Leadership Teaching in Agile Software Engineering: A Systematic

Keywords:

Abstract:

Mapping

Nicolas Nascimento®?, Afonso Sales®P and Rafael Chanin¢

PUCRS, School of Technology, Porto Alegre, RS, Brazil

Leadership Teaching, Active Learning, Software Development.

The software industry is characterized by an environment of uncertainty, high volatility, and constant change.
This context has shaped the industry, its components, and actors, generating methodologies capable of meet-
ing both market expectations and software development requirements. Among these methodologies, agile has
been the most widely adopted — it provides teams with an overarching set of practices to manage software
development project requirements while maintaining flexibility to incorporate changes that the business envi-
ronment presents. However, professionals equipped with the necessary skills to work in these Agile teams,
often referred to as “soft skills”, pose a challenge for universities to teach. From this set of skills, leadership,
in particular, has recently garnered attention from the software engineering education community but remains
an open research opportunity. In this context, this work aims at creating a body of knowledge regarding lead-
ership teaching in agile software engineering. To achieve this goal, we conducted a systematic mapping. From
a selection of 27 studies, our results provide indications that: (i) leadership in software engineering education
is typically defined as part of teamwork, shared among team members, associated with Scrum, and applied
to provide students with experience in group representation; and (ii) it is usually taught through Scrum, in-
volving active learning methodologies (such as problem-based learning) and employing real projects either

sourced from external partners or designed to solve real-world problems.

1 INTRODUCTION

Great uncertainty, high volatility, and constant change
are inherent traits of software development. This en-
vironment has shaped the industry, its components
and actors, generating methodologies that are able to
cope both with market expectations and software de-
velopment requirements (Fowler et al., 2001). Agile
(viaits derived frameworks, such as Scrum (Schwaber
and Sutherland, 2011) and XP (Beck, 2000)) is the
one which has been adopted the most. By provid-
ing teams with an overarching set of practices to han-
dle the many assignments a software development
project requires while remaining flexible and adapt-
able enough to incorporate changes that business de-
mands (Dingsgyr et al., 2012).

Professionals that work in these agile teams are
expected to not only technically excel, but also to pos-
sess abilities to handle conflict, perform on-demand
adaptations and communicate properly and effec-

https://orcid.org/0000-0002-0080-8822
@ https://orcid.org/0000-0001-6962-3706
¢ https://orcid.org/0000-0002-6293-7419

Nascimento, N., Sales, A. and Chanin, R.

Leadership Teaching in Agile Software Engineering: A Systematic Mapping.
DOI: 10.5220/0013196600003932

Paper published under CC license (CC BY-NC-ND 4.0)

tively. This set of skills is usually denominated “soft
skills” (“people skills”, “social skills”, “generic
competencies”, or “human factor”) (Matturro et al.,
2015). The need for software developers to possess
this set of skills is evident provided their routines
usually include interactions with customers, team-
mates, stakeholders and leadership, where being able
to problem-solve, negotiate and resolve conflicts is
crucial (Ahmed et al., 2015).

From this set of soft skills, leadership, in par-
ticular, is a soft skill that has recently been stud-
ied by the software engineering research community.
For instance, the relevance of leadership in software
development (Faraj and Sambamurthy, 2006; Mat-
turro et al., 2015), styles of leadership (transforma-
tional, transactional, among others) and their impacts
on the software development life-cycle (Athukorala
et al., 2016; da Silva et al., 2016; Faraj and Sam-
bamurthy, 2006; Van Kelle et al., 2015), developing
leadership in virtual and globally distributed teams
(Furumo et al., 2012; Sangwan and Ros, 2008; Hi-
dayati et al., 2020), and leadership emergence and its
antecedents in software engineering (Przybilla et al.,

469

In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 469-480

ISBN: 978-989-758-746-7; ISSN: 2184-5026

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

CSEDU 2025 - 17th International Conference on Computer Supported Education

2019; Przybilla et al., 2020) are some of the angles
currently being investigated by the community. More-
over, leadership in software engineering is still a topic
not fully understood, with studies in the area not pro-
viding a unified view of leadership, although hierar-
chy and management aversiveness are commonly re-
ported (Modi and Strode, 2020).

There are some studies that touch relevant topics
on the field, such as leadership teaching and training
for software engineering students. Some of this stud-
ies, for example, investigate leadership in distance
learning and as a component of teamwork (Marquez
et al., 2022; Vivian et al., 2013; Noguera et al., 2018),
teaching responsible leadership (Goyal et al., 2022),
using capstone projects (Schneider et al., 2020; Paiva
and Carvalho, 2018; Li et al., 2023) and even incor-
porating entrepreneurship in teaching (Moreno et al.,
2022; Tenhunen et al., 2023) and, thus, the challenge
of understanding and adopting the proper way to teach
this skill remains for educators.

This study seeks to develop a comprehensive un-
derstanding of leadership teaching in agile software
engineering. To achieve this, we conducted a system-
atic mapping to examine how leadership is defined
and implemented in educational settings. Our find-
ings indicate that leadership in software engineering
education is commonly seen as a component of team-
work, distributed among team members, and closely
tied to Scrum practices. It is predominantly taught
through active learning methodologies and real-world
projects, either sourced from external partners or de-
signed to address practical challenges.

2 BACKGROUND

2.1 Leadership

There are many definitions of leadership. In our case,
to better frame leadership, we have chosen to ground
ourselves on the concept of path-goal theory of lead-
ership. This concept refers to body of knowledge
that describes the effectiveness of leaders as a con-
sequence of their ability to positively impact peers’
motivation, ability to perform effectively and satis-
factions (House and Mitchell, 1975). Further, this
concept has been empirically studied to have positive
correlations to leadership in software projects, such as
open-source (OSS) (Li et al., 2012) and has been stud-
ied in education in various settings, such as distance
learning (Dewan and Dewan, 2010; Bickle, 2017) in
industry organizations (Malik et al., 2014).Further,
leadership, in a general sense, revolves around two
different styles of leadership, which are mostly op-

470

posed. These are transactional and transformational
leadership (Bass et al., 2003). Each of these style
presents different aspects on how guidance of the
leader should be provided towards his/her followers.

2.1.1 Transactional Leadership

Transactional leadership is a leadership style that re-
volves around followers being in accordance or agree-
ing with the leader either to be rewarded or to avoid
any corrective action. Prizes and rewards are awarded
based on the compliance of the followers to the expec-
tations of the leader (Podsakoff et al., 1984). Examin-
ing from a social context, this style of leadership has
been stated to be observed in a “well-ordered society”
(Bass and Bass Bernard, 1985).

