
SIR SQL for Logical Navigation and Calculated Attribute Free
Queries to Base Tables

Witold Litwin
University Paris Dauphine, PSL, France

Keywords: Relational Database Model, SQL, Stored and Inherited Relations.

Abstract SIR SQL stands for SQL with Stored and Inherited Relations (SIRs). Every SIR SQL Create Table makes
definable any base attributes one could have in an SQL Create Table at present. In addition, one can define
inherited attributes (IAs), definable in SQL queries or views only up to now. One may also define foreign
keys (FKs) that are SQL ones or logical pointers in Codd’s original sense. IAs in SIRs with Codd’s FKs
usually provide for logical navigation free (LNF) queries, i.e., without equijoins on FKs and referenced keys.
The same outcome SQL queries to the same base tables without IAs, must include LN avoided.
SIR SQL Create Table may in particular include IAs definable through value expressions also possible in
SQL queries or views only up to now, usually referred to as calculated attributes (CAs). CAs may involve,
e.g., attributes from different tables or aggregate functions, or sub-queries. CAs in SIRs provide for CAF
queries, addressing any CAs in SIRs by name only. In contrast, every SQL query to base tables needing
CAs has to fully define each of these.
The end result is that most of SQL base table queries, requiring LN or CAs schemes at present, become
LNF or CAF queries in SIR SQL. The latter are usually substantially less procedural, i.e., by dozens of
characters. They become also quasi-natural, i.e., with Select clause only naming the selected attributes,
From clause naming a single base table and Where clause, if any, with short Boolean formulae over usual
constraints on some attribute values, at worst. SIR SQL should accordingly significantly boost SQL clients’
productivity. Especially, since most clients are data analysts or application developers, not SQL geeks.
While the problematic of LNF and CAF queries is four decades old, our solution is the first practical one, to
our best knowledge.
Below, we illustrate the problem of LN and of CAs in queries to SQL base tables using Codd’s original
Supplier-Part DB. We then present SIR SQL. We show in depth how SIR SQL LNF and CAF queries to
base tables become possible. We show in particular that Create Table statements defining an SQL DB at
present, usually define also a SIR SQL DB, providing for LNF queries to base tables as free bonus. We
discuss the front-end for SIR SQL that should require, for any popular SQL DBS, a few month
implementation efforts only, validated by proof-of-concept prototype for SQLite3. We accordingly postulate
to upgrade every popular SQL DBS to SIR SQL. 7+ million SQL clients worldwide, of the dominant DB
language, providing for 31B+ US$ market size of SQL apps, will benefit from.

1 THE PROBLEM

Since their inception, five decades ago for the
pioneers, all present SQL DBSs bother the clients,
users and developers, with parts of most of queries
to the base tables, necessary beyond the otherwise
quasi-natural formulation of such queries. The latter
consists of Select with some attributes of a single
base table named in From clause, called addressed
by the query and of Where clause, if any, with, at
worst, short Boolean formulae over usual constraints

on some attributes, e.g., A < 100 And A ≥ 50. The
1st culprit for those cumbersome parts is the logical
navigation (LN) in queries to base tables with
foreign keys and to the referenced tables. Recall that
the term LN or LN joins means equijoins on foreign
and referenced keys, as Codd originally defined
these terms in (Codd, 1978) and results from Codd’s
sheer idea of a foreign key (FK). Actually, the latter
seems implying that for every FK, the LN involving
(or from) the FK, in particular preserves every value
of the FK. I.e., LN always expresses a semi join,
reducing to the inner one, if one wishes so, iff FK

Litwin, W.
SIR SQL for Logical Navigation and Calculated Attribute Free Queries to Base Tables.
DOI: 10.5220/0013199900003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 1, pages 191-201
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

191

respects the referential integrity (RI). The
procedurality that the LN implies, i.e., the necessary
length (number of characters) of the SQL join
clauses defining it, usually adds at least dozens of
characters to the query without. This makes
accordingly, at least linearly, longer query writing
and debugging times. Especially, - when the joins
are the outer ones, (Date, C., J., Darwen, H., 1991).
Not surprisingly, clients usually at least dislike the
LN. In short, queries to base tables requiring LN at
present should possibly be LNF instead.

