
How Proficient Is Generative AI in an Introductory Object-Oriented
Programming Course?

Marina Lepp a and Joosep Kaimre
Institute of Computer Science, University of Tartu, Narva mnt 18, Tartu, Estonia

Keywords: Artificial Intelligence (AI), Object-Oriented Programming, Programming Education, ChatGPT, Copilot,
Novice Programmers.

Abstract: In 2022, the release of ChatGPT marked a significant breakthrough in Artificial Intelligence (AI) chatbot
usage, particularly impacting computer science education. AI chatbots can now generate code snippets, but
their proficiency in solving various tasks remains debated. This study examines how well AI-based chatbots,
including ChatGPT and Microsoft Copilot, perform in solving tasks in the "Object-Oriented Programming"
course. Both tools were tested on multiple programming tasks and exam questions, with their results compared
to those of students. Currently, ChatGPT-3.5 performs below the average student, while Copilot is on par.
The chatbots performed better on introductory topics, though their performance varied as task difficulty
increased. They also fared better on longer programming test tasks than on shorter exam tasks. A common
error was failing to provide all possible solutions and misinterpreting implied requirements. Despite these
challenges, both AI tools are capable of passing the course. These findings offer valuable insights for
programming instructors by highlighting the strengths and weaknesses of AI chatbots, helping guide potential
improvements in computer science education.

1 INTRODUCTION

The year 2022 marked a breakthrough for Artificial
Intelligence, especially with the public release of
ChatGPT. This event brought widespread attention to
AI assistants and chatbots, sparking concerns about
AI replacing humans and rendering certain jobs
obsolete. One field that is notably affected is
computer science and its education (Denny et al.,
2024).

The rise of AI has led to a surge of research on its
proficiency in university courses (Denny et al., 2024;
Finnie-Ansley et al., 2022; Finnie-Ansley et al., 2023;
Richards et al., 2024), its use as a tool (Denny et al.,
2023; Jukiewicz, 2024; Kiesler et al., 2023), and its
impact on student learning (Sun et al., 2024; Yilmaz
& Yilmaz, 2023). There is currently no consensus on
whether AI outperforms the average student, with
some studies suggesting it surpasses students (Finnie-
Ansley et al., 2022; Finnie-Ansley et al., 2023;
Richards et al., 2024), while others indicate that AI
can pass courses but falls short compared to students
(Bordt & Luxburg, 2023; Shoufan, 2023).

a https://orcid.org/0000-0003-3303-5245

Specifically, in courses on object-oriented
programming, there is limited research on how AI
chatbots compare to students and whether there are
particular areas where AI struggles. Additionally,
there is little research on how well AI assistants
handle input in languages other than English (for
example, Estonian) and whether this affects their
performance.

The main goal of this study is to analyze the
proficiency of various AI chatbots in an introductory
object-oriented programming course and to compare
their performance to that of students enrolled in the
course. In this paper, the terms "AI assistants",
"chatbots" and "AI chatbots" are used
interchangeably to refer to AI-based models that
students can interact with. To achieve this goal, the
paper will address the following research questions:
 How do different chatbots perform in the

"Object-Oriented Programming" course
compared to students?

 What are the common mistakes made by AI
chatbots while solving the tasks from the
"Object-Oriented Programming" course?

216
Lepp, M. and Kaimre, J.
How Proficient Is Generative AI in an Introductory Object-Oriented Programming Course?.
DOI: 10.5220/0013199200003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 216-227
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

The paper opens with a summary of existing
research on the proficiency of AI chatbots in
computer science courses. Section 3 provides an
overview of the "Object-Oriented Programming"
course and outlines the evaluation methods used for
the AI chatbots in this course. Section 4 presents the
results, while Section 5 discusses those results in
detail.

2 BACKGROUND

Several studies have evaluated the effectiveness of
various AI approaches for solving tasks across
different fields, including economics (Geerling et al.,
2023), law (Bommarito & Katz, 2022), and medical
studies (Lee, 2023). However, this study primarily
focuses on computer science and programming
courses. The majority of previous studies about
computer science have concentrated on ChatGPT
(e.g. Richards et al., 2024; Sun et al., 2024; Yilmaz &
Yilmaz, 2023), although some have explored other
tools like GitHub Copilot (e.g. Finnie-Ansley et al.,
2022).

Several studies have shown that AI tools often
perform within the top quartile of the respective class
in introductory programming courses (e.g. Finnie-
Ansley et al., 2022; Richards et al., 2024). AI excels
in tasks covering basic topics but shows greater
variability in more complex areas like data structures
and algorithms (Finnie-Ansley et al., 2023). Bordt
and Luxburg (2023) confirmed this variability,
finding that while ChatGPT-3.5 could pass a data
structures course, it performed below the average
student, whereas ChatGPT-4 performed comparably
to students. Shoufan (2023) reported similar
outcomes, with ChatGPT achieving a passable grade
but still trailing behind students. Similarly, it was
found that ChatGPT could pass undergraduate
courses but struggled at the postgraduate level
(Richards et al., 2024). It outperformed students on
introductory topics but was outperformed on more
advanced tasks. In contrast, in another study, no
significant difference was discovered between AI's
performance in introductory and intermediate tasks,
with AI sometimes excelling in intermediate-level
assessments (Savelka et al., 2023). Overall, AI
assistants tend to outperform students at the
introductory level but struggle more with expert-level
tasks. The line between introductory and intermediate
tasks is not always clear, and while AI may surpass
students in beginner courses, it lags behind on more
challenging tasks, though still capable of passing.