2.1.2 Transformational Leadership

On the other hand, transformational leadership
achieves followers performance enhancement by set-
ting higher expectations and by increasing their will-
ingness to embrace more challenging duties. Fur-
ther, it emphasizes a greater flexibility of the leader
in which better understanding of the organization’s
challenges are achieved and the solving of complex
problems is performed through cooperation between
leaders and followers (Bass et al., 2003). In addition,
leaders aid followers at performing leadership duties.
In this style, followers present personal and socially
identification towards the missions of the organization
and build identification and motivation on the follow-
ers through personal and social identification. From
a social context, this style of leadership is stated “fo
emerge in times of distress and change” (Bass and
Bass Bernard, 1985).

2.2 Agile Software Development

In modern software development, change is a con-
stant and it is often caused by external and uncon-
trollable factors (Barry et al., 2002). As markets and
economies quickly and unpredictably change, tradi-
tional software development practices, tool and tech-
niques become difficult to apply and to follow ap-
propriately. In addition, these changes impact on
the software development project, which commonly
grows both in scope and cost, a phenomenon known
as Scope Creep (Barry et al., 2002; Melegati et al.,
2019). This results in high costs for the development,
maintenance and update of software products, thus re-
ducing the competitiveness of software development
companies. In this context, as faster and more flex-
ible software development techniques became more

Leadership Teaching in Agile Software Engineering: A Systematic Mapping

necessary, in 2001, the “Manifesto for Agile Software
Development” (Fowler et al., 2001) was created.

3 RESEARCH METHOD

According to standard guidelines for performing this
research method (Budgen et al., 2008; Petersen et al.,
2008; Kitchenham et al., 2011), a systematic mapping
review (SMR) is relevant in software engineering as
it “provides a structure of the type of research reports
and results that have been published by categorizing
them.” Furthermore, SMR provides an overview of
the knowledge in an area, usually aided by a visual
summary and can benefit researchers by establishing
baselines for further research activities.

Thus, we have followed these standard guidelines
and performed our search. At this point, it is impor-
tant to mention that the research question used for the
systematic mapping focused on the concept of how
leadership is taught in software engineering educa-
tion environments more generally, not constrained to
only active learning environments. This decision was
made to maximize the potential studies and findings
from this systematic mapping so that we could create
a body of knowledge regarding leadership teaching in
software engineering education by characterizing and
defining it appropriately.

As stated previously, the research conducted aims
at characterizing and defining leadership teaching in
software engineering education. As such, the research
questions to be addressed in this study are:

* (RQ1) “How is leadership teaching defined in
agile software engineering education environ-
ments?”

* (RQ2) “How is leadership taught in agile soft-
ware engineering education environments?”

In order to answer these questions, a systematic
mapping was conducted. The review design was
based on some of the most relevant studies in the area
(Budgen et al., 2008; Petersen et al., 2008; Kitchen-
ham et al., 2011).

3.1 Data Source and Search Strategy

As a way of finding studies with high relevance to the
research questions proposed, we defined our search
string following the guidelines proposed by (Kitchen-
ham, 2004). As such, the search string addresses
the population, intervention and outcome expected.
We have chosen exclude Comparison and Context as
the research conducted followed the principle of ex-
ploratory research. Table 1 summarizes the search

string used. It is important to mention that search
string could be adapted based on the limitations of the
database, such as limitation in the number of search
items. In this case, the last item from the outcome
portion of the string was to be removed.

Table 1: Search string.

(Agile Software Engineering OR
Agile Software Development OR
Agile Software)

AND

(Leadership)

AND

(Teaching OR Educating OR
Training OR Education)

Population

Intervention

Outcome

As for the search strategy, we have also followed
the guidelines proposed by Kitchenham (Kitchenham
and Charters, 2007). Table 2 presents the summary
of the applied search strategy. All available databases
were selected with the exception of Citeseer library,
Inspec, due to difficulties using these platforms. The
minimum publication year was not set. The selection
criteria for the search was defined based on the goal of
the study. Studies not written in English or not pub-
lished in any journal, conference, workshop or sym-
posia were not considered. Regarding the number of
pages, which usually reflects the depth of the analysis
conducted by the authors, we have chosen to accept a
minimum of 6 pages, as our intention was to capture
even results from preliminary studies.

Table 2: Search strategy.

Databases IEEExplore; ACM; Scopus;
searched El Compendex; Science @Direct
Selection available online; 6 pages minimum
criteria written in English; up to 2023

in: Journals/Conferences/Workshops/Symposia
Search Title; Abstract; Keywords
applied to

From this point, we have applied our search string
and used the search criteria previously specified (Ta-
ble 2) to all the specified databases. Regarding orga-
nization of the results, we have created a spreadsheet
which contained the necessary information, meaning
that we could apply the established inclusion and ex-
clusion criteria.

Each element in the spreadsheet contained meta-
data about the retrieved studies. Table 3 presents the
attributes assigned to each study. In addition to the
standard information of the studies, we have added
three additional attributes, which were related to the
possibility of exclusion of a given study. These at-
tributes were assigned based on other attributes from
the study, such as abstract and keywords.

471

CSEDU 2025 - 17th International Conference on Computer Supported Education

The goals of these attributes was to better catego-
rize studies and serve as our exclusion criteria, thus
answering three additional questions: “Is this study
duplicated?” to verify whether the study is duplicated
in the studies’ database, “Is this study relevant?” to
certify that the study is relevant to the subject of this
study after reading the study once and “Does this
study fit in the criteria?” to verify whether the study
meets the Selection Criteria mentioned in Table 2.

Table 3: Metadata information of each study

Info. retrieved Explanation

Database Identifier of the database

Title Study title

Authors List of all authors

Type of forum Journal/conference/workshop/symposium
Abstract Study abstract

Keywords Study keywords

Control 1 Duplicate

Control 2 Does not fit into criteria

Control 3 Is relevant

In this sense, Table 4 presents the studies retrieved
from each base. Following the standard guidelines,
we have read every title, abstract and keywords of
the studies, answering the control questions (exclu-
sion criteria) for them. If the study was duplicated,
did not fit inclusion criteria or was not relevant for
the review topic, the study was excluded. The read-
ing process was initially conducted by one researcher,
then verified independently by one other author.

Table 4: Search results.

Base Studies Selected Studi Selected Studi

Found (Abstract + Keywords) (Full Read)
ACM DL 449 43 13
IEEExplore 864 21 5
Science @Direct 528 20 2
El Compendex 25 10 1
Scopus 1594 38 6
Total 3460 132 27

From the total of 3460 studies found, our research
selected 132 studies which would be fully analyzed.
After fully reading these 132 studies (in a similar
manner to the previous step where one of the authors
read all studies and had other authors double-check
them), we further reduced our list of studies to 27. It
is important to note that the complete analysis of stud-
ies gave us better understanding of their research fo-
cus and thus enabled us to exclude 105 studies which
were not related to our research questions.