Figure 1. S_P database.

The 2nd culprit is the impossibility for any SQL
dialect at present, to declare base tables with the
calculated attributes (CAs), defined by value
expressions with, e.g., aggregate functions or sub-
queries or sourced in other tables. If a CA a query
needs could be in the base table, the query could
address it by name only, i.e., the query could be
CAF. Since it cannot be so for any CAs at present,
SQL clients must define the specs of any of those in
the queries. The increase to the query procedurality
may be substantial, e.g., by dozens of characters to
type-in at least. The sheer complexity of some CAs,
those defined by sub-queries especially, also bothers
many, implying particularly careful debugging.

E.g., consider Supplier-Part DB of Codd, Figure
1, the “mother of all the relational DBs”, (Codd,
1978), (Date, 2006). In other words, Supplier-Part
design principles are the ones of most of DBs at
present and properties shown by our examples below
generalize accordingly. We refer to Supplier-Part as
to S_P DB in short. S, P, SP are 1NF stored relations,
(SRs), also called base tables. For Codd, SR means
that none of its stored attributes, (SAs), can be
calculated using the DB scheme and content. Next,
S.S#, P.P# and SP(S#,P#) are the primary keys
(PKs). Finally SP.S# and SP.P# are foreign keys
(FKs) for Codd, originally, (Codd, 1978). I.e., each
is the “logical pointer” to the (unique in S_P) PK
with the same name and, for every FK value, to the,
unique in the referenced table and thus in S_P, tuple

with the same PK value, whenever such a tuple
exists.

A query searching for every supply so and so…
in practice, would most of time address some of SP
attributes together with some attributes of S or P in
its Select and Where clauses. The rationale is that all
the non-key SAs of S and P are conceptual attributes
of SP as well. They should be also SAs of SP. They
are actually not. The normalization anomalies for SP
that would follow and that we discuss more below
are indeed unacceptable for the relational model.

E.g. consider a query searching for the basic data
of smaller supplies, say Q1: “For every supply in
QTY <= 200”, select S#, with SNAME whenever
known, then P# with, also whenever known,
PNAME, and QTY. Q1 could simply formulate in
SQL as:
(Q1) Select S#, SNAME, P#, PNAME, QTY From
SP Where QTY < 200;

Q1 expresses only the necessary projection and
restriction and is, for many, a telegraphic style, but
quasi-natural (language) query. It would suffice if
SNAME and PNAME were attributes of SP.
However, they are not. Hence, Q1 formulates at
present as Q2 below or with an equivalent From
clause, regardless of SQL dialect used:
(Q2) Select S#, SNAME, P#, PNAME, QTY From
SP Left Join S On SP.S#=S.S# Left Join P On
SP.P#=P.P# Where QTY < 200;

The reason is that whatever SP tuple Q1 selects,
nothing in S_P scheme indicates SNAME &
PNAME values Q1 should reference through the
foreign keys, when these values exist. The LN in Q2
does it therefore instead. The “price” is that Q2
becomes twice as procedural and anything, but a
quasi-natural language query.

Next, in practice, every supply has obviously
some weight, say T_WEIGHT, defined as QTY *
WEIGHT, where WEIGHT value is the one
referenced through SP.P# value of the supply, if it is
in P. If T_WEIGHT was of interest to clients and
obviously it would often be in practice, it should be
a CA of SP. Then, e.g., query Q3 providing the ID
and T_WEIGHT of every supply could simply be:
(Q3) Select S#,P#,T_WEIGHT From SP;

Q3 would be a CAF query, with respect to
T_WEIGHT and LNF query with respect to P.
However, as even SQL beginners know,
T_WEIGHT cannot be a CA of SP for any popular
SQL dialect. Hence one has to express Q3 as Q4
with the T_WEIGHT scheme in it, e.g.:
(Q4) Select S#,P#, QTY * WEIGHT As
T_WEIGHT From SP Left Join P On SP.P# = P.P#;

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

192

 As one can see, Q4 is more than twice more
procedural than Q3.