In terms of topic-specific performance, AI
performed best in algorithms and data structures,
followed by operating systems, machine learning, and
database management systems (Joshi et al., 2024).
Beyond university courses, AI chatbots have also
been tested in competitive programming challenges
like Leetcode (Kadir et al., 2024). ChatGPT
surpassed the average human acceptance rate across
nearly all categories and difficulty levels (easy,
medium, hard), with the exception of tasks involving
bit manipulation. However, these challenges are not
directly comparable to university courses, as
participants may be less motivated to perform at their
best since the results do not impact their GPA.

ChatGPT’s ability to generate solutions from non-
English (Czech) input has been evaluated in
information security courses (Malinka et al., 2023).
ChatGPT successfully passed all of the four courses
where it was assessed. AI outperformed the students'
average in one course, while students outperformed
AI in the other three. ChatGPT often outperformed
students in full-text exams requiring written answers
or solutions. However, students generally performed
better in tasks involving projects, essay writing, and
coding small snippets.

Research on AI performance in object-oriented
programming courses taught in Java, particularly
when comparing AI assistants to student results, is
limited. It was found that while ChatGPT can handle
simpler tasks, it struggles with more complex ones
(Bucaioni et al., 2024; Ouh et al., 2023; Wang et al.,
2024). However, it often provides partial solutions
that give students a useful starting point. Another
issue noted is that when tasks involve data presented
as UML diagrams or API documentation, chatbots
have difficulty parsing the full input. This challenge
is not unique to Java or object-oriented programming
but highlights the broader limitations of AI in
handling non-text inputs. Camara et al. (2023)
support this, reporting that ChatGPT struggles to
reliably generate UML diagrams and often
encounters syntax issues. Cipriano and Alves (2024)
further confirmed AI's difficulties with object-
oriented tasks, finding that AI-generated code
frequently contained compilation errors, required
multiple prompts to complete all necessary classes
and functions, and failed some unit tests used for task
evaluation. In addition, code generated by ChatGPT
is prone to several quality issues, such as runtime
errors, incorrect outputs, and challenges with
maintainability (Liu et al., 2024). The limited
research comparing AI assistants to students makes it
difficult to determine whether AI faces similar

How Proficient Is Generative AI in an Introductory Object-Oriented Programming Course?

217

challenges or if it outperforms students in some areas
while underperforming in others.

Overall, AI has advanced to a level where it can
successfully pass university courses, but it has yet to
consistently outperform the average student. This
may be due to the significant variation in AI's
proficiency across different tasks. While AI can
easily handle small code snippets and exam
questions, it struggles with larger, more complex
projects, programs, and essays. For essays, AI often
encounters issues with proper citations and may
generate false references (Malinka et al., 2023).
Whether AI exceeds the students’ average in a course
often depends on the grading scheme and the weight
of different tasks in the final grade. Another factor
affecting AI performance is the presentation of task
descriptions. AI can also pass non-English courses,
but more research is needed to determine if this
capability extends beyond Czech to other languages,
such as Estonian. Research on AI in Java-based
object-oriented programming courses is limited, but
the general trend aligns with other fields: AI excels at
simpler, smaller tasks but struggles as complexity
increases. The lack of studies comparing AI to
students in Java courses makes it difficult to pinpoint
where AI's performance differs from that of students
or whether they make similar mistakes.

3 RESEARCH METHOD

3.1 Course Details

Object-oriented programming (OOP) is a widely used
paradigm in contemporary programming. It revolves
around the concept of objects, which are instances of
classes that encapsulate both data and the behaviors
associated with that data (Gabbrielli & Martini,
2023). At the University of Tartu, this paradigm is
taught to first-year students in the course “Object-
Oriented Programming”, using the Java programming
language. The data, tasks, and results from this course
were utilized to compare the proficiency of AI
chatbots in object-oriented programming tasks
against that of novice programmers.

The “Object-Oriented Programming” course is
primarily taught to first-year Computer Science
students as a mandatory part of their curriculum.
However, it is also selected as an elective by many
other students, making it one of the largest courses at
the University of Tartu, with annual enrollment
ranging from 270 to 330 students. To enroll in the
"Object-Oriented Programming" course, students
must first complete an introductory course in Python

(Leping et al., 2009). Since students are not required
to have prior experience with object-oriented
programming or Java, most enter the course as
complete beginners in both the language and the
subject matter.

The course lasts for 16 weeks and consists of
weekly lectures, homework assignments, and practice
seminars, employing a flipped-classroom approach
(Lepp & Tõnisson, 2015). Each week, students are
required to watch lecture videos, complete a short
quiz, tackle homework related to the weekly topic,
and attend practice seminars to enhance their
understanding. Throughout the course, they must take
two major tests and complete two group assignments,
culminating in a final exam. The final grade primarily
depends on the exam (33 points out of 102) and the
tests (worth 16 points each). Points earned in practice
seminars are based on attendance alone. Most
homework assignments feature automated tests that
provide immediate feedback, allowing students to
resubmit their work until they achieve the highest
score. Group projects are open-ended tasks with
specific requirements, granting students the freedom
to choose their topics and implementations, which
can lead to less uniform assessments since graders
also take the students' skill levels into account. As a
result, our analysis will focus on comparing AI and
student performance on the exam and tests, as these
assessments have clear and consistent grading
criteria, enabling more accurate comparisons. Since
these two components significantly influence the
final grade (almost 64% in total), this analysis will
offer insights into AI's proficiency relative to
students, including the potential for academic
dishonesty and the extent to which AI could assist
students.