3.2 Data Extraction and Classification

From the initial metadata assigned to the 27 selected
studies in the spreadsheet, we have also added some

472

additional attributes:

¢ Contribution Facet: type of contribution. Based on a
work from (Shaw, 2003);

* Research Method: the research method applied (case
study, survey etc);

* Research Type: type of research (based on work from
(Wieringa et al., 2005));

¢ Study Quality: a grade from O to 10, based on the work
from (Salleh et al., 2011). Details on Table 5;

* Contribution: the research contribution from the study.

3.3 C(lassification Scheme

Regarding study quality, we have assigned a score for
each study, based on the work from (Salleh et al.,
2011). In this sense, eight (8) questions were used
to provide a grade to the work under analysis. Each
question could be either completely answered, mean-
ing the work will be assigned the complete score for
the question, partially answered, meaning that the
work will be assigned half the points for the ques-
tion, and not answered, meaning that the work will be
assigned zero points for the question.

We have chosen to better classify studies which
were closely related to our research questions, thus
each of these questions are worth 2 points. Once
a study is graded, it is assigned a quality category,
meaning that the study possesses:

* High quality: 8 to 10 points;
¢ Medium quality: between 5 and 8 points;
* Low quality: O to 5 points.

Based on the work from (Chanin et al., 2018a), we
have created a completed classification scheme and
present it in Table 5.

4 RESULTS

Based on the 27 selected studies, we have performed
a classification based on the scheme presented in Ta-
ble 5 and the results are presented in Table 6. Figure
1 presents the distribution of the analyzed work based
on the year of publication.

Figure 2 summarizes the results from the system-
atic mapping from the facets of research type, focus
and contribution of the 27 studies. The first publica-
tion found is relatively old, published in 2005, which
indicates a spark of interest, but the figure indicates
that starting 2018, the amount of studies stayed at
a decent level (3.8 on average per year since 2018)
which could be an indicative that the theme has be-
come more relevant for the research community.

Leadership Teaching in Agile Software Engineering: A Systematic Mapping

Table 5: Classification Scheme.

Category

Description

Research Method Facet
Case Study

Empirical Study
Experimental Study
Survey

Report from a specific situation being studied (Kitchenham et al., 1995).

Study based on empirical evidence (Perry et al., 2000).

Study in which an intervention is introduced to observe effects (Sjgberg et al., 2005).
Process to collect data, analyze it and report results (Pfleeger and Kitchenham, 2001).

Research Type Facet
Evaluation Research
Experience Study
Opinion Study
Philosophical Study
Solution Proposal
Validation Research

Evaluation of a method or technique in practice.

Personal experience of the author depicting how something has been done in practice.
Personal opinion on a certain technique.

New way of looking at an existing context.

The proposition of a solution to a problem.

New techniques being implemented in experiments, simulations or in practice.

Focus Facet
Classroom
Real Projects
Synthesis

The focus is on classroom education strategies for leadership teaching in SE.
The focus is leadership teaching in SE on real-world project execution.
Focus is a review of primary (or secondary) studies on leadership teaching in SE.

Contribution Facet

Advice/Implication Recommendations based on personal opinions.

Framework/Method Framework/Method used to teach (or to learn).

Guidelines Advices based on the research results.

Lessons Learned Actionable advices derived from the obtained research results.
Model Representation of a given context based on a conceptualized process.
Tool Tools used to teach (or to learn).

Study Quality Facet

References Are the references adequate and well-cited? (1 point)

Goal Is the goal clearly stated? (1 point)

Sample Observation Data collection and sample strategy was carried out correctly? (1 point)
Research Method The analysis methodology was well applied? (1 point)

Clear Description Is the context of the study clearly described? (1 point)

Findings Are findings credible? (1 point)

RQ1 Does the study answer RQ17? (2 points)

RQ2 Does the study answer RQ2? (2 points)

Table 6: Overview of results.

Authors [year] Research method Research type Focus Contribution Study
Quality
(Noguera et al., 2018) Mixed Experience Study Teaching Lessons Learned 10
(Khakurel and Porras, 2020) Empirical Study Experience Study Real Projects Lessons Learned 10
(Paasivaara, 2021) Case Study Experience Study Real Projects Lessons Learned
(Vivian et al., 2013) Survey Evaluation Research Teaching Guidelines

(Christensen and Paasivaara, 2022)

(Fontdo et al., 2019)

(Li et al., 2023)
(Ceh-Varela et al., 2023)
(Libreros et al., 2020)
(Heggen and Myers, 2018)
(Haet al., 2019)
(Schneider et al., 2020)
(Tenhunen et al., 2023)
(Hogan and Thomas, 2005)
(Johnson et al., 2020)
(Kapitsaki and Loizou, 2018)
(Pozenel, 2013)
(Watson and Cutting, 2022)
(Sundaram, 2023)
(Boiangiu and Stanicd, 2019)
(Paiva and Carvalho, 2018)
(Budu, 2018)
(Peters and Moreno, 2015)
(Kawano et al., 2019)
(Moh’d A, 2021)
(Moreno et al., 2022)
(Escudeiro et al., 2020)

Empirical Study

9

9

9

Mixed Evaluation Research Teaching Lessons Learned 9
Survey Experience Study Teaching Lessons Learned 9
Empirical Study Experience Study Teaching Guidelines 9
Experimental Study Solution Proposal Teaching Framework/Method 9
Case Study Evaluation Research Real Projects Framework/Method 8
Mixed Evaluation Research Teaching Lessons Learned 7
Case Study Validation Research Teaching Model 7
Empirical Study Solution Proposal Real Projects Lessons Learned 7
Survey Evaluation Research Real Projects Guidelines 7
Survey Validation Research Teaching Framework/Method 6
Survey Experience Study Real Projects Lessons Learned 6
Case Study Evaluation Research Teaching Framework/Method 6
Empirical Study Evaluation Research Real Projects Guidelines 6
Survey Experience Study Teaching Framework/Method 6
Empirical Study Experience Study Teaching Model 5
Empirical Study Experience Study Teaching Framework/Method 5
Empirical Study Validation Research Teaching Lessons Learned 5
Empirical Study Philosophical Study Synthesis Guidelines 4
Empirical Study Opinion Study Teaching Framework/Method 4
Empirical Study Philosophical Study Teaching Guidelines 3
Empirical Study Experience Study Teaching Lessons Learned 2
1

Empirical Study

Experience Study

Experience Study

Real Projects

Real Projects

Lessons Learned

Framework/Method

473

CSEDU 2025 - 17th International Conference on Computer Supported Education

M #sTUDIES

0
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Figure 1: Distribution of selected studies by year.