 Recall finally that the problematic of LNF and of
CAF queries to base tables is anything but new.
Already in early 80ties, Maier & Ullman proposed
the, so-called, universal relation as a solution for the
LNF queries. However, despite its initial popularity,
the concept did not prove practical as yet. For the
CAF queries, Sybase SQL dialect introduced, also in
early 80ties, the virtual (dynamic, computed,
generated….) attributes (VAs). Several other SQL
dialect adopted VAs since. Nevertheless, the result
was and remains only a partial solution, E.g.,
T_WEIGHT cannot be a VA in any SQL dialect we
are aware of. We discuss VAs more later on.

 Besides, for decades there were sporadic
proposals for DBs with 1NF only base tables,
including all the conceptual base table attributes we
spoke about, hence providing for LNF queries. None
made to practice, obviously outweighed by
inconveniences of normalization anomalies.
Likewise, it was always known that one may hide
normalized base tables behind multiple
denormalized views providing for LNF and CAF
queries. This approach did not make it neither. Sheer
number of Create View statements necessary to
type-in with multiple replications of base attribute
names, as well as problematic maintenance of views
in sync with alterations to base tables, about always
outweigh the advantages to queries. Altogether, the
problem of a DB supporting LNF and CAF queries
to base tables remained open.

2 OUR SOLUTION

2.1 Overview

The idea is that, since queries to base tables should
be LNF and CAF, for every base table R with
(Codd’s) FKs, for which queries could address some
attributes of R or some referenced through an LN, or
some CAs, Create Table R should predefine the
name of every such attribute and every LN defining
its values. Likewise, every Create Table R should
predefine every CA considered as (conceptual)
attribute of R. The tricky issue is that none of these
additional (pre)definitions should imply any
normalization anomalies in R, with respect to the
existing NF of R. This said, everything that follows
is mere technical details, intended to make the
proposed solution the most practical.

Notice upfront that trivial SAs cannot help, as
pointed out earlier for S_P. Observe also that all the

names of the predefined attributes, as well as all the
LN clauses should possibly be implicit in Create
Table R as issued by the database administrator
(DBA). For every FK in Codd’s sense, all the names
logically pointed to should indeed be already in SQL
meta-tables. One can also easily infer the LN clause
whenever an FK is an SQL one or, is a so-called
primary key named SIR SQL (specific) FK, as we’ll
show. Every statement should then be reasonably,
i.e., within the general SQL framework, the least
procedural for DBA. In particular, - avoiding in this
way errors in otherwise manually copied names or in
LN clauses and the waste of time for their eventual
debugging. Dedicated pre-processing may then add
to the Create Table every missing attribute name and
the LN, for any further processing. Notice finally
that if all the attributes to be predefined and all such
LN clauses are implicit in a Create Table issued by
DBA without any CAs, then any such Create Table
formulates simply as some present one. In other
words, DBA creates then base tables supporting
LNF queries without any additional work with
respect to the one required from DBA at present, to
create “only” base tables without that capability.

From now on, we introduce SIR SQL through the
following steps, described in “for dummies” form.
We published some details separately already, in
depth impossible here within the space limits.
Especially in (Litwin, 2022) that references in turn
main earlier related papers. Our home page, (Litwin,
2025), indexes all our related papers, by title and
abstract at least. The pdf is the bonus, whenever not
copyrighted. There is also ppt for conference papers.

2.2 SIR SQL

SIR SQL stands for SQL supporting Stored &
Inherited Relations (SIRs). SIR construct in general
was largely discussed in our previous papers. For
SIR SQL, any SIR R is simply a 1NF base table R
consisting of some SQL base table enlarged with
IAs, definable as in an SQL Create View or query
only up to now. The SQL table within R bears its
own implicit (default) name R_ and constitutes the
base of R. The name R_ is available to any SIR SQL
statement, as if R_ was stand-alone.