The two tests are scheduled for weeks 7 and 13,
each covering the topics taught in the preceding
weeks. Students are provided with a program outline
listing the required classes, the methods each class
should include, any interfaces the classes must
implement or properties to inherit from a superclass,
and the expected main workflow of the program.
Students have 105 minutes to complete the program,
during which they are allowed to use any materials
except for communicating with others or seeking help
from an AI chatbot. The beginning of the sample test
task (translated into English) can be seen in Figure 1.

During the test, the students can use automatic
tests to verify that all required classes and methods
are present. However, these tests do not assess the
internal logic of the program. It is the student's
responsibility to test and debug their code to ensure it
aligns with the provided task outline.

CSEDU 2025 - 17th International Conference on Computer Supported Education

218

Figure 1: The beginning of the sample task for test 1.

Figure 2: Examples of the short exam tasks.

The exam is taken at the end of the course through
a computer-based test on Moodle. Students are
allowed to use course materials, review code
examples and documentation, and search on Google,
but they are prohibited from communicating with
others, using AI assistants, opening IDEs, compiling
code, or running it. The exam lasts 60 minutes and
covers all topics taught in the course. The first
question is a declaration of honesty, worth 1 point,
and the final question is a longer, open-ended task
worth 6 points. Between these are 13 other questions,
worth 2 points each, presented in a random order.
These questions include multiple-choice, single-
choice, fill-in-the-blank, and matching types, with the
specific set of options varying depending on the
question. Students cannot revisit previous questions
once they have moved on to the next. Examples of the
short question (translated into English) can be seen in
Figure 2.

The longer, open-ended question requires
students to explain and justify their answers. There

are two types of this question: one involves filling in
the gaps of a code snippet and providing all possible
answers along with reasoning, while the other
presents a code snippet with errors, asking students to
evaluate statements about what is wrong with the
code and justify their decisions. Examples of both
types of longer tasks (translated into English) are
shown in Figure 3.

Figure 3: Examples of the two long tasks.

How Proficient Is Generative AI in an Introductory Object-Oriented Programming Course?

219

3.2 Procedure and Data Analysis

ChatGPT-3.5 and Microsoft Copilot were selected for
testing. ChatGPT-3.5 was chosen due to its free
availability, unlike ChatGPT-4, which requires a paid
subscription. Since students are more likely to use the
free version, it was assumed they would opt for
ChatGPT-3.5. Microsoft Copilot was included
because students at the University of Tartu have free
access to its paid version through their university
email, making it a likely choice for students.

To evaluate how well ChatGPT and Copilot could
handle tasks in the introductory object-oriented
programming course, they were provided with the full
text of the tests and tasks, and their outputs were
graded accordingly. While ChatGPT processed the
full text with no issues, Copilot had a 4000-character
limit, requiring some tasks to be split into multiple
queries. No additional adjustments were made, which
also meant that the AI chatbots received the tasks in
Estonian.

To assess how effectively the AI tools completed
the tasks, the standard grading scheme of the course
was used. Common errors were documented to
identify recurring issues and potential problem areas.
Each AI chatbot was given three different versions of
the tests to gather more data points. For the exam,
which consists of a range of questions from a Moodle
question bank, the AI assistants were tested on ten
questions from each set to establish a reliable average
performance for each topic. The same set of questions
was presented to both AI assistants.

4 RESULTS

4.1 Programming Test 1

Test 1 covers key topics such as Java classes, objects,
Strings, files, lists, polymorphism, interfaces, and
abstract, super- and subclasses. The test is worth 16
points, with a passing score set at 12 out of 16.
ChatGPT and Copilot outputs were evaluated. On
average, ChatGPT achieved a score of 14.65, while
Copilot scored 15.85 out of 16, both exceeding the
required minimum score. A total of 285 students took
this test, with the average score being 14.61 points. In
comparison, both ChatGPT and Copilot performed
better, with their averages being higher. However, the
difference between ChatGPT and the students was
relatively small, while Copilot showed a more
significant advantage. When looking at individual
tests, ChatGPT outperformed the students’ average
on two of them. However, the students’ average was

lowered by non-compiling solutions, which were
automatically scored as 0. Copilot, on the other hand,
outperformed the students on all three tests.

Figure 4 shows the boxplot comparing the results
of the students and the AI chatbots for test 1. To
improve clarity, outliers were excluded from the
visualization since non-compiling solutions
automatically received a score of zero. The AI chatbot
results are marked with logo pictures, and the
students’ average is represented as a cross on the
boxplot. When examining the quartile distribution,
ChatGPT's scores were below the lower quartile for
T1.2 and T1.3 and only slightly above for T1.1,
suggesting that ChatGPT underperforms compared to
the average student on more lengthy and complex
tasks. In contrast, Copilot performed better, scoring
above the upper quartile for T1.2 and between the
median and upper quartile for T1.1 and T1.3,
indicating that it outperforms the average student.

Figure 4: Students’ and AI chatbots’ results in test 1.

ChatGPT consistently made two mistakes (see
Table 1): it failed to specify the required encoding for
files and defined logic in abstract methods within the
superclass without overriding it in the subclasses.
Copilot, however, had no recurring errors. It only
missed specifying file encoding once and added null
values to a toString method in just one of the three
tests.

4.2 Programming Test 2

Test 2 covers streams, exception handling, and data
structures, in addition to the topics covered in test 1.
The test was worth 16 points and unlike test 1, there
was no minimum score required to pass. ChatGPT
and Copilot were given the problem descriptions of
three test variants, and their results were graded.

