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Abstract: The advent of high-throughput transcriptomic technologies has generated vast transcriptomic datasets, 
challenging current analytical methodologies with their sheer volume and complexity. The Grouping-Scoring-
Modeling (G-S-M) approach is one of the recent approaches that treat groups of genes (or clusters of genes) 
by embedding prior biological knowledge with machine learning in order to detect the most significant groups 
for classification tasks. The G-S-M might need to treat thousand ten thousand of groups (scoring those groups) 
which might affect the speed and performance of the algorithm.  In response, this study introduces the Pre-
Scoring G-S-M model, an enhancement of the established Grouping-Scoring-Modeling (G-S-M) framework. 
This approach incorporates a Pre-Scoring component that leverages the Limma package for its empirical 
Bayes methods to optimize initial transcriptomic data evaluation through a percentage-based selection of 
statistically significant gene groups. Aimed at reducing computational demand and streamlining feature 
selection, the model also addresses data redundancy by eliminating duplicate gene-disease associations. 
Application to nine human gene expression datasets from the GEO database showed promising results. It 
demonstrated improvements in computational efficiency and analytical precision while reducing the number 
of features selected per dataset compared to the traditional G-S-M approach, without compromising accuracy. 
These initial findings highlight the Pre-Scoring G-S-M model's potential to enhance transcriptomic data 
analysis, indicating a promising direction for future bioinformatics research.  

1 INTRODUCTION 

Advancements in high-throughput technologies and 
cost reductions have greatly expanded transcriptomic 
data generation, providing valuable insights into 
biological systems (Wong, 2019). Instead of studying 
diseases through isolated “omic” lenses, researchers 
now employ a multi-omics approach for a 
comprehensive understanding of molecular 
mechanisms (Subramanian et al., 2020). This 
integrative strategy is vital for elucidating disease 
onset and progression (Wekesa & Kimwele, 2023). 
Yet, the volume and complexity of data pose 
analytical challenges that are increasingly addressed 
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by machine learning and cloud computing, 
facilitating the discovery of new biomarkers, 
improved drug development, and personalized 
medicine (Oh et al., 2021; Camacho et al., 2018). 

Machine learning models, both supervised and 
unsupervised, can uncover hidden patterns in large 
datasets, enabling accurate disease prediction, the 
identification of subgroups for targeted therapies, and 
better patient profiling (Reel et al., 2021). However, 
the high dimensionality of omics data necessitates 
rigorous feature selection techniques to avoid 
overfitting and data bottlenecks (Li et al., 2022; 
Bhadra et al., 2022; Xu & Jackson, 2019). By 
isolating the most relevant features, researchers can 
more easily interpret results, discover novel 
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biomarkers, and refine disease classification (He & 
Yu, 2010). Approaches range from individual feature 
selection (IFS) to group-based feature selection 
(GFS), each with distinct advantages depending on 
computational resources and the need to capture 
feature interdependencies (Zheng et al., 2021; 
Kuzudisli et al., 2023). Strengthening these methods 
will be crucial for future breakthroughs in multi-
omics research and personalized healthcare 
(Remeseiro & Bolon-Canedo, 2019; Pudjihartono et 
al., 2022). 

To address the challenges of feature selection in 
omics research, new tools incorporating biological 
filters have been developed (Pudjihartono et al., 
2022). Among these advancements, the Grouping-
Scoring-Modeling (G-S-M) framework stands out for 
its rigorous approach to omics data analysis. The G-
S-M technique is a systematic method to integrate 
biological data into machine learning models, 
enhancing the understanding of complex biological 
systems (Yousef et al., 2020). Utilizing databases like 
DisGeNET (Piñero et al., 2015) and KEGG 
PATHWAY (Kanehisa & Goto, 2000), G-S-M 
organizes omics data into biologically meaningful 
groups and merges this domain knowledge with 
statistical approaches (Yousef et al., 2024). 

G-S-M has been used in many different 
bioinformatic tools such as PriPath (Yousef et al., 
2023), CogNet (Yousef et al., 2021), maTE (Yousef 
et al., 2019), GediNET (Qumsiyeh et al., 2022), 
miRcorrNet (Yousef et al., 2021), 3Mint (Unlu Yazici 
et al., 2023), TextNetTopics (Yousef & Voskergian, 
2022), and miRdisNET (Jabeer et al., 2023). 