In a general sense, majority of the studies found
were classified as “High” with regard to our “study
quality” facet. This indicates that the teaching of
leadership in software engineering is a topic which
is being undertaken by the scientific community and
robust studies are addressing it. In addition, specifi-
cally regarding the Focus facet, we can clearly see that
there are studies many studies being conducted with
regard to teaching leadership in software engineering.
This is an indicative that the software engineering ed-
ucation research community is interested in the topic
and conducting efforts to teach leaderships skills in
software engineering.

After fully reading and comprehending the se-
lected studies, we have proceed to extract data to an-
swer our proposed research questions. This discus-
sion is presented next.

4.1 RQ1 - How Is Leadership Teaching
Defined in Agile Software
Engineering Education
Environments?

There are many definitions to what could be consid-
ered leadership teaching the studies we have found.
In general, we have found 4 categories of definition
in the studies analyzed. Those define leadership as:

4.1.1 Part of Teamwork and Shared Among
Team Members

(Noguera et al., 2018), based on (Eubanks et al.,
2016), defined leadership as encompassing “fask
management” and “team development”.The study
emphasizes teamwork, with leadership as an impor-
tant component of teamwork. Specifically, the study
proposed two roles in an agile software development
educational context, Project Manager and “Work-
Cycle” manager, where each one of these two roles
is responsible for management and leadership tasks.
(Vivian et al., 2013) use the definition of lead-
ership as being an emergent trait of self-organizing
teams when conducting “teamwork”. This definition

474

is based on the concept of “Team Leadership” from
(Dickinson and Mclntyre, 1997) and states leadership
as a component of teamwork which “involves provid-
ing direction, structure, and support for other team
members. It does not necessarily refer to a single
individual with formal authority over others,; several
members can show team leadership”.

Similarly, (PoZenel, 2013) defines leadership us-
ing the concept of shared leadership from (Moe et al.,
2009) where among many specifics, important deci-
sion making is shared among all team members. Ex-
cessive centralization is discouraged (e.g., decision
making made by a single team member) as well as
excessive decentralization (e.g., tasks not being at-
tributed to specific team members).

(Hogan and Thomas, 2005) acknowledge the ex-
istence of formal and informal roles regarding leader-
ship, in which a formal role refers to when the role
is explicitly assigned to a team member (e.g., SM)
and informal refers to when there is not explicit as-
signment of roles, but a team member exhibits leader-
ship behavior and performs leadership tasks (this for-
mal/informal dichotomy could be an indicative of the
concept of shared leadership found in the other stud-
ies).

4.1.2 Associated with Scrum

(Paasivaara, 2021), in a study applying Scrum in ed-
ucation, has defined that the Scrum Master (SM) is a
leading team member in the initial phases of the de-
velopment, after which leadership can become shared
among other team members. Furthermore, the study
indicates that a shared leadership is an indication of
a mature team. The definition of leadership as a role
also appears in (Fontdo et al., 2019), in which authors
describes leadership as being a role of the SM in a
Scrum team and further defining the SM as a “techni-
cal leadership”.

Furthermore, in (Li et al., 2023) which also add
that some personality traits such as openness and
agreeableness may be relevant for a leading SM. (Li-
breros et al., 2020) report a study in which Team
Leader Rotation was adopted and Scrum teams had a
team member denominated “team leader” (different
from the SM and/or PO). As the study was conducted
in a Scrum context, the team leaders in the study were
acting as a complementary role to the SMs and the
POs.

4.1.3 Representing the Group in Academic
Settings

(Budu, 2018) used a definition of a member of the
team who had the responsibility to present results for

Leadership Teaching in Agile Software Engineering: A Systematic Mapping

Paper Quality
A A
>28 o >28 >28
37% 1,1% % . 14,8 74% 74%
o : 222% 2229
5>Am:<ao o °5>AND<8° ° 5>Ann<so o ° o
. 37% A 74% | 74% . 148% 185 9% 37% | 74% |11,1% | 11,1%
e
. 7.4% 37%
. 14,8 %
o S o o el . & * SN o o . o & 24 L N x® &
W o 2 o8 o s o &\96‘* & \00?0?6 “0,,?9‘) s L o R T
W e O o o e o N
S e, o P o W <« \&
Research Method Research Type Focus Contribution
Facet Facet Facet Facet

Figure 2: Summary of the studies. X axis represents facets of the studies (research type, focus and contribution) and the Y

axis represents study quality

their working group to the class. This definition im-
plies a very academic setting. (Khakurel and Porras,
2020) define leadership as a trait of being more “re-
sponsible”, managing the project and handling cus-
tomer interactions. In the study, the role adopted by
students participating the study who reported on lead-
ership was of a project manager.

4.1.4 Not Explicitly Defined

(Christensen and Paasivaara, 2022) created a defini-
tion based both on the work from (Matturro et al.,
2019) and the context of their study. This concept can
be summarized in “the ability to lead and supervise
others”. The study was conducted in a course which
students were intended to learn soft skills, among of
which was leadership.

(Sundaram, 2023) defines leadership in the study
by comparing the difference between a “leader” and
a “manager”. A manager being the role which tends
to “push” the team and focuses on the work being
delivered, while the leader is stated to “guide” team
members and to put more emphasis on aiding team
members themselves.

(Kawano et al., 2019) applies the definition of
leader for the “next gemeration software develop-
ment”. This concept is not further specified, so it
somewhat vague. In addition to this, the author also
defines leadership as when a student is interested in
leading junior colleagues.

(Moh’d A, 2021) defines leadership as being able
to both manage and lead, in the context of a profes-
sional denominated software project manager. This

definition is further specified as encompassing pro-
viding supervision, motivation, monitoring and keep-
ing track of the project.

4.2 RQ2 - How Is Leadership Taught in
Agile Software Engineering
Education Environments?

Results indicate convergence on how leadership is
taught in software engineering education. We have
found 4 manners in which leadership is taught.

4.2.1 Using Scrum

Majority of the studies that we have analyzed incor-
porate Scrum as their software development method-
ology and use its roles (Product Owner, Scrum Master
etc.) to provide students with the opportunity to de-
velop “soft skills”. Among these soft skills, there is
leadership.