CSEDU 2025 - 17th International Conference on Computer Supported Education

220

Table 1: ChatGPT and Copilot mistakes in test 1.

Test
version

ChatGPT mistakes Copilot
mistakes

T1.1 1. Did not use the required
encoding for files.
2. A method that needed to
be abstract was defined.

Displayed null
values in
toString
method .

T1.2 1. Did not use the required
encoding for files.
2. A method that needed to
be abstract was defined.
3. Used wrong method
names.
4. A mistake in application
logic.

Made no
mistakes.

T1.3 1. Did not use the required
encoding for files.
2. Did not read data from a
file.

Did not use
the required
encoding for
files.

On average, ChatGPT achieved a score of 12.13,
while Copilot scored 14.87 points out of 16. The
students’ average for these tests was 13.39 points.
ChatGPT scored lower than the students’ average,
whereas Copilot scored higher. However, when
analyzing the individual tests, ChatGPT
outperformed students in T2.3 but scored lower in
T2.1 and T2.2. Copilot, on the other hand,
outperformed students in all test variants.

Figure 5 illustrates the performance of the
students and the AI chatbots in test 2. Outliers, such
as non-compiling solutions that received a zero score,
were excluded for clarity. In terms of quartile
distribution, ChatGPT's scores were below the lower
quartile for T2.1 and T2.2 and fell between the lower
quartile and the median for T2.3. In contrast,
Copilot’s scores were above the median for T2.1 and
T2.3 and just below the median for T2.2. These
findings confirm that ChatGPT underperformed
compared to the average student, while Copilot
consistently outperformed the students’ average
across the tests.

ChatGPT exhibited several recurring mistakes
(Table 2), with the most common being that methods
were marked as public instead of private. This
requirement was outlined in the test, as methods were
not supposed to be accessible outside the class, which
likely impacted the outcome. However, a similar
problem with private methods was also mentioned
previously (Wang et al., 2024). The test variants
differed in that two required the use of queues, while
one required the use of maps. ChatGPT made more
mistakes in the tests involving queues (T2.1, T2.2),
particularly with reading user input, while it
performed better in the test that involved maps (T2.3).
Another recurring issue was sorting: the tests required

a non-decreasing order, but ChatGPT sorted in the
opposite direction.

Figure 5: Students’ and AI chatbots’ results in test 2.

Table 2: ChatGPT and Copilot mistakes in test 2.

Test
version

ChatGPT mistakes Copilot
mistakes

T2.1 1. Methods were not
private.
2. The logic for asking
user input did not work
correctly.
3. Did not use user input.
4. Multiple mistakes in
application logic.

1. Did not
generate get and
set methods.

T2.2 1. Methods were not
private.
2. The logic for asking
user input did not work
correctly.
3. Did not use user input.
4. Sorted in the wrong
direction.
5. Did not generate some
functionalities.

1. Did not
generate some
get methods.
2. Sorted in the
wrong direction.

T2.3 1. Methods were not
private.
2. Sorted in the wrong
direction.
3. Small mistake in
reading input.

1. Did not
generate some
get methods.
2. A method
was not private.

Copilot had a recurring issue in all three test
variants where it failed to generate some required
getter methods and found workarounds instead. Other
mistakes were more unique to individual test variants.
Like ChatGPT, Copilot struggled with the sorting
direction and setting a method as private, but these
issues occurred only in one test variant, unlike the
recurring mistakes seen with ChatGPT. Additionally,
Copilot did not show any noticeable performance

How Proficient Is Generative AI in an Introductory Object-Oriented Programming Course?

221

differences between the queue-based tests (T2.1,
T2.2) and the map-based test (T2.3).

4.3 Exam

The AI assistants performed similarly on questions
related to objects and classes (see Appendix).
However, a noticeable difference emerged in
questions, which focused on strings, files, and lists
(Q3). Both struggled with various string methods, but
ChatGPT also encountered issues with
Collections.sort and list indexing. The most
significant discrepancy, which contributed to the
larger gap in points, was that ChatGPT struggled to
accurately handle string values stored in variables,
often confusing values between variables or
introducing new ones. This issue did not occur in the
Copilot’s responses.

Copilot consistently outperformed ChatGPT on
topics related to interfaces, sub-, super- and abstract
classes (see Appendix Q4-Q9)—even though they
made similar mistakes, Copilot did so less frequently.
Both assistants struggled with class hierarchy,
specifically confusing the order of method
declaration searches and how a superclass’s
constructor is called during instance creation.
Another shared mistake was assuming that an abstract
class must implement an interface's methods. A
unique error for Copilot was attempting to define an
abstract method in an abstract class without using the
keyword "abstract". ChatGPT, on the other hand, had
more distinct errors, such as confusing when to use
"extends" versus "implements," misunderstanding
when access modifiers are required, and mixing up
what is permissible in classes versus abstract classes.

The graphics questions could not be analyzed
since they included a picture of a JavaFX program,
which could not be input into the AI assistants. For
the events topic (Q11), all issues were due to logical
and string comparison errors, rather than a
misunderstanding of how events and changes
function. Overall, Copilot and ChatGPT made similar
mistakes, but the main difference in their scores came
from the fact that ChatGPT made these errors more
frequently than Copilot.

