the base class accu-
racy while learning novel classes, (Liu et al., 2023a)
freezes the encoder backbone. We argue that freez-
ing the encoder backbone can potentially limit the
flexibility of learning novel classes as explained be-
fore. As a better alternative , we propose an incre-
mental learning mechanism for novel classes where-
in we can achieve improved segmentation accuracies
for novel classes while retaining most of the accuracy
of base classes.

3.2 Incremental Learning in Few Shot
Segmentation

As mentioned earlier, the baseline architecture in (Liu
et al., 2023a) learns orthogonal prototypes for novel
categories but retains the same encoder backbone to
maintain base class accuracy. We need to adapt the
encoder backbone to efficiently incorporate the novel
information but should be careful enough not to un-
learn the information learnt for base classes to retain
base class segmentation accuracy. Low Rank Adap-
tation (LoRA) method (Hu et al., 2021) originally
proposed for efficient fine-tuning in Large Language
Models (LLMs) can be effectively adapted to suit our
requirements in GFSS learning as well. The key idea
behind LoRA is that while the weight matrices in a
deep learning model’s dense layers are usually full-
rank, when the model adapts to a particular task, the
pre-trained models demonstrate a low ”intrinsic di-
mension”. Hence the models can still learn effectively
despite projection to a smaller subspace. In this work,
for the first time, we comprehensively explore the in-
fluence of modifying the encoder weights during the
GFSS novel class training phase. As LoRA fine tun-
ing maintains the original weights frozen, the target of
maintaining base class accuracy will be also achieved.
In LoRA (Hu et al., 2021), a low-rank decomposition
of the original weight matrix W0 is performed using
W0 +∆W = W0 +BA, where B ∈ Rd×r, A ∈ Rr×k,
and the rank r = min(d,k), is used to confine the up-
date of any pre-trained weight matrix W0 ∈ Rd×k.
While A and B have trainable parameters, W0 is
fixed and does not receive gradient changes through-
out training. W0 and ∆W = BA are multiplied with
the same input, and their respective output vectors are
summed coordinate-wise. After the LoRA change,
the forward pass that previously looked like h = W0x
gives h = W0x+∆Wx = W0x+BAx

For the efficient learning of the LoRA parameters,
we adopt an incremental way of training the encoder
backbone. In the GFSS setting we have a certain

dataset containing the base classes set Cbase with ade-
quate data available and novel classes set Cnovel, with
a small amount of annotated data. We divide the Cnovel
into subsets D = {(Xi,Yi)}i∈{1,2,...,m}, where m is the
total number of classes in that particular subset, Xi is
the input image for the i-th class, and Yi is the cor-
responding ground truth segmentation mask for the
i-th class. To progressively add additional classes, a
subset Dt contains all the classes from Dt−1 along
with k new classes that were previously not there in
the subset Dt−1.Each subset Dt is made up of images
and their ground truth mask corresponding to a set
of classes Ct , such that C1 ∪C2 ∪ . . .∪CT = Cnovel.
During the incremental learning process, the model
is trained and evaluated iteratively on one subset at
a time; hence, if there are T subsets, the model will
be trained for T iterations. This method of incre-
mental training has significantly improved the base-
line model.

3.3 Weight Factorization Based
Initialization for Incremental
Learning

In LoRA based fine tuning (Hu et al., 2021), the
new trainable weight matrices A and B are initial-
ized with a random Gaussian initialization and with
zeros respectively. As our objective is to learn in-
crementally the new information from novel class set,
we propose to initialize the weight matrices A and B
with ’condensed knowledge’ of the past learnt infor-
mation. Hence we initialize the lora A and lora B
weight matrices with the top r entries in the singular
value decomposition of the original weight matrix W0,
as shown in Figure 2. Figure 2(a) shows the initializa-
tion from (Hu et al., 2021) and figure 2(b) shows our
modified initialization for incremental GFSS learn-
ing. The SVD re-constructed value of W0, which com-
prises the weights from the base class learning phase,
is used to initialize the lora A and lora B weight ma-
trices during the first iteration of the novel class learn-
ing phase.In subsequent iterations, the weight matri-
ces for lora A and lora B are initialized using SVD
decomposition of the weight matrix from the previous
iteration, thereby transferring the knowledge learned
in iteration T − 1 to the current iteration T , ensuring
continuity in the learning process.