However, a significant challenge within the 
traditional G-S-M framework and its related tools is 
the extensive number of groups they generate, which 
then need to be scored using computationally 
intensive machine learning models. This process is 
both time-consuming and inefficient, as not all groups 
equally contribute to meaningful biological insights. 
To address this, our research introduces a 
preprocessing enhancement: the Pre-Scoring 
component. This new addition efficiently prioritizes 
biological groups based on their statistical 
significance before the more resource-intensive 
scoring phase. By initially ranking and prioritizing 
gene groups through statistical filtering, the Pre-
scoring component facilitates quicker data processing 
and reduces computational demands. Early results 
indicate that this adaptation not only streamlines the 
analytical process but also enhances the precision of 
feature selection, representing a substantial 
advancement in bioinformatics.  

2 METHODS 

2.1 G-S-M Framework Overview 

2.1.1 Grouping Component 

The "G" component initiates the G-S-M process by 
organizing features into smaller, distinct groups based 
on pre-existing biological knowledge. Using a user-
provided grouping file, features are categorized 
according to their associations with specific diseases 
or biological pathways, sourced from open-source 
databases. This step ensures the analysis is focused on 
biologically coherent groups, enhancing the 
contextual relevance and accuracy of the 
investigation. 

2.1.2 Scoring Component 

Following grouping, the "S" component evaluates the 
groups. Training data is split into 90% training and 
10% testing set. A classifier is trained on the training 
set and used to predict outcomes on the testing set, 
generating performance metrics. This process is 
repeated five times, and the average metrics are used 
to score each group. Groups are then ranked by their 
scores. 

2.1.3 Modeling Component 

In the final phase, the Modeling component uses the 
top-ranked groups from the scoring phase to develop 
predictive models. Models begin with features from 
the highest-ranking group, then are incrementally 
enriched by adding features from the next highest-
ranked groups—up to ten cumulative groups. This 
sequential integration highlights the incremental 
value each group offers. A consistent machine 
learning algorithm (e.g., Decision Tree, Support 
Vector Machine, or Random Forest) ensures reliable 
evaluation, while accuracy, specificity, and other 
metrics help identify the most effective combination 
of groups. 

The operational workflow of the G-S-M approach 
relies heavily on Monte Carlo cross-validation 
(MCCV) for robustness and reliability. MCCV 
repeatedly partitions the data into training and testing 
sets, ensuring consistent predictive performance 
across different data subsets and addressing potential 
overfitting and biases. Undersampling is also used to 
manage data imbalance, ensuring fair representation 
of all classes in the training data.  Together, MCCV 
and undersampling bolster the G-S-M framework’s 
capability to deliver dependable insights from  
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Figure 1:  Displays the operation of the Pre-Scoring G-S-M Tool. The primary function of Pre-Scoring G-S-M is to combine 
existing biological data to categorize genes according to their association with a grouping factor, such as diseases. This 
information is supplied by the user. 

complex biological data. Figure 1 depicts the basic 
flow of the Pre-Scoring G-S-M approach.  

2.2 Data Collection and Preparation 

While G-S-M is adaptable for various omics data, the 
validation used a disease-gene association database 
and gene expression datasets from GEO, focusing on 
gene-disease pairs.  

Data for training and testing the machine learning 
model comes from DisGeNET and GEO. DisGeNET 
is a discovery platform with extensive gene-disease 
associations. It compiles data from scientific 
literature, public databases, and expert-curated 
resources, using NLP to extract relevant information. 
DisGeNET's v7 dataset includes 30,170 diseases and 
21,666 genes, with 3,241,576 associations (Piñero et 
al., 2021). Filters were applied to manage data size, 
focusing on 'disease' entries and 'Neoplastic Process' 
or 'Disease' tags, resulting in 15,991 genes and 3,929 
diseases with 329,936 associations. The Gene 
Expression Omnibus (GEO) database is an 

international repository for gene expression and 
functional genomics datasets (Clough & Barrett, 
2016). Researchers submit data from experiments 
designed to investigate gene expression patterns 
(Wang et al., 2019). Nine datasets related to human 
gene expression for various diseases were sourced 
from GEO, each cataloged by disease and sample 
count, distinguishing between positive and negative 
samples.  