The only topic where ChatGPT outperformed
Copilot was exception handling (Q13), which is
notable since Copilot outscored ChatGPT in all other
areas. Both AI assistants struggled with print
statements, often ignoring them, and incorrectly
assumed that if an exception is thrown in a catch
block, it would be caught automatically, which is not
the case. Another shared error was their
misunderstanding that data streams cannot

interchangeably use readUTF/writeUTF for
readInt/writeInt (Q12). Additionally, ChatGPT had
more issues understanding file lengths. Both AIs
struggled with the stack data structure (Q14),
consistently failing on this topic. As there was no time
when they answered correctly about stacks, this likely
indicates a lack of sufficient training data. ChatGPT
also showed difficulties with queues and sets, a
recurring issue that also appeared in the results of test
2. This suggests that Copilot has a better grasp of less
common data structures compared to ChatGPT.

The long tasks (Q15) required a comprehensive
understanding of the topics from the entire course,
leading to a variety of mistakes, many of which were
similar to errors made in earlier questions, such as
issues with superclass constructor calls and string-to-
number conversions. A recurring problem was that
when the task required providing all possible
solutions, the AI assistants almost always gave only
one correct answer instead of multiple possibilities.
For example, they would provide only "public" as the
correct keyword, even though other keywords were
also valid, or they would use only an abstract class or
the superclass for instance creation. The tasks also
required explanations for the proposed solutions,
where the AI assistants performed well if their initial
answer was correct. As with other tasks, Copilot
outperformed ChatGPT in this area.

Figure 6: Students’ and AI chatbots’ results in the exam.

In terms of average performance, Copilot
achieved a higher average score (27.13 points) than
the students (26.90, SD=3.62), while ChatGPT had a
lower average (23.82). The exam results for the
students and the AI chatbots are shown as a boxplot
in Figure 6. Although Copilot had a higher average
score than the students, it fell below the median,
suggesting that more than half of the students

CSEDU 2025 - 17th International Conference on Computer Supported Education

222

performed better. ChatGPT fared even worse, with an
average score below the bottom quartile, indicating
that 75% of the students outperformed it. Overall, this
suggests that half of the students have a better
understanding of the topics than the AI chatbots.

5 DISCUSSION

5.1 Comparison of AI vs. Students

One of the goals of the study was to compare chatbot
performance with that of students in the "Object-
Oriented Programming" course. In test 1, both AI
chatbots outperformed the students’ average, but this
was mainly because non-compiling student solutions
received automatic zeros, lowering the average.
Quartile analysis showed ChatGPT being
consistently below the bottom quartile, meaning 75%
of students outperformed it. Copilot, however,
performed better, scoring above the median in all
three tests and reaching the upper quartile in one.
These results align with Bordt and Luxburg's (2023)
findings, where ChatGPT-3.5 passed a course but
underperformed compared to students, while
ChatGPT-4 performed similarly to them. As Copilot
is based on GPT-4, the results are consistent with this
observation. However, other studies (Finnie-Ansley
et al., 2022; Finnie-Ansley et al., 2023; Richards et
al., 2024) have found that AI tools like ChatGPT and
Codex ranked above the upper quartile in
introductory CS courses, possibly due to the tasks
being in English, whereas this study used Estonian
tasks. Similar language-related performance variance
was observed in Czech information security courses
(Malinka et al., 2023), where students often
outperformed AI.

In test 2, the AI results differed from the students’
average: ChatGPT performed worse, while Copilot
did better. ChatGPT was in the bottom 25% for two
test variants and in the bottom half for the third.
Copilot scored above the median for two variants but
below it for one. This continues the trend from test 1
where ChatGPT-3.5 passed but underperformed
compared to students, while Copilot performed closer
to the students’ median. However, both chatbots
performed worse overall in test 2 compared to test 1.
These results align with studies (Finnie-Ansley et al.,
2023; Richards et al., 2024), showing that AI tools do
better on simpler tasks but struggle with more
complex ones, even though other research (Savelka et
al., 2023) has found no such difference. The exam
results confirmed this pattern: ChatGPT scored lower
than the students’ average while Copilot

outperformed it, but both AIs still fell below the
median student. A key issue was the AIs' inability to
parse one question presented as an image, costing
them 2 points. This reflects previous challenges with
interpreting UML diagrams (Cámara et al., 2023; Ouh
et al., 2023).

An interesting observation is that the AI
performed better on the tests than on the exam. The
tests involved creating programs with multiple
classes and functions from longer textual
descriptions, while the exam focused on shorter
questions requiring decisions about smaller code
snippets. One might expect more errors in longer
texts, yet the AI struggled more with the shorter
questions. This aligns with previous research
(Malinka et al., 2023), which found that students
excelled at solving small code snippets compared to
AI, but the AI’s ability to handle more complex tasks
from detailed descriptions stands out as noteworthy.

5.2 Common AI Mistakes

The second research question examined common
mistakes made by AI chatbots in solving course tasks.
The mistakes by ChatGPT and Copilot were
documented to identify patterns. In test 1, the most
frequent error, present in all ChatGPT solutions and
once in Copilot’s, was failing to specify file encoding.
This was a requirement stated in the task, as the files
are in a particular encoding, with the assumption that
data would be read using that encoding. Copilot also
displayed null values in a toString method, and
ChatGPT had issues reading files and used incorrect
method names. Another recurring error for ChatGPT
was failing to make a superclass method abstract.
Instead, it defined logic in it, which worked but did
not follow the task's specification. Test 2 had more
errors. Both chatbots failed to make certain methods
private, likely due to the requirement being written in
Estonian as the methods are not meant to be callable
outside the class, and this may have caused confusion
for the AI assistants, as they did not make similar
mistakes in test 1. Both also sorted data incorrectly,
possibly due to confusion over the term "non-
decreasing," which was in Estonian. Copilot
struggled with generating get and set methods, while
ChatGPT had difficulties with Queue data structures,
misunderstanding how the task should be handled.
Interestingly, while ChatGPT and Copilot made
similar mistakes on the same tests, no repeated errors
were observed between tests 1 and 2. This may be due
to the different topics each test covered, which
reduced the likelihood of similar mistakes. Although
ChatGPT and Copilot failed to generate some

How Proficient Is Generative AI in an Introductory Object-Oriented Programming Course?