3.4 Rank Based Layer-Wise Scaling and
Weight Merging

According to (Hu et al., 2021), the rank r is a hyper-
parameter that controls the size of the low-rank ma-

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

558



Figure 2: SVD based initialization in LoRA based incremental learning for GFSS.

trices used to update the pre-trained model’s weights.
In our method, the new weight values are initialized
with the SVD decomposition of W0 considering top r
singular vectors, where r is decided by fixing a pre-
defined percentage drop in top singular value of W0.
We name the selected value r as the ’rank of incre-
mental update’. For instance, we retain only those
singular values that are 70 percent or more of the top
singular value. This threshold, however, is specific to
the dataset being used. This approach aims to retain
the most significant components of the weight matrix
while ignoring insignificant noise. The LoRA param-
eters and the initial weight W0 are multiplied with
the same input during the model assessment phase,
and the corresponding output vectors are then added
coordinate-wise:

Wx+∆W =W0x+δ.BAx = h (1)

A scaling factor δ is used to scale down the
LoRA weights while adding them back to the original
weights.This regulates how much the original weights
are updated from LoRA based training. We propose
to use different scaling factors to different layers in
the encoder backbone as the later will need different
amounts of incremental update across the layers. Our
studies indicate that rank of the original weight matrix
increases differently across every layer in each itera-
tion of incremental learning. This demonstrates the
capacity of the model to learn from the data presented
differently across various layers. The incremental up-
date needed for each encoder layer in nth iteration can
be related to the delta change in the ranks of (n−1)th

and nth iterations for the same layer. Scaling for layer
l is, δ = 1

1+δl
, where δl is the rank difference between

the (n−1)th and nth iterations for lth layer weight ma-
trix. A larger rank difference in subsequent iterations
for a layer implies a larger displacement of weights
from the base encoder. To maintain the base accu-
racy, we inversely scale the LoRA weights based on
the incremental rank update from each layer.

3.5 Incremental Update of Novel Class
Weight Prototypes

In our proposed method of incrementally learning or-
thogonal prototypes to represent novel classes, the set
of all novel classes is partitioned into subsets as men-
tioned earlier. The learning process proceeds itera-
tively over these subsets. For the initial subset, a pro-
totype weight matrix is learned with orthogonal ini-
tialization .The weight matrix has a shape of n x C,
where n is the number of classes in the subset, and C
is the number of channels. In subsequent iterations,
when a new subset of classes is introduced, the proto-
type weight matrix from the previous iteration is aug-
mented with additional rows initialized with orthog-
onal weights to accommodate the new classes. The
augmented weight matrix is then fine-tuned learning
the orthogonal representation of the new classes in the
current subset, simultaneously optimizing the previ-
ously learned weights representing the classes from
the previous subset.This process continues iteratively,
with the weight matrix being incrementally expanded
and fine-tuned until all the novel classes have been
covered. The final weight matrix represents the entire
set of novel classes, leveraging the previously learned
representations to facilitate incremental learning and
potentially improving generalization and convergence
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compared to learning each subset independently from
scratch.

4 EXPERIMENTS

We conducted experiments on the GFSS databases -
Pascal-5i and COCO-20i to test our proposed method.
As per the standard protocol of GFSS learning, the
new classes in both datasets are evenly divided into
four folds for cross-validation. Nevertheless, in accor-
dance with our incremental learning approach, each
fold’s novel classes are separated into a number of
subsets, with subset Dt including all the novel classes
from subset Dt−1 in addition to a few more new
classes. Following (Liu et al., 2023a) once a model
is validated on one fold, the classes in that fold serve
as ”novel classes,” while classes from the other 3 folds
plus background act as ”base classes.” In the base
class learning phase, images containing at least one
base class pixel are selected from the original training
set. Novel class pixels in these images are treated as
background during this stage. In our method, while
incrementally learning novel classes in tth iteration
from a subset Dt , we mimic a K-shot learning setting.
K images for each of the novel classes included subset
Dt are randomly sampled during the novel class up-
dating phase. For instance, subset Dt may contain the
three novel categories (c1, c2, and c3). For subset Dt ,
the K samples from each of these classes (c1, c2, and
c3) make up the few-shot training data. The training
data for subset Dt+1 comprises of the novel classes
from subset Dt as well as three more novel classes
that are absent from subset Dt . The whole validation
set is used to evaluate performance on both the base
and novel classes. The model is optimised by util-
ising the mini-batch stochastic gradient descent with
momentum of 0.9 and weight decay of 0.0001. The
starting learning rate is set to 0.01 during base class
learning, and it is annealed down to zero.