For example, (Noguera et al., 2018) have taught
leadership in software engineering by incorporat-
ing agile in education, specifically, an adaption of
the Scrum framework (Schwaber and Sutherland,
2011). (Paasivaara, 2021) has used professional agile
coaches and communities of practice (CoP). CoP are
exchange sessions that the students who are learning
to be SM participate and exchange ideas. The projects
developed in the are provided by real industry com-
panies and external agile coaches help the assigned
SM (who is a student of the course). (Christensen
and Paasivaara, 2022) teach soft skills through a dis-

475

CSEDU 2025 - 17th International Conference on Computer Supported Education

tributed software development course which applied
a Casptone project. It used Scrum as its develop-
ment framework. The projects were provided by real
Danish companies. (Heggen and Myers, 2018) have
taught through practical experience in real software
projects that address community and/or university de-
partments’ needs. All development is performed us-
ing Scrum as the primary framework. (Fontdo et al.,
2019) applied project-based learning (PBL) in a Cap-
stone project in combination with Scrum. (Li et al.,
2023) also uses Scrum and proposes a multi-team
Capstone project to provide real experience to stu-
dents, where a project is developed by more than one
team. (Libreros et al., 2020) have taught adopting
team leader rotation in agile software development.
Scrum is applied as the chosen development process.
(Johnson et al., 2020) have taught through a course
that simulates real-world environment. Scrum is ap-
plied as the chosen development process. (Paiva and
Carvalho, 2018) have taught using Capstone Projects
and Scrum software development. (PoZenel, 2013)
have assessed student who worked on large capstone
courses. Scrum is applied as the chosen development
process. (Sundaram, 2023) have taught using tradi-
tional teaching, but Scrum is studied and simulated
by students.

4.2.2 Using Active Learning Methodologies

Another finding is that leadership teaching is usually
performed using active learning strategies (e.g., PBL).

For example, (Ceh-Varela et al., 2023) used
project-based learning in the development of a soft-
ware project. The software development methodol-
ogy applied by students is defined as “relaxed plan-
based model”, a combination of cascade, spiral and
prototype model. (Hogan and Thomas, 2005) have
taught using problem based learning in addition to
real projects that connect students to the industry. Ag-
ile software development is applied. Furthermore,
(Fontao et al., 2019) applied project based learning
in a Capstone project in combination with Scrum.

4.2.3 Using Real Projects Either Originating
from External Partners or Which Propose
to Solve Real-World Problems

Real projects, either proposed by industry partners or
solving real-world problems, being incorporated in
the teaching process was also reported in our find-
ings. For instance, (Khakurel and Porras, 2020) have
taught through Capstone projects, with real projects
from Finish companies. (Schneider et al., 2020) have
taught through Capstone projects, adopting industry
practices in the development process. The model

476

adopted is inspired by Spotity’s “Tribes and Squads”
(Alqudah and Razali, 2016). (Watson and Cutting,
2022) have taught using capstone project. Projects
could be from the industry Agile software develop-
ment is incentivized. (Tenhunen et al., 2023) have
taught through real world projects. This was achieved
via a “Software Development Academy” (SDA), a
startup concept inside the university with internal
projects developed by student. Students are paid to
participate in the SDA. (Kapitsaki and Loizou, 2018)
have taught by working on Real project and in teams
that mix undergraduate and postgraduate students.
The integration of Minimum Viable Products and
continuous experimentation in real-world projects has
shown to be an effective strategy for teaching practi-
cal software engineering skills (Melegati et al., 2020).

4.2.4 Using Other Learning Methodologies
and/or Teaching Strategies

Two of the studies we have found to use other learn-
ing methodologies and/or teaching strategies method-
ologies for teaching. (Boiangiu and Stanicd, 2019)
present a conceptual model that can be instantiated
depending on the “type” of general-purpose edu-
cation envisioned. (Ha et al., 2019) used a con-
cept named “Conceive-Design-Implement-Operate”
approach (CDIO), with two levels. Level 1 addresses
simple projects and fundamental knowledge, while
level 2 addresses complex projects and advanced
knowledge. (Vivian et al., 2013) have performed two
online collaborative sessions where students had to
solve a “difficult” problem by creating a document
which contained answers. From the results and over-
all presentation of the ideas of the studies we found
during the analysis step, we have proceeded to dis-
cussion on our findings.

S DISCUSSION

In this section, we discuss some of the results ob-
tained from our mapping from the perspective of our
research questions and the general implications of
these findings.

From the analyzed data, it was possible to find
different definitions for the teaching of leadership in
software engineering education. Many of the authors
have defined leadership as a component that is inte-
grated into teamwork and thus is shared among team
members (Noguera et al., 2018; Vivian et al., 2013;
PoZenel, 2013; Hogan and Thomas, 2005).

Furthermore, Scrum has been a base for defining
leadership “roles” in software engineering education.

Leadership Teaching in Agile Software Engineering: A Systematic Mapping

Although using Scrum is expected as it the most used
agile framework in the industry 63% of agile teams
(of Agile, 2023), this could indicate that the roles pro-
vided by Scrum (e.g., Scrum Master, Product Owner)
serve as a comprehensive set of skills for students to
develop leadership abilities. For example, practices
such as Behavior-Driven Development (BDD) have
been shown to enhance team collaboration and lead-
ership development when integrated with agile frame-
works like Scrum (Nascimento et al., 2020).

Our data also revealed that being a “leader” from
a software engineering education perspective can also
be associated with performing group presentations
and interactions with external actors (Budu, 2018;
Khakurel and Porras, 2020). This is a traditional ap-
proach to group education and revolves around as-
signing responsibility to a team member as a manner
of teaching this skill to the assignee.

Another interesting finding was that in software
engineering education, it is not unusual to define lead-
ership more generically, such as “being able to lead
a team”, with specifying the details of what exactly
this implies (Christensen and Paasivaara, 2022; Sun-
daram, 2023; Kawano et al., 2019; Moh’d A, 2021).
Further, provided that other authors propose leader-
ship as a component of teamwork, this finding could
be a symptom of the difficulty of isolating leadership
from teamwork in software engineering education.

In terms of how to teach leadership in software
engineering education, Scrum appeared as the most
adopted development methodology (Noguera et al.,
2018; Schwaber and Sutherland, 2011; Paasivaara,
2021; Christensen and Paasivaara, 2022; Heggen and
Myers, 2018; Fontao et al., 2019; Li et al., 2023; Li-
breros et al., 2020; Johnson et al., 2020; Paiva and
Carvalho, 2018; PoZenel, 2013; Sundaram, 2023).

Finally, regarding active learning, many of the
studies adopt active learning as the preferred teach-
ing strategy. Collaborative approaches, such as
Challenge-Based Learning (CBL), have proven ef-
fective in fostering leadership and teamwork skills
within software engineering education (Chanin et al.,
2018b). As these methodologies are student-centered,
it is not surprising that they are adopted to provide
students with practical experience with leadership.