2.3 G Component: Creating a  
Two-Class sub-Dataset Based on 
Disease Biological Knowledge 

Sub-datasets specific to each group or disease are 
created by isolating relevant gene columns and class 
labels. These sub-datasets are input into the Pre-
Scoring component. Figure 2 illustrates this process, 
showing the input panels with gene expression 
matrices and pre-existing biological knowledge, such 
as disease associations. 
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Figure 2: Illustrates the formation of two-class sub-datasets derived from disease-group names, subsequently processed by 
the Pre-Scoring component for statistical scoring. 

2.4 Introducing the Pre-Scoring 
Component with Limma 
Integration in the G-S-M Approach 

The introduction of the Pre-Scoring component into 
the G-S-M approach represents a methodological 
enhancement in preprocessing. Central to this 
enhancement is the Limma package, widely 
recognized for its ability to analyze differential 
expression in gene datasets. The Limma package's 
strength lies in its empirical Bayes method, which 
effectively stabilizes the variance estimates, 
especially beneficial when dealing with small sample 
sizes often encountered in gene expression studies 
(Smyth, 2004). For example, one of our datasets, 
GDS3257, has only 107 samples, making variance 
stabilization particularly crucial. This stabilization 
allows for more reliable inferences about differential 
expression across a wide array of genes. Furthermore, 
Limma employs moderated t-statistics, leveraging 
information from all genes to improve variance 
estimates, thereby providing more stable and accurate 
statistical inferences (Phipson et al., 2016). The 
package also offers robust linear model fitting, 
accommodating complex experimental designs to 
ensure precise modeling of the relationship between 
gene expression and experimental conditions. 

A key feature of Limma, is its adept control of the 
false discovery rate (FDR), crucial in studies where 

thousands of genes are tested simultaneously. By 
using the Benjamini-Hochberg adjustment method, 
Limma adjusts p-values to control the FDR, ensuring 
that the proportion of false positives among the 
significant results is minimized (Ritchie et al., 2015). 
This multiple-testing correction is essential for the 
validity of findings in high-dimensional data analysis. 
The adjusted p-value metric, which corrects for 
multiple testing, ensures that the likelihood of 
identifying genes as differentially expressed is not 
due to random chance alone. This statistical 
validation is crucial in high-dimensional data 
analysis, where false positives are a significant 
concern. By focusing on the adjusted p-values, we 
enhance the reliability of our differential expression 
analysis, providing a more robust and interpretable 
set of results. 

The use of mean adjusted p-values in our Pre-
Scoring phase, therefore, is not arbitrary but a 
deliberate choice to bolster the robustness of the 
feature selection process. By incorporating these 
rigorous statistical techniques, we ensure that our 
analysis is not only reliable but also reproducible, 
underscoring the methodological integrity of our 
approach. Within this newly established component, 
we implemented two key elements to enhance 
efficiency and specificity further. 

First, the Pre-Scoring component introduces a 
percentage-based selection mechanism. This  
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Figure 3: Illustrates the Pre-Scoring process used in the G-S-M framework for enhanced feature selection in transcriptomic 
data. 

functionality addresses the variability in the number 
of groups generated by different datasets. With a 
fixed percentage-based system, researchers can 
dynamically adjust the selection to the dataset size. 
For instance, one dataset might produce 2,809 groups, 
while another yields 3,000; choosing the top 20% 
adapts seamlessly to each. Second, the Pre-Scoring 
component systematically removes duplicate gene-
disease associations, preserving unique gene 
representations and preventing the dilution of 
statistical significance. After processing with Limma, 
average adjusted p-values are computed for each 
group, determining final scores. As illustrated in 
Figure 3, the top 20% are then selected for further 
analysis in our experiment. 

2.5 Scoring Component of the  
Pre-Scoring G-S-M Framework 

After selecting the top 20% of gene groups based on 
their statistical scores, these groups are processed in 
the Scoring component. In this phase, each group 
undergoes secondary scoring using a Random Forest 
classifier within a structured cross-validation 
framework to assess their potential for accurate 
disease prediction. This process involves dataset 
splitting, analysis through the S-Fit Test Model, and 
evaluation of gene groups with the Random Forest 
classifier. The accuracy average of the r splits is then 
calculated to determine the group score, and all group 

scores are compiled into a table. In the Modeling (M) 
component, this table is sorted in descending order, 
and the top-ranked j groups of diseases are chosen. 
Their genes are merged to form the top-ranked 
associated genes (as shown in Fig. 1, Modeling 
panel). A sub-dataset (90% training, 10% testing) is 
created using these top-ranked genes. An RF model is 
subsequently trained on this sub-dataset, and the 
model’s performance is evaluated on the testing 
dataset. Performance results are documented for j = 1 
to 10. 