We refer to the attributes of R_ as to base
attributes (BAs) of R. We also refer to the definition
of the IAs within any SIR R as to Inheritance
Expression (IE). With respect to SQL Create Table,
SIR SQL Create Table provides accordingly the
usual SQL Create Table capabilities for R_ and
additional ones for the IE. The latter are basically as
in SQL Create View or queries only at present.

SIR SQL for Logical Navigation and Calculated Attribute Free Queries to Base Tables

193

Likewise, SIR SQL provides for a more general
Alter Table statement. All the other SIR SQL
statements are simply the SQL statement. For most
of the latter, the processing differs however from
their SQL counterparts, as it will appear.

An IE defines every IA A in the attribute list of
SIR SQL Create Table as one can do for A in the
attribute least of an SQL query or view. I.e., A can
have the name of an attribute in the table defined by
From clause or can alias such an attribute or can be a
value expression over some such names or can be a
sub-query… In every case except the 1st one, for SIR
SQL, we qualify A of CA. Some IAs in the list may
also result from the generic SQL ‘*’ character.
While IE attribute list can thus be as in any queries
or views, IE is in contrast, limited with respect to the
two other clauses of an SQL query or view, i.e.,
From and Where clauses. Every From clause should
indeed either be simple From R_ or a sequence of
left or right or inner joins, each on some BA,
perhaps composite, and a key attribute of usually
other table. These joins should further be such that
(i) for every R_ tuple t, there is in the table defined
by From clause, say T, exactly one tuple t’ with t as
a sub-tuple and (ii) T does not have any other tuples.
We will recall the rationale for these assumptions in
what follows.

We qualify From clause in SIR SQL Create Table
formed as above of valid. Otherwise it is invalid. We
also refer to the joins expressed within as to SIR
SQL (predefined) LN (joins). In practice these joins
should be indeed the ones we spoke about. I.e., they
predefine SIR SQL LN (joins) that would be
typically required by SQL queries (at present) if they
addressed the same base tables without IE.
Furthermore, whenever R is a SIR, BAs together
with the table constraints and options form R_
scheme.

Next, in every SIR SQL Create Table R, if there
is any From clause, it then follows the (entire)
attribute list with BAs and IAs and precedes every
eventual table constraint or option. Besides,
whenever Create Table R defines any part of IE, i.e.,
some consecutive IAs or From clause, every such
part should be separated from any of R_ SQL specs
by { } brackets. Each bracket replaces a usual SQL
separator, i.e., ‘,’ or space. IAs may be spread
among BAs or separated by Bas from From clause,
hence more than one pair of { } may be necessary.
The convention facilitates the parsing of the SIR
SQL Create Table statement, as it appeared.

Ex. Suppose S_P.SP declared through the SQL
Create Table of some SQL dialect, e.g., SQLite
SQL:

(1) Create Table SP (S# TEXT, P# TEXT, QTY INT
Primary Key (S#, P#));

Consider then Create Table SP formulated as
follows:
(2) Create Table SP (S# TEXT, P# TEXT, QTY INT
{WEIGHT*QTY As T_WEIGHT, SNAME,
STATUS, S.CITY, PNAME, COLOR, WEIGHT,
P.CITY, From SP_ Left Join S On SP.S#=S.S# Left
Join P On SP.P#=P.P#} Primary Key (S#, P#));

Create Table (2) is a SIR SQL one only, i.e.
impossible to formulate in any present SQL dialect.
It defines SIR SP enlarging SP (1) with IAs defined
within. The attributes and the (only) table constraint
of (1) within (2), define the base SP_. IE is entirely
within a single pair of { }. Also as required, From
clause follows the entire attribute list and precedes
the only SP table constraints that is the Primary Key
constraint.

Let us call S_P1 the DB with S, P and SP (2).
Figure 2, placed at the end of the text, shows
S_P1.SP scheme and content for SIR SQL clients,
given Figure 1. We underlined every key attribute
(and only such attributes), as usual. IAs are italics.
From clause in (2) is valid. Indeed it is first clearly
so for any SP tuple at Figure 2. SP tuples in Figure 1
however implicitly respect the referential integrity
(RI) between SP and S, and P. So does every tuple at
Figure 2.