4.1 Training Strategy

Our proposed method builds upon the backbone en-
coder architecture introduced by Liu et al. (Liu et al.,
2023a), which also incorporates the learning of or-
thogonal novel class prototypes. However, we di-
verge from their approach in a crucial aspect: the
base-novel class split ratio. While Liu et al. used a
15-5 base-novel split for the Pascal-5i database and a
60-20 split for the COCO-20i database, we intention-
ally modify these ratios to challenge our method un-
der more demanding conditions. Specifically, we em-
ploy a 5-15 base-novel split for Pascal-5i and maintain

the 60-20 split for COCO-20i. This configuration for
Pascal-5i creates a scenario where novel classes sig-
nificantly outnumber base classes. We kept the base-
novel split for COCO-20i unchanged because here the
novel classes are already significant in number and
owing to the challenges of the COCO-20i dataset cur-
rent models in GFSS struggle with the COCO-20i

dataset.Such a setup represents a more challenging
task that current GFSS methods often struggle to ad-
dress effectively. By testing our method under these
conditions, we aim to validate its robustness and effi-
cacy in scenarios with a high number of novel classes,
thus pushing the boundaries of GFSS capabilities.

We have incrementally added novel classes to the
training dataset until all novel classes are incorporated
during the novel class updating phase. We have ex-
perimented with two different methods of incremen-
tal addition for Pascal-5i Dataset: the first method in-
cluded adding three novel classes to a subset Dt with
each iteration, while the second method added five
novel classes to a subset Dt with each iteration. For
COCO-20i Dataset we experimented by adding five
additional novel classes to the subset Dt in each sub-
sequent iteration using the incremental addition ap-
proach. Once the model is trained and evaluated on
subset Dt , for the training of the next subset Dt+1, we
again perform a LoRA decomposition of the latest en-
coder weights along with SVD initialization as men-
tioned in Section 3.3. For each subset we have trained
for 200 epochs with a batch size of 2 for Pascal-5i and
for 500 epochs with a batch size of 8 for COCO-20i

dataset.

4.2 Result Discussion

All results presented in this paper are for one-shot
segmentation (K = 1), which is most challenging task
in GFSS. Table 1 shows the comparison between our
proposed method and the state of the art method in
GFSS , POP (Liu et al., 2023a). We conducted ex-
periments for a split of 5 base classes and 15 novel
classes for Pascal-5i Dataset with two different incre-
mental addition, 3 classes and 5 classes in every step.
It can be observed that the proposed method achieves
best accuracy numbers in base and novel classes when
novel classes outnumber base classes.

We performed ablation studies to understand the
impact of the different components in our proposed
framework. Experiments are first performed with
only incremental learning (IL) added to the POP ar-
chitecture, as discussed in Section 3.5 . The encoder
backbone is then modified with LoRA based fine-
tuning using standard initialization (LoRA). Further
the experiments are done with our proposed initial-
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Table 1: Results for the Pascal-5i Dataset with 5-15 Base-Novel split and incremental addition of 3 and 5 classes. We report
mean Intersection over Union (mIoU) in percentage (%) across three categories: base classes (Base), novel classes (Novel),
and all classes combined (Base + Novel = Total).

Base (%) Novel (%) Total(%)
POP(Liu et al., 2023a) 51.98 23.51 31.65
WFIL (5 classes increment), ours 57.14 29.50 37.40
WFIL (3 classes increment), ours 61.77 27.48 37.27

Table 2: Ablation study on various modules in our method. The experiments are performed on Pascal-5i dataset for a base-
novel split of 5-15.