223

required get and set methods, they did not encounter
compilation issues, which have been highlighted by
previous research (Cipriano & Alves, 2024).

The exam covered various course topics,
requiring the AI assistants to tackle a wide range of
tasks. A frequent issue, which was not related to the
content but to the question format, was that the AI
often failed to choose answers from the multiple-
choice options provided, usually selecting just one
correct answer instead of listing all. Both ChatGPT
and Copilot struggled with String comparison,
making case-sensitive errors and using incorrect
methods. ChatGPT also had trouble understanding
variable values and made mistakes related to lists,
including issues with indexes, reference-based
handling, and sorting. Complex topics like interfaces,
abstract classes, and class hierarchies posed
challenges. ChatGPT consistently made errors with
abstract methods, and both AI tools struggled with
method implementations and understanding how
superclass constructors are called. They also had
difficulty using the keywords "abstract," "extends,"
"implements," and understanding access modifiers in
interfaces and abstract classes. These issues suggest
that when faced with less common or edge-case
problems, AI assistants are more prone to mistakes.

The graphics questions revealed that AI assistants
could not parse image data, similar to issues noted in
prior research on UML diagrams (Cámara et al.,
2023; Ouh et al., 2023). For events, the AIs generally
understood event logic but made recurring mistakes
in String and logical comparisons, often confusing
variable values. In data streams, both ChatGPT and
Copilot struggled with how methods like readInt and
writeUTF interact, as well as with input file size. Both
AIs also failed to account for some print statements
in exception handling and incorrectly assumed that
exceptions thrown in a catch block would be caught.
Data structures were another weak area, with both
always making errors on stack-related tasks, and
ChatGPT having recurring problems with Queues,
similar to the issues in test 2. The final exam question,
requiring knowledge across all course topics, showed
familiar errors—trouble with interfaces, abstract
classes, and class hierarchies, along with incorrect use
of access modifiers. Additionally, the AIs tended to
propose only one solution when multiple were
required. However, when their answers were correct,
their explanations were solid, consistent with
previous research where AI outperformed students in
explaining answers (Malinka et al., 2023).

6 CONCLUSIONS

This paper provided an overview of ChatGPT and
Copilot's proficiency in an introductory object-
oriented programming course, comparing their
performance to that of students. The findings offer
valuable insights for instructors, highlighting how
these AI tools stack up against students and
identifying common mistakes made by the chatbots.
This information can be informative for
improvements to computer science courses and
education.

A limitation of this study is its focus on just one
course in a single year, due to the rise of AI chatbots
being only a recent development. Future research
across more courses and years would be beneficial.
While this research primarily explored AI
proficiency, another promising area of study is how
AI tools can assist lecturers with teaching and grading
automation. Additionally, as AI assistants evolve and
improve through updates, research into how their
proficiency changes over time would be an intriguing
direction for further exploration.

ACKNOWLEDGEMENTS

This work was supported by the Estonian Research
Council grant "Developing human-centric digital
solutions" (TEM-TA120).

REFERENCES

Bommarito, M., & Katz, D. M. (2022). GPT takes the bar
exam. https://doi.org/10.48550/ARXIV.2212.14402

Bordt, S., & Luxburg, U. (2023). ChatGPT participates in
a computer science exam. https://doi.org/10.48550/
arXiv.2303.09461

Bucaioni, A., Ekedahl, H., Helander, V., & Nguyen, P. T.
(2024). Programming with ChatGPT: How far can we
go? Machine Learning with Applications, 15, 100526.
https://doi.org/10.1016/j.mlwa.2024.100526

Cámara, J., Troya, J., Burgueño, L., & Vallecillo, A.
(2023). On the assessment of generative AI in modeling
tasks: An experience report with ChatGPT and UML.
Software and Systems Modeling (SoSyM), 22(3), 781–
793. https://doi.org/10.1007/s10270-023-01105-5

Cipriano, B. P., & Alves, P. (2024). LLMs still can't avoid
instanceof: An investigation into GPT-3.5, GPT-4 and
Bard's capacity to handle object-oriented programming
assignments. In Proceedings of the 46th International
Conference on Software Engineering: Software
Engineering Education and Training (pp. 162–169).
ACM. https://doi.org/10.1145/3639474.3640052

CSEDU 2025 - 17th International Conference on Computer Supported Education

224

Denny, P., Khosravi, H., Hellas, A., Leinonen, J., & Sarsa,
S. (2023). Can we trust AI-generated educational
content? Comparative analysis of human and AI-
generated learning resources. https://doi.org/10.48550/
arXiv.2306.10509

Denny, P., Prather, J., Becker, B. A., Finnie-Ansley, J.,
Hellas, A., Leinonen, J., Luxton-Reilly, A., Reeves, B.
N., Santos, E. A., & Sarsa, S. (2024). Computing
education in the era of generative AI. Communications
of the ACM, 67(2), 56–67. https://doi.org/10.
1145/3624720

Finnie-Ansley, J., Denny, P., Becker, B., Luxton-Reilly, A.,
& Prather, J. (2022). The robots are coming: Exploring
the implications of OpenAI Codex on introductory
programming. In Proceedings of the 24th Australasian
Computing Education Conference (pp. 10–19).
https://doi.org/10.1145/3511861.3511863

Finnie-Ansley, J., Denny, P., Luxton-Reilly, A., Santos, E.,
Prather, J., & Becker, B. (2023). My AI wants to know
if this will be on the exam: Testing OpenAI’s Codex on
CS2 programming exercises. In Proceedings of the 25th
Australasian Computing Education Conference (pp.
97–104). https://doi.org/10.1145/3576123.3576134

Gabbrielli, M., & Martini, S. (2023). Object-oriented
paradigm. In Programming languages: Principles and
paradigms (2nd ed.). Springer Nature.