However, neither in (1) nor in (2) there are no FK
table constraints, as for SP in (Codd, 1978) besides.
Hence, RI is not enforced. One may thus insert to
SP_ (S6, P1, 200). Since the LN in From clause of
(2) consists of left outer joins, the table in SP (2)
From clause would contain one and only one tuple
(S6, P1, 200, null, null, null, null, P1, Nut…). One
may easily see also that this property generalizes to
any tuple breaking the IR with respect to S or P.

The discussed table would not contain further any
more tuples than these resulting from inserts to SP_.
From clause in (2) is thus a valid one. In contrast,
any From clause for SP (2) with any inner join
instead of the outer one, would not fit. The latter
would make From clause valid iff the RI was
enforced. Notice that the outer join expression
would remain valid then anyhow.

Next, observe that the LNF Q1 applies to SP (2).
It is also so for the CAF Q3. The rationale is of
course the presence of the IAs in (2). As the values
of these are calculated only, none of these IAs can
ever create any normalization anomalies, i.e., insert,
update, delete or storage anomalies. These
anomalies would in contrast necessarily occur, if any
of IAs of S_P1.SP was trivially, an SA, as Codd’s
model requires for every BA. Recall that the

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

194

Table S Table P
S# SNAME STATUS CITY P# PNAME COLOR WEIGHT CITY
S1 Smith 20 London P1 Nut Red 12 London
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P3 Screw Blue 17 Oslo
S4 Clark 20 London P4 Screw Red 14 London
S5 Adams 30 Athens P5 Cam Blue 12 Paris

 P6 Cog Red 19 London

Table SP
S# P# QTY T-WEIGHT SNAME STATUS S. CITY PNAME COLOR WEIGHT P.CITY
S1 P1 300 3600 Smith 20 London Nut Red 12 London
S1 P2 200 3400 Smith 20 London Bolt Green 17 Paris
S1 P3 400 6800 Smith 20 London Screw Blue 17 Oslo
S1 P4 200 2800 Smith 20 London Screw Red 14 London
S1 P5 100 1200 Smith 20 London Cam Blue 12 Paris
S1 P6 100 1900 Smith 20 London Cog Red 19 London
S2 P1 300 3600 Jones 10 Paris Nut Nut 12 London
S2 P2 400 6800 Jones 10 Paris Bolt Bolt 17 Paris
S3 P2 200 3400 Blake 30 Paris Bolt Green 17 Paris
S4 P2 200 3400 Clark 20 London Bolt Green 17 Paris
S4 P4 300 4200 Clark 20 London Screw Screw 14 London
S4 P5 400 4800 Clark 20 London Cam Blue 12 Paris

Figure 2: S-P1 base tables and content. IAs are in italics. IAs content is virtual only. S and P are as in Figure 1.

relational model prohibits the anomalies because of
the annoying side-effects. E.g., in SIR SP, the
redundant with respect to S and P IA values in SP,
e.g., in 6 tuples for SP.S# = ‘S1’ there, Figure 1, do
not cost any additional storage, while they would
obviously do, if they were SAs. Likewise, SP does
not need any updates if a source value varies, e.g.,
S1 name changes to ‘John’, again unlike for the
“trivial” choice. Finally, the latter could in particular
lead to hidden inconsistencies, if a redundant data
manipulation goes awry. E.g., if WEIGHT changes,
but (SA) T_WEIGHT does not for any reasons. Or,
if one inserts tuple (S2, P3, Bolt, Green…), (guess
why?). All these properties of IAs generalize to any
DBs with SIRs. “Better late than never”, through
IAs in base tables, the SIR construct lifts an
intriguing limitation in Codd’s model, (Codd, 1978).