3 RESULTS 

The Pre-Scoring G-S-M is evaluated using standard 
G-S-M practices, employing a Random Forest 
classifier with a 90% training and 10% testing split. 
To address dataset imbalance, an undersampling 
method is applied to achieve a 2:1 ratio of positive to 
negative samples during model training. Monte Carlo 
cross-validation (MCCV) with 10 iterations is used to 
average performance metrics, including accuracy, 
sensitivity, specificity, and area under the curve 
(AUC), ensuring reduced variance and reliable 
results. 
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Table 1: Presents an example of cumulative averages from a performance table for 10 MCCV, highlighting the top 10 ranked 
groups from the Pre-Scoring G-S-M for the GDS1962 dataset. 

#Groups #Genes Accuracy AUC Precision Specificity F-measure Sensitivity 

1.00 4.30 0.91 0.95 0.98 0.95 0.93 0.90 

2.00 10.20 0.93 0.96 0.98 0.95 0.95 0.92 

3.00 17.70 0.94 0.98 0.98 0.95 0.96 0.94 

4.00 20.90 0.94 0.97 0.98 0.95 0.96 0.94 

5.00 23.60 0.94 0.96 0.98 0.95 0.96 0.94 

6.00 27.20 0.94 0.96 0.98 0.95 0.96 0.94 

7.00 30.20 0.94 0.96 0.98 0.95 0.96 0.94 

8.00 34.40 0.94 0.97 0.98 0.95 0.96 0.94 

9.00 37.20 0.94 0.96 0.98 0.95 0.96 0.94 

10.00 41.20 0.96 0.97 1.00 1.00 0.97 0.94 

 

3.1 Performance Evaluation of  
Pre-Scoring G-S-M 

Table 1 presents an example of the average 10-fold 
MCCV performance for the top 10 groups in the 
GDS1962 dataset. The first row shows the performan-
ce of the top-ranked group achieving an AUC of 95% 
using an average of 4.30 genes. The performance 
metrics for the top 2 groups are also included, where 
genes from the first and second-highest-scoring groups 
are combined. This process is repeated for all top 10 
groups to evaluate their collective and individual 
contributions to model performance. 

The output of the Pre-Scoring G-S-M, similar to 
standard G-S-M tools, includes a ranked list of 
disease groups assigned p-values by the 
RobustRankAggreg package (Kolde et al., 2012). The 
framework also compiles a list of significant genes 
aggregated by the RobustRankAggreg tool, which 
can be used in facilitating functional and enrichment 
analyses using platforms like David, EnrichR, and 
GeneMANIA. 

3.2 Comprehensive Evaluation Across 
Diverse Datasets 

The Pre-Scoring G-S-M model was applied to nine 
diverse human gene expression datasets from the 

GEO database, testing the model’s efficiency and 
precision across varying genetic expression profiles 
as shown in table 2. The Pre-Scoring G-S-M 
framework efficiently manages these complexities 
and preserves key biological insights, comparable to 
the standard G-S-M approach. Integrating the Pre-
Scoring component significantly enhances both 
computational efficiency and analytical precision. By 
pre-filtering and prioritizing gene groups based on 
their statistical relevance, it reduces processing time 
and resource consumption, which is particularly 
advantageous in computationally constrained 
environments. The Limma package improves 
analytical precision by focusing on statistically 
significant groups, maintaining the quality of 
biological insights despite a reduced data volume. For 
example, on the GDS1962 dataset, the standard G-S-
M achieved 0.92 accuracy with 81.1 features, 
whereas Pre-Scoring G-S-M attained 0.94 accuracy 
with only 17.7 features, illustrating the approach’s 
efficiency and precision. Figure 4 presents 
performance metrics for both standard G-S-M and 
Pre-Scoring G-S-M across nine datasets. 
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Table 2: Pre-Scoring G-S-M performance results over the top-ranked groups for 9 GEO Dataset. 