Geerling, W., Mateer, G. D., Wooten, J., & Damodaran, N.
(2023). ChatGPT has mastered the principles of
economics: Now what? SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.4356034

Jukiewicz, M. (2024). The future of grading programming
assignments in education: The role of ChatGPT in
automating the assessment and feedback process.
Thinking Skills and Creativity, 52. https://doi.org/10.
1016/j.tsc.2024.101522

Joshi, I., Budhiraja, R., Dev, H., Kadia, J., Ataullah, M.,
Mitra, S., Akolekar, H., & Kumar, D. (2024). ChatGPT
in the classroom: An analysis of its strengths and
weaknesses for solving undergraduate computer
science questions. In Proceedings of the Technical
Symposium on Computer Science Education (pp. 625–
631). https://doi.org/10.1145/3626252.3630803

Kadir, M., Rahman, T., Barman, S., & Al-Amin, M. (2024).
Exploring the competency of ChatGPT in solving
competitive programming challenges. International
Journal of Advanced Trends in Computer Science and
Engineering, 13(1), 13–23. https://doi.org/10.30534/
ijatcse/2024/031312024

Kiesler, N., Lohr, D., & Keuning, H. (2023). Exploring the
potential of large language models to generate
formative programming feedback. In 2023 IEEE
Frontiers in Education Conference (FIE) (pp. 1–5).
https://doi.org/10.1109/FIE58773.2023.10343457

Lee, H. (2023). The rise of ChatGPT: Exploring its
potential in medical education. Anatomical Sciences
Education. https://doi.org/10.1002/ase.2270

Leping, V., Lepp, M., Niitsoo, M., Tõnisson, E., Vene, V.,
& Villems, A. (2009). Python prevails. In Proceedings
of the International Conference on Computer Systems
and Technologies (pp. IV.17-1 - IV.17-5).

Lepp, M., & Tõnisson, E. (2015). Integrating flipped
classroom approach and work in pairs into workshops
in programming course. In International Conference on
Frontiers in Education: Computer Science and
Computer Engineering (pp. 220-226).

Liu, Y., Le-Cong, T., Widyasari, R., Tantithamthavorn, C.,
Li, L., Le, X.-B. D., & Lo, D. (2024). Refining
ChatGPT-generated code: Characterizing and
mitigating code quality issues. ACM Transactions on
Software Engineering and Methodology, 33(5), Article
116. https://doi.org/10.1145/3643674

Malinka, K., Peresíni, M., Firc, A., Hujnák, O., & Janus, F.
(2023). On the educational impact of ChatGPT: Is
artificial intelligence ready to obtain a university
degree? In Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science
Education (pp. 47–53). https://doi.org/10.1145/
3587102.3588827

Ouh, E. L., Gan, B. K. S., Jin Shim, K., & Wlodkowski, S.
(2023). ChatGPT, can you generate solutions for my
coding exercises? An evaluation on its effectiveness in
an undergraduate Java programming course. In
Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education (pp. 54–
60). https://doi.org/10.1145/3587102.3588794

Richards, M., Waugh, K., Slaymaker, M., Petre, M.,
Woodthorpe, J., & Gooch, D. (2024). Bob or Bot:
Exploring ChatGPT's answers to university computer
science assessment. ACM Transactions on Computing
Education, 24(5), 1–32. https://doi.org/10.
1145/3633287

Savelka, J., Agarwal, A., Bogart, C., Song, Y., & Sakr, M.
(2023). Can generative pre-trained transformers (GPT)
pass assessments in higher education programming
courses? In Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science
Education (pp. 117–123). https://doi.org/10.1145/
3587102.3588792

Shoufan, A. (2023). Can students without prior knowledge
use ChatGPT to answer test questions? An empirical
study. ACM Transactions on Computing Education,
23(45), 1–29. https://doi.org/10.1145/3628162

Sun, D., Boudouaia, A., Zhu, C., & Li, Y. (2024). Would
ChatGPT-facilitated programming mode impact
college students’ programming behaviors,
performances, and perceptions? An empirical study.
International Journal of Educational Technology in
Higher Education, 21(14). https://doi.org/10.1186/
s41239-024-00446-5

Wang, S., Ding, L., Shen, L., Luo, Y., Du, B., & Tao, D.
(2024). OOP: Object-oriented programming evaluation
benchmark for large language models. In Findings of
the Association for Computational Linguistics: ACL
2024 (pp. 13619–13639). Bangkok, Thailand.

Yilmaz, R., & Yilmaz, F. G. K. (2023). The effect of
generative artificial intelligence (AI)-based tool use on
students' computational thinking skills, programming
self-efficacy and motivation. Computers and
Education: Artificial Intelligence, 4. https://doi.org/10.
1016/j.caeai.2023.100147.

How Proficient Is Generative AI in an Introductory Object-Oriented Programming Course?