6 LIMITATIONS

This study contributes insights into leadership teach-
ing in agile software engineering. However, it is nec-
essary to recognize its limitations regarding reliabil-
ity, construction/internal/external validity, which may
influence the interpretation and generalization of the

findings (Runeson and Host, 2009).

Construction Validity: The operationalization of
key concepts may not fully capture the complex and
multifaceted nature of leadership in software engi-
neering. We minimize this by looking into the most
commonly adopted digital libraries.

Internal Validity: While the systematic approach
aimed to minimize biases and errors in selecting and
synthesizing studies, it is possible that researchers
might have been influenced to find leadership con-
cepts in the analyzed studies. To mitigate this, ini-
tially one of the researchers conducted the analysis
steps separately and independently. After results were
obtained, an alignment meeting was conducted to dis-
cuss doubts and reach consensus.

External Validity: Generalization of our findings
is constrained by the focus on agile software engi-
neering education. This limitation restricts the appli-
cability of our results to educational contexts in which
agile software engineering is applied.

Reliability: The reproducibility of this study’s
findings may be influenced by the dynamic nature of
software engineering and leadership practices, which
are continually evolving. To mitigate this, we have
provided all the parameters applied in our mapping
study so that other researchers are able to replicate it.

7 CONCLUSION

This study presented the results from a systematic
mapping about teaching leadership in software engi-
neering education. The results were analyzed from
the perspective of two researched questions.

Upon meticulous evaluation of 27 studies selected
for their relevance to the proposed research topic,
we discerned preliminary indicators highlighting key
facets of leadership instruction within software engi-
neering education. Firstly, it is discernible that leader-
ship is commonly defined as an integral component of
teamwork, distributed among team members and as-
sociated with Scrum, thereby providing students with
practical experiences of group representation. Sec-
ondly, it is mostly taught using Scrum, involved in ac-
tive learning strategies, such as problem-based learn-
ing, and incorporating real-world projects, either pro-
vided by external partners or aimed at addressing real-
world challenges.

As for future work, we intend to propose a leader-
ship teaching framework that incorporates these find-
ings and perform a case study in software engineering
education environment.

477

CSEDU 2025 - 17th International Conference on Computer Supported Education

ACKNOWLEDGMENT

This study was partially supported by the Ministry
of Science, Technology, and Innovations from Brazil,
with resources from Law No. 8.248, dated October
23, 1991, within the scope of PPI-SOFTEX, coordi-
nated by Softex.

REFERENCES

Ahmed, F., Capretz, L. F.,, Bouktif, S., and Campbell, P.
(2015). Soft skills and software development: A re-
flection from the software industry. arXiv preprint
arXiv:1507.06873.

Alqudah, M. and Razali, R. (2016). A review of scaling
agile methods in large software development. Inter-
national Journal on Advanced Science, Engineering
and Information Technology, 6(6):828-837.

Athukorala, C., Perera, 1., and Meedeniya, D. (2016). The
impact of transformational and transactional leader-
ship styles on knowledge creation in sri lankan soft-
ware industry. In 2016 Moratuwa Engineering Re-
search Conference (MERCon), pages 309-314. IEEE.

Barry, E. J., Mukhopadhyay, T., and Slaughter, S. A. (2002).
Software project duration and effort: an empirical
study. Journal of Information Technology and Man-
agement, 3(1-2):113-136.

Bass, B. M., Avolio, B. J., Jung, D. L., and Berson, Y.
(2003). Predicting unit performance by assessing
transformational and transactional leadership. Jour-
nal of applied psychology, 88(2):207.

Bass, B. M. and Bass Bernard, M. (1985). Leadership and
performance beyond expectations. Free press New
York.

Beck, K. (2000). Extreme programming explained: em-
brace change. Addison-Wesley Longman.

Bickle, J. T. (2017). Developing remote training consultants
as leaders—dialogic/network application of path-goal
leadership theory in leadership development. Perfor-
mance Improvement, 56(9):32-39.

Boiangiu, C.-A. and Sténicd, I.-C. (2019). The mosaics
model of educational approaches for teaching the
practice of software project management. Education
Sciences, 9(1):26.

Budgen, D., Turner, M., Brereton, P., and Kitchenham,
B. A. (2008). Using mapping studies in software en-
gineering. In Ppig, volume 8, pages 195-204.

Budu, J. (2018). Applying agile principles in teaching un-
dergraduate information technology project manage-
ment. Int. Journal of Information and Communication
Technology Education, 14(3):29-40.

Ceh-Varela, E., Canto-Bonilla, C., and Duni, D. (2023). Ap-
plication of project-based learning to a software engi-
neering course in a hybrid class environment. Infor-
mation and Software Technology, 158:107189.

Chanin, R., Sales, A., Pompermaier, L., and Prikladnicki,
R. (2018a). A systematic mapping study on software

478

startups education. In Proceedings of the 22nd Inter-
national Conference on Evaluation and Assessment in
Software Engineering, pages 163—-168.

Chanin, R., Sales, A., Santos, A. R., Pompermaier, L. B.,
and Prikladnicki, R. (2018b). A collaborative ap-
proach to teaching software startups: findings from
a study using challenge based learning. In Sharp,
H., de Souza, C. R. B., Graziotin, D., Levy, M., and
Socha, D., editors, Proc. of the 11th International
Workshop on Cooperative and Human Aspects of Soft-
ware Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pages 9-12. ACM.

Christensen, E. L. and Paasivaara, M. (2022). Learning soft
skills through distributed software development. In
Proceedings of the International Conference on Soft-
ware and System Processes and International Confer-
ence on Global Software Engineering, pages 93—-103.

da Silva, F. Q., Monteiro, C. V., dos Santos, 1. E., and
Capretz, L. F. (2016). How software development
group leaders influence team members’ innovative be-
havior. IEEE Software, 33(5):106-109.

Dewan, S. and Dewan, D. (2010). Distance education
teacher as a leader: Learning from the path goal lead-
ership theory. Journal of Online Learning and Teach-
ing, 6(3):673-685.

Dickinson, T. L. and Mclntyre, R. M. (1997). A conceptual
framework for teamwork measurement. Team perfor-
mance assessment and measurement, pages 19—43.

Dingsgyr, T., Nerur, S., Balijepally, V., and Moe, N. B.
(2012). A decade of agile methodologies: Towards
explaining agile software development.

Escudeiro, N., Barata, A., Escudeiro, P., Welzer, T.,
Almeida, R., and Papadourakis, G. (2020). Blended
academic international mobility: tearing down bar-
riers to mobility in a sustainable way. In 2020
IEEE Global Engineering Education Conference
(EDUCON), pages 1434-1443. IEEE.