GEO Accession # Genes Accuracy Sensitivity Specificity AUC 

GDS1962 45.57 0.93 0.93 0.93 0.97 

GDS2545 113.76 0.73 0.72 0.74 0.81 

GDS2771 97.83 0.64 0.69 0.59 0.70 

GDS3257 74.81 0.97 0.99 0.94 0.99 

GDS3837 21.00 0.92 0.83 1.00 0.92 

GDS4206 83.00 0.66 0.30 0.82 0.58 

GDS4516_4718 40.72 0.99 0.99 0.99 1.00 

GDS3268 115.70 0.67 0.70 0.63 0.73 

GDS5499 80.23 0.90 0.96 0.77 0.95 

 
Figure 4: Showcases the comparison of 4 different performance metrics of Pre-Scoring G-S-M (in pink) vs Standard G-S-M 
(in purple) across nine GEO datasets. The first graph on the top right is accuracy comparison, the top left is sensitivity, the 
right bottom compares specificity and the bottom right compares AUC for both models.  

The Pre-Scoring G-S-M model achieves comparable 
results to the standard G-S-M across all metrics but 
with significantly fewer features, as shown in Figure 
5, highlighting the efficiency and precision of this 
approach in transcriptomic data analysis. Further 
validation will investigate the broader potential of the 

framework’s capabilities. To reduce data redundancy, 
the Pre-Scoring component filters out duplicate gene-
disease associations within groups, specifically 
targeting cases where relevant and statistically 
significant genes appear multiple times under 
different disease names. For instance, the gene ALP 
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Figure 5: Depicts the number of genes (features) selected by standard G-SM in purple vs number of genes selected by Pre-
Scoring G-S-M in pink. 

appeared nine times, each with a different disease. 
Removing these duplicates retains only one instance 
of the gene per disease group, thereby reducing noise 
and complexity and enhancing the model’s 
performance by focusing on informative biological 
signals.  

4 DISCUSSION 

4.1 Relevance of the Pre-Scoring 
Component in Existing G-S-M 
Tools 

In this study, we introduce a Pre-Scoring component 
to address a critical bottleneck in the G-S-M 
framework: the computational intensity of scoring 
vast numbers of gene groups. For instance, in the 
GDS2545 dataset, which has a relatively smaller set 
of gene features, the standard grouping process 
initially generates 2809 groups. However, with the 
Pre-Scoring component, only 563 of these groups are 
selected for detailed scoring. This selective 
advancement is crucial because each group is still 
scored five times per Monte Carlo cross-validation 
(MCCV) iteration, cumulatively requiring substantial 
computational resources. 

By focusing on groups with higher statistical 
significance, the Pre-Scoring component eliminates 
the need to score every group from the initial phase. 
This streamlines the entire scoring process, ensuring 
that computational efforts concentrate on the groups 
most likely to yield pertinent biological insights. 
Consequently, it enhances the efficiency of the G-S-
M framework, reducing both the computational load 

and the time required for processing. This example 
underscores the value of the Pre-Scoring component 
in optimizing the analysis workflow. 

4.2 Impact on Bioinformatics Tools 

The integration of the Pre-Scoring component into 
tools like PriPath (Yousef et al., 2023), CogNet 
(Yousef et al., 2021), and GediNET (Qumsiyeh et al., 
2022) could significantly improve their efficiency 
and effectiveness. These tools, which use similar 
methodologies, could benefit from the reduced 
computational demands and enhanced focus on 
statistically significant gene groups. 

4.3 Potential Limitations and Future 
Plans 

One limitation of the Pre-Scoring component is the 
variance in group sizes, which might bias the 
statistical relevance, favoring either larger or smaller 
groups during the scoring process. Additionally, 
noisy genes within a group could negatively impact 
the overall classification performance, a limitation 
that does not affect feature selection methods 
evaluating genes individually. Both issues can be 
addressed by considering a fixed number of 
representative genes from each group. 

5 CONCLUSION 

The Pre-Scoring G-S-M model's initial application 
showcases promising strides in enhancing 
computational efficiency and precision in 
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transcriptomic analysis. By integrating this additional 
Pre-Scoring component alongside the standard G-S-
M scoring mechanism, we introduce a dual-layered 
evaluation system, promising a more nuanced 
analysis process. 

These advancements suggest a significant impact 
on feature selection, potentially streamlining 
biomarker discovery and disease classification 
processes. While these findings are preliminary, they 
underscore the potential for the Pre-Scoring G-S-M 
approach to facilitate more accessible and efficient 
transcriptomic research, even in settings with limited 
computational resources.  
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