225

APPENDIX

Table: AI assistants' results in exam questions.

 Topic AI Points Mistakes

Q2 Objects,
Classes

Chat-
GPT

Avg=1.9 SD=0.32
min=0 max=2 Did not choose answers from the possible answer list given

Copilot Avg=1.95 SD=0.16
min=1 max=2 Did not follow the order of arguments of a method

Q3 Strings,
Files, Lists

Chat-
GPT

Avg=0.995 SD=0.74
min=0 max=2

Comparing substrings indexes
Problems with uppercase and lowercase comparison
Assumed that Collections.sort returned, not changed the
existing list
Made mistakes with lists related to them being reference-based
Did not comprehend which String value was saved in the
variable

Copilot Avg=1.7 SD=0.63
min=0 max=2

Problems with uppercase and lowercase comparison
Problems with the String contains method

Q4

Interfaces

Chat-
GPT

Avg=1.563 SD=0.37
min=1 max=2

Stated that abstract class needs to implement interface methods
An empty method body is still an implementation of a method
Used extends for interfaces
Stated that interface methods need access keywords
Used abstract methods in non-abstract classes

Copilot Avg=1.847 SD=0.63
min=1.6 max=2 Stated that abstract class needs to implement interface methods

Q5

Chat-
GPT

Avg=1.4 SD=0.78
min=0 max=2

Used keyword class when methods are not implemented
Stated that abstract cannot be used in interfaces
Stated that the access modifier has to be specified in an
interface
Sorted in the wrong direction with comparable

Copilot Avg=1.82 SD=0.38
min=1 max=2

Defined abstract methods without using the keyword abstract
in an abstract class

Q6

Class
hierarchy

Chat-
GPT

Avg=1.64 SD=0.39
min=1 max=2

Failed to realize a superclass's constructor with no arguments
is always called when creating an instance of a subclass
Failed to realize that when a subclass calls a superclass
constructor with arguments, the constructor with no arguments
is not called

Copilot Avg=1.904 SD=0.22
min=1.33 max=2

Q7

Chat-
GPT

Avg=1.733 SD=0.64
min=0 max=2 Method declarations are searched for starting from subclasses,

not from superclasses Copilot Avg=1.8 SD=0.63
min=0 max=2

Q8

Abstract
classes

Chat-
GPT

Avg=1.516 SD=0.14
min=0.66 max=2

Stated that abstract classes cannot have realized methods
Did not add the keyword abstract to abstract methods
Stated that abstract classes cannot have abstract subclasses
Used extends with interfaces
Did not implement all abstract methods in non-abstract
subclass

Copilot Avg=1.68 SD=0.35
min=1 max=2

Stated that an abstract class needs to implement all superclass
methods
Used extends with interfaces
Stated that you can override method only when superclass is
abstract

Q9

Chat-
GPT

Avg=1.663 SD=0.26
min=1.33 max=2

Assumed that interfaces cannot contain variables
Assumed that abstract classes cannot contain only non-abstract
methods

Copilot Avg=1.826 SD=0.29
min=1.33 max=2

Stated that abstract classes cannot have realized methods
Implemented methods in interfaces
Assumed that interfaces cannot contain variables

Q10 Graphics Could not be analyzed (the questions contained pictures)

CSEDU 2025 - 17th International Conference on Computer Supported Education

226

 Topic AI Points Mistakes

Q11 Events

Chat-
GPT

Avg=1.45 SD=0.50
min=0.5 max=2

Made mistakes when String comparison and methods were used
Confused < and <=
Sometimes confused different variables

Copilot Avg=1.75 SD=0.35
min=1 max=2

Made mistakes when String comparison and methods were used
Confused != and ==
Sometimes confused different variables
Confusion with list indexes

Q12 Streams

Chat-
GPT

Avg=1.799 SD=0.34
min=1.14 max=2

Did not understand when reading the input file had reached the
end of the file
readUTF cannot comprehend input written with the method
writeInt
Had a problem understanding how long the input file is

Copilot Avg=1.869 SD=0.29
min=1.14 max=2

readUTF cannot comprehend input written with the method
writeInt

Q13 Exception
handling

Chat-
GPT

Avg=1.857 SD=0.12
min=1.75 max=2 Did not notice a print statement

An exception thrown in a catch block was not caught Copilot Avg=1.732 SD=0.62
min=0 max=2

Q14 Data
structures

Chat-
GPT

Avg=1 SD=1.05
min=0 max=2

Did not understand how Stack data structure works
Had problems with Queue element removal, and did not
understand it worked as FIFO
Had problems when a set was given the same element multiple
times

Copilot Avg=1.6 SD=0.84
min=0 max=2 Did not understand how Stack data structure works

Q15

Question
with

explana-
tions

Chat-
GPT

Avg=4.3 SD=1.06
min=3 max=5.5

Did not add Comparable interface when necessary
Did not add access modifiers
Had a problem with String to Integer and Double conversions
Did not use interfaces
Assumed that method signatures must contain throws
NumberFormatException
Non-static methods cannot be called directly in a static context
Did not mention creating subclass instances

Copilot Avg=4.65 SD=0.66
min=3.5 max=5.5

Did not use interfaces or abstract classes, only class
Did not mention creating subclass instances both with subclass
and superclass types
Stated that protected methods cannot be called from other
classes
Stated that a class’s main method cannot contain instances of
said class
Did not add access modifiers
Did not add a call to superclass constructor in subclass

How Proficient Is Generative AI in an Introductory Object-Oriented Programming Course?

227