Eubanks, D. L., Palanski, M., Olabisi, J., Joinson, A., and
Dove, J. (2016). Team dynamics in virtual, partially
distributed teams: Optimal role fulfillment. Comput-
ers in Human Behavior, 61:556-568.

Faraj, S. and Sambamurthy, V. (2006). Leadership of infor-
mation systems development projects. IEEE Transac-
tions on engineering management, 53(2):238-249.

Fontdo, A., Gadelha, B., and Jdnior, A. C. (2019). Bal-
ancing theory and practice in software engineering
education—a pbl, toolset based approach. In /EEE
Frontiers in Education Conference, pages 1-8. IEEE.

Fowler, M., Highsmith, J., et al. (2001). The agile mani-
festo. Journal of Software Development, 9(8):28-35.

Furumo, K., de Pillis, E., and Buxton, M. (2012). The im-
pact of leadership on participation and trust in virtual
teams. In Proceedings of the 50th annual conference
on Computers and People Research, pages 123-126.

Goyal, D., Cortinovis, R., and Capretz, L. F. (2022). A
framework for class activities to cultivate responsible
leadership in software engineering students. In Proc.
of the 15th Int. Conf. on Cooperative and Human As-
pects of Software Engineering, pages 96-101.

Leadership Teaching in Agile Software Engineering: A Systematic Mapping

Ha, N.-H., Nayyar, A., Nguyen, D.-M., and Liu, C.-A.
(2019). Enhancing students’ soft skills by implement-
ing cdio-based integration teaching mode. In The 15th
International CDIO Conference, page 569.

Heggen, S. and Myers, C. (2018). Hiring millennial stu-
dents as software engineers: a study in developing
self-confidence and marketable skills. In Proceedings
of the 2nd International Workshop on Software Engi-
neering Education for Millennials, pages 32-39.

Hidayati, A., Budiardjo, E. K., and Purwandari, B. (2020).
Hard and soft skills for scrum global software devel-
opment teams. In Proceedings of the 3rd International
Conference on Software Engineering and Information
Management, pages 110-114.

Hogan, J. M. and Thomas, R. (2005). Developing the soft-
ware engineering team. In Proceedings of the 7th Aus-
tralasian conference on Computing education-Volume
42, pages 203-210.

House, R. J. and Mitchell, T. R. (1975). Path goal theory of
leadership. Faculty of Management Studies, Univer-
sity of Toronto.

Johnson, W. G., Sunderraman, R., and Bourgeois, A. G.
(2020). Teaching strategies in software engineering
towards industry interview preparedness. In Proceed-
ings of the 9th Computer Science Education Research
Conference, pages 1-11.

Kapitsaki, G. M. and Loizou, S. K. (2018). Bringing
together undergraduate and postgraduate students in
software engineering team project: Experiences and
lessons. In Proc. of the 23rd Annual ACM Conference
on ITiCSE, pages 320-325.

Kawano, A., Motoyama, Y., and Aoyama, M. (2019). A Ix
(learner experience)-based evaluation method of the
education and training programs for professional soft-
ware engineers. In Proceedings of the 2019 7th Int.
Conf. on Inf. and Ed. Technology, pages 151-159.

Khakurel, J. and Porras, J. (2020). The effect of real-world
capstone project in an acquisition of soft skills among
software engineering students. In 2020 IEEE 32nd
Conference on Software Engineering Education and
Training (CSEE&T), pages 1-9. IEEE.

Kitchenham, B. (2004). Procedures for performing sys-
tematic reviews. Keele, UK, Keele University,
33(2004):1-26.

Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software en-
gineering. Tech report, Keele University and Durham
University.

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995).
Case studies for method and tool evaluation. Journal
of Software, 12(4):52-62.

Kitchenham, B. A., Budgen, D., and Brereton, O. P.
(2011). Using mapping studies as the basis for further
research—a participant-observer case study. Informa-
tion and Software Technology, 53(6):638-651.

Li, Y., Tan, C.-H., and Teo, H.-H. (2012). Leadership char-
acteristics and developers’ motivation in open source

software development. Information & Management,
49(5):257-267.

Li, Z. S., Arony, N. N., Devathasan, K., and Damian,
D. (2023). " software is the easy part of software
engineering"—lessons and experiences from a large-
scale, multi-team capstone course. arXiv preprint
arXiv:2302.05536.

Libreros, J., Viveros, L., Trujillo, M., Gaona, M., and
Cuadrado, D. (2020). Improving soft skills in agile
software development by team leader rotation. In In-
ternational Congress on Information and Communi-
cation Technology, pages 186—194. Springer.

Malik, S. H., Aziz, S., and Hassan, H. (2014). Leadership
behavior and acceptance of leaders by subordinates:
Application of path goal theory in telecom sector. Int.
Journal of Trade, Economics and Finance, 5(2):170.

Marquez, J. M. D., Aguja, S. E., and Prudente, M. S. (2022).
Evaluation of student leadership development amidst
online distance learning set-up. In Proceedings of the
2022 13th Int. Conf. on E-Education, E-Business, E-
Management, and E-Learning, pages 118-123.

Matturro, G., Raschetti, F., and Fontan, C. (2015). Soft
skills in software development teams: A survey of the
points of view of team leaders and team members. In
2015 IEEE/ACM 8th Int. Work. on Cooperative and
Human Aspects of Soft. Eng., pages 101-104. IEEE.

Matturro, G., Raschetti, F., and Fontan, C. (2019). A sys-
tematic mapping study on soft skills in software engi-
neering. J. Univers. Comput. Sci., 25(1):16-41.

Melegati, J., Chanin, R., Sales, A., Prikladnicki, R., and
Wang, X. (2020). MVP and experimentation in soft-
ware startups: a qualitative survey. In 46th Euromicro
Conference on Software Engineering and Advanced
Applications, SEAA 2020, Portoroz, Slovenia, August
26-28, 2020, pages 322-325. IEEE.

Melegati, J., Chanin, R., Wang, X., Sales, A., and Prik-
ladnicki, R. (2019). Enablers and inhibitors of ex-
perimentation in early-stage software startups. In
Franch, X., Minnisto, T., and Martinez-Fernandez, S.,
editors, Product-Focused Software Process Improve-
ment - 20th International Conference, PROFES 2019,
Barcelona, Spain, November 27-29, 2019, Proceed-
ings, volume 11915 of Lecture Notes in Computer Sci-
ence, pages 554-569. Springer.

Modi, S. and Strode, D. (2020). Leadership in agile soft-
ware development: a systematic literature review. In
Proceedings of the Australasian Conference on Infor-
mation Systems, pages 1-12.