5 classes increment 3 classes increment
Base Novel Total Base Novel Total

IL 56.83 25.84 34.69 53.15 28.41 35.48
IL+LoRA 56.73 28.75 36.75 58.21 28.75 37.16
IL+LoRA+SVD 56.72 29.09 36.98 61.89 27.27 37.16
IL+LoRA+SVD+Scaling 57.14 29.50 37.40 61.77 27.48 37.27

ization (SVD) along with LoRA fine-tuning. Finally
the rank adaptation based weight merging (Scaling)
is applied to various layers in the encoder backbone.
Table 2 captures accuracy values obtained for 5 class
increment and 3 class increment. The improvement in
accuracy numbers are consistent and substantiates the
significance of each module proposed in our work.

Table 3 presents a comparative analysis of various
GFSS methods, including our proposed approach, on
the challenging COCO-20i dataset. While most exist-
ing methods struggle with COCO-20i dataset’s inher-
ent complexities, our method demonstrates superior
performance over SOTA approaches. We maintain
the conventional split of 60 base and 20 novel classes,
as the number of novel classes is already significant
and better represents real-world scenarios. The incre-
mental learning process, which involves progressively
adding five new classes to each subsequent subset,
further validates our method’s robustness. Notably,
our approach achieves substantial improvements in
novel class accuracy while effectively maintaining
base class performance, demonstrating its capabil-
ity to handle the complex nature of the COCO-20i

dataset, where current methods typically struggle to
maintain such balanced performance.

These results align with our expectations, in our
proposed model framework the modified version of
LoRA fine-tuning is designed to enhance novel class
accuracy while preserving base class performance.
It’s important to note that we do not present sim-
ilar results for the traditional 15-5 base-novel split
on the Pascal-5i database. This is because our pro-
posed method specifically targets scenarios with a
high number of novel classes, which is not repre-
sented in the conventional Pascal-5i split.

The experimental results demonstrated remark-
able performance patterns across datasets. On Pas-

cal, our method achieved significant improvements
in both base and novel class accuracies, showcasing
particularly strong performance on the challenging 5-
15 Base-Novel split, which is notably more difficult
than the traditional 15-5 split. This achievement is
especially significant as the model effectively learned
to perform well with fewer base classes while gen-
eralizing to a larger number of novel classes. For
the more complex COCO-20i dataset, where existing
approaches typically struggle, our method not only
maintained strong base accuracy but also achieved
substantial improvements in novel class performance,
surpassing previous SOTA results. This exceptional
performance on COCO-20i can be attributed to our
method’s robust learning framework, which effec-
tively handles the dataset’s inherent complexities in-
cluding greater object variety, scale variation, and oc-
clusion. The strength of our approach is validated by
these close to real-world scenarios where data is pre-
sented with occlusion and scale variability and other
challenges and a more challenging distribution that
better reflect real-world scenarios where novel cat-
egories often match or exceed the number of base
classes in quantity. These results demonstrate our
method’s superior capability in handling challenging
few-shot semantic segmentation scenarios.

5 CONCLUSION

In this work we have showcased that the novel class
accuracy in Generalized Few-shot Segmentation can
be improved by a good margin if we adapt the en-
coder backbone using incremental learning. It was
also shown that the base class accuracy can be re-
tained when the backbone adaptation is done using
LoRA fine-tuning along with our proposed weight ini-
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Table 3: Comparison of GFSS accuracy on COCO-20i Dataset across various methods. Our method (WFIL) uses the final
combination of IL+LoRA+SVD+Scaling.

Method Base (%) Novel (%) Total (%)
CAPL (Tian et al., 2022a) 44.61 7.05 35.46
Harmonizing Base and Novel class (Liu et al., 2023b) 46.89 8.83 37.48
PKL and OFP for GFS-Seg (Huang et al., 2023) 46.36 11.04 37.71
POP (Liu et al., 2023a) 54.78 18.07 45.71
WFIL (Our Method) 54.51 21.93 46.46

tialization and weight merging techniques. Our pro-
posed method achieved state of the art accuracy val-
ues in Generalized Few-shot Segmentation when the
number of novel classes are large or there is diversity
and challenges in the dataset.
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