Observe next that S_P1.SP defined by (2),
contains by name and value with respect to S.S# or
P.P#, i.e., the source PKs, every attribute of S_P.
Easy to see thus that not only Q1 formulates as the
substantially less procedural LNF Q2, but that, more
generally, any query Q addressing any attributes of S
or of P through some LN with, perhaps, any
attributes of S_P.SP, formulates as a substantially
less procedural LNF Q’ to S_P1.SP. As for Q1 and
Q2, Q’ consists simply of Q without LN, with,
perhaps, CITY prefixed with S or P, instead of the
non-prefixed one in Q.@

We qualify of explicit every SIR SQL Create
Table R defining every IA and From intended for R

as above discussed. E.g., (2) can be the explicit
Create Table SP for S_P1. We also call then explicit,
IE, IAs, IA list and From clause, e.g., within (2).
Besides, as it will appear, SIR SQL Create Table lets
DBA to omit parts of even entire IE. We speak then
about implicit Create Table, IE…. We qualify of
empty an entirely omitted IE. As it will appear, in
practice, an implicit Create Table should be always
substantially less procedural than the explicit one.

More in depth, a Create Table is implicit iff it (i)
contains any SIR SQL FK qualified in next section
of already mentioned PKN FK or (ii) contains only
some CAs, including IAs simply aliased, but neither
has From clause nor PKN FKs, or (iii) contains SIR
SQL specific generic character ‘#’. Whenever there
is an implicit Create Table for an explicit one, the
DBA is (obviously) expected to take advantage of
the former. Accordingly, every submitted SIR SQL
Create Table is subject to SIR SQL specific pre-
processing. This one 1st finds whether the statement
is effectively implicit. Iff it turns out so, the pre-
processing rewrites the statement to the explicit one.
Every rewriting keeps every BA, table constraint
and option of the submitted Create Table, as well as
every IA and From clause, if there are any. It adds
IAs or parts of, or even entire, From clause, so to
form the explicit Create Table R. If the submitted
Create Table does not turn out to be implicit, the
pre-processing considers it explicit, hence not
needing any rewriting. The further SIR SQL

SIR SQL for Logical Navigation and Calculated Attribute Free Queries to Base Tables

195

 processing we discuss later on works on the explicit
statements only.

We discuss later the rewriting rules for PKN FKs.
Notice for now only, with respect to SIR SQL FKs,
that every (present) SQL FK in some SIR R, is SIR
SQL one as well, by default. Besides, a BA in R can
be a SIR SQL FK, without being the former. With
respect to ‘#’, we recall here only that while
modeled on SQL ‘*’, whenever qualified with a base
table name, e.g., R.#, it designates only every non-
PK attribute of R. Likewise, ‘#’ alone designates
only every non-PK attribute of every base table in
From clause. We discussed the rewriting of a Create
Table with ‘#’ previously, (Litwin, 2022), and will
not come back to here.

E.g., we show soon that DBA may create
S_P1.SP through the implicit Create Table
containing only SP_ scheme and the value
expression of T_WEIGHT. Instead of submitting (2),
one expects therefore DBA to submit only:
(3) Create Table SP (S# TEXT, P# TEXT, QTY INT
{WEIGHT*QTY As T_WEIGHT} Primary Key (S#,
P#));

The procedurality difference is 110 characters in
favor of (3). I.e., 86 characters are necessary in SQL
for (3) versus196 for (2), as one can easily double-
check. Such lesser procedurality is an obvious
practical advantage of (3). Recall also that quest for
less procedural and more natural data definition and
manipulation always was and still is the driving
force for the DB research, as well as for the CS
generally. Remember that it is why in particular the
relational DBs succeeded to Codasyl and IMS ones.