Moe, N. B., Dingsgyr, T., and Rgyrvik, E. A. (2009).
Putting agile teamwork to the test—an preliminary in-
strument for empirically assessing and improving ag-
ile software development. In Agile Processes in Soft-
ware Engineering and Extreme Programming: 10th
Int. Conf., XP 2009, Pula, Sardinia, Italy, May 25-29,
2009. Proceedings 10, pages 114-123. Springer.

Moh’d A, R. (2021). Shifting the paradigms from teach-
ing project management to teaching software project
management at jordan university of science and tech-
nology based on the ieee software engineering man-
agement knowledge area. In 2021 International Con-
ference on Computational Science and Computational
Intelligence (CSCI), pages 1072-1078. IEEE.

479

CSEDU 2025 - 17th International Conference on Computer Supported Education

Moreno, E. D., Fernandes, J. M., Alves, V., Leon Olave,
M. E., and Afonso, P. (2022). Transforming ideas and
developing entrepreneurship skills in computing sci-
ences and informatics engineering courses. In Pro-
ceedings of the 11th Euro American Conference on
Telematics and Information Systems, pages 1-6.

Nascimento, N., Santos, A. R., Sales, A., and Chanin, R.
(2020). Behavior-driven development: A case study
on its impacts on agile development teams. In /ICSE
"20: 42nd International Conference on Software En-
gineering, Workshops, Seoul, Republic of Korea, 27
June - 19 July, 2020, pages 109-116. ACM.

Noguera, 1., Guerrero-Roldédn, A.-E., and Masé, R. (2018).
Collaborative agile learning in online environments:
Strategies for improving team regulation and project
management. Computers & Education, 116:110-129.

of Agile, S. (2023). The 17th state of agile report.
Technical report, https://info.digital.ai/rs/981-LQX-
968/images/RE-SA-17th-Annual-State-Of-Agile-
Report.pdf?version=0.

Paasivaara, M. (2021). Teaching the scrum master role
using professional agile coaches and communities of
practice. In 2021 IEEE/ACM 43rd Int. Conf. on Soft-
ware Engineering: Software Engineering Education
and Training (ICSE-SEET), pages 30-39. IEEE.

Paiva, S. C. and Carvalho, D. B. E (2018). Software
creation workshop: A capstone course for business-
oriented software engineering teaching. In Proc. of
the XXXII SBES, pages 280-288.

Perry, D., Porter, A., and Votta, L. (2000). Empirical studies
of software engineering: a roadmap. In Proceedings
of the 1st Conference on the Future of Software Engi-
neering, pages 345-355.

Peters, L. and Moreno, A. M. (2015). Educating software
engineering managers-revisited what software project
managers need to know today. In 2015 IEEE/ACM
37th IEEE International Conference on Software En-
gineering, volume 2, pages 353-359. IEEE.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic mapping studies in software en-
gineering. In 12th international conference on evalu-
ation and assessment in software engineering (EASE).
BCS Learning & Development.

Pfleeger, S. L. and Kitchenham, B. (2001). Principles of sur-
vey research: part 1: turning lemons into lemonade.
Journal of Software Engineering Notes, 26(6):16—18.

Podsakoff, P. M., Todor, W. D., Grover, R. A., and Huber,
V. L. (1984). Situational moderators of leader reward
and punishment behaviors: Fact or fiction? Organiz.
behavior and human performance, 34(1):21-63.

Pozenel, M. (2013). Assessing teamwork in a software en-
gineering capstone course. World Transactions on En-
gineering and Technology Education, 11(1):6-12.

Przybilla, L., Prig, A., Wiesche, M., and Krcmar, H. (2020).
A conceptual model of antecedents of emergent lead-
ership in agile teams. In Proceedings of the 2020 on
Computers and People Research Conference, pages
164-165.

Przybilla, L., Wiesche, M., and Krcmar, H. (2019). Emer-
gent leadership in agile teams—an initial exploration.

480

In Proc. of the 2019 on Computers and People Re-
search Conference, pages 176—179.

Runeson, P. and Host, M. (2009). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical software engineering, 14(2):131—
164.

Salleh, N., Mendes, E., and Grundy, J. (2011). Em-
pirical studies of pair programming for cs/se teach-
ing in higher education: a systematic literature re-
view. Journal of Transactions on Software Engineer-
ing, 37(4):509-525.

Sangwan, R. S. and Ros, J. (2008). Architecture leader-
ship and management in globally distributed software
development. In Proc. of the Ist Int. Work. on Lead-
ership and Manag. in Soft. Architecture, pages 17-22.

Schneider, J.-G., Eklund, P. W, Lee, K., Chen, F., Cain, A.,
and Abdelrazek, M. (2020). Adopting industry agile
practices in large-scale capstone education. In Pro-
ceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering: Software Engineer-
ing Education and Training, pages 119-129.

Schwaber, K. and Sutherland, J. (2011). The scrum guide.
Scrum Alliance.

Shaw, M. (2003). Writing good software engineering re-
search papers: minitutorial. In Proc. of the 25th Int.
Conf. on Software Engineering, pages 726-736.

Sjeberg, D. 1., Hannay, J. E., Hansen, O., Kampenes, V. B.,
Karahasanovic, A., Liborg, N.-K., and Rekdal, A. C.
(2005). A survey of controlled experiments in soft-
ware engineering. Journal of Transactions on Soft-
ware Engineering, 31(9):733-753.

Sundaram, R. (2023). Incorporation of significant project
experiences within the undergraduate engineering cur-
riculum. In 2023 ASEE Annual Conf. & Exposition.

Tenhunen, S., Minnisto, T., Ihantola, P., Kousa, J., and
Luukkainen, M. (2023). Software startup within a
university—producing industry-ready graduates. arXiv
preprint arXiv:2301.07020.

Van Kelle, E., Visser, J., Plaat, A., and van der Wijst, P.
(2015). An empirical study into social success factors
for agile software development. In 2015 IEEE/ACM
8th Int. Work. on Cooperative and Human Aspects of
Soft. Eng., pages 77-80. IEEE.

Vivian, R., Falkner, K., and Falkner, N. (2013). Analysing
computer science students’ teamwork role adoption in
an online self-organised teamwork activity. In Proc.s
of the 13th Koli Calling Int. Conf. on Computing Edu-
cation Research, pages 105-114.

Watson, E. M. and Cutting, D. (2022). Engagement contexts
of software engineering education projects. In 31st
Annual Conf. of the European Ass. for Ed. in Elect.
and Inf. Eng. (EAEEIE), pages 1-6. IEEE.

Wieringa, R., Maiden, N., Mead, N., and Rolland, C.
(2005). Requirements engineering paper classification
and evaluation criteria: a proposal and a discussion.
Journal of Requirements Engineering, 11(1):102-107.