If SP did not have T_WEIGHT or any CA more
generally, it will appear that (3) would reduce
simply to (1), i.e., to the SQL Create Table SP for
S_P. For SIR SQL however, the latter would be the
implicit Create Table for S_P1.SP, with empty IE. In
other terms, for SIR SQL, present S_P scheme
defines in fact S_P1. Yet in other words, for SIR
SQL, S_P scheme suffices for the LNF queries that
have to be with LN in any present SQL dialect.@

Next, for every SIR R, there is an SQL view R,
hence with IAs only, defining logically the same
relation as SIR R. We qualify the latter of canonical
view of SIR R and of C-view R, in short. C-view R
results from Create View R with the same attribute
list as in SIR R, except that every R_ attribute is
stripped to its name only, followed by the same
From clause. The difference between SIR R and C-
view R is thus only physical: every SA in SIR R
becomes the IA with the same name and value in
every tuple within C-view R and vice versa. Adding
a C-view R to an SQL DB with R_ as stand-alone

base table, provides then for the same LNF or CAF
queries as SIR R. Provided however that these
queries address the C-view R, instead of the base
table R, necessarily renamed somehow, i.e., to R_.
The rather easy to see drawback of any C-view R
with respect to SIR R, discussed in detail in our
previous papers, is that the former must be more
procedural to specify and to maintain than even the
explicit IE in SIR R. C-view R has to indeed
redefine every SA of R_ as an IA and it constitutes a
separate table to maintain in sync with R_. The
implicit SIR schemes whenever possible, with
possibly an even empty IE, are obviously even more
advantageous. As we just stated, it would be so, e.g.,
for S_P1.SP (3) and of course, even more for (1). In
present terms, every SIR R is thus a view saver for
C-view R.

Finally, as hinted to in the example above, in
practice, every SIR SQL Create Table will extend to
SIRs Create Table of some existing SQL dialect.
Likewise, SIR SQL Alter Table will extend Alter
Table of the dialect. Call kernel (SQL) the dialect
chosen. Some kernels, provide for base tables with
SAs only, as Codd proposed. Any SIR R defined in
SIR SQL extending the dialect will then have the
base R_ with SAs only. Other kernels provide for
the already mentioned VAs as BAs as well. Recall
then, e.g. from our papers on SIRs, that every base
table R with VAs is in fact a limited SIR R. There,
every VA is an IA inherited only from R_ and only
through arithmetic value expression with, perhaps,
scalar functions over SAs or other VAs of R_ and
with implicit ‘From R_’ clause. Accordingly, e.g., as
inheriting also from P, T_WEIGHT could not be a
VA for any present kernels. Nevertheless, despite
their limitations, VAs became popular view-savers,
as we already hinted to.

For SIR SQL consequently, there is no need for a
kernel providing for VAs, although one can still
define any VAs the kernel provides for. Indeed,
regardless of any such kernel and any VAs it could
provide for, SIR SQL dialect for the kernel would
always provide for an equivalent IA with the same
value expression and the implicit ‘From R_’. In
practice, the only syntactical difference would be
that while any VAs define the attribute name first
and the value expression after, the IA scheme would
be the other way around and somewhere within { }
brackets, instead of usual ‘,’ or ‘ ‘. Somehow
consequently, as one could already observe, for SIR
SQL, if VAs are present in a Create Table of SIR R,
they are not considered IAs, since they are not added
to R_ scheme, but are within. In other words, for
SIR SQL, for any SIR R, IAs are only the attributes

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

196

defined in explicit Create Table R as if they were in
C-View R. Unlike we assumed for the general
definition of the SIR construct in our previous
papers. That one was designed for Codd’s relational
model, proposing SAs only in base tables, (Codd,
1978), to recall. Consequently, VAs were there
specifically defined IAs as well.

2.3 SIR SQL Foreign Keys

In our opinion, SQL FK concept differs from Codd’s
original one, (Codd, 1970), (Date, 2006), (Date, 2021).
Codd defined an FK as a “logical pointer” (LP) to
some table. For SIR SQL, it appeared useful to
merge both concepts. We called the result SIR SQL
FK.

Overview. Accordingly to our intention, an SA in
submitted Create Table R can be SIR SQL FK along
following dimensions, Figure 3. Along one
dimension, FK may enforce RI. We speak
accordingly about RI dimension and RI FK. The
other dimension defines FK as LP. We speak about
LP dimension and LP FK. LP dimension is our
perception of Codd’s FK original concept. Besides,
from now on, FK means SIR SQL FK, unless we
talk specifically about (present) SQL FKs.

FK specs along LP dimension in Create Table R
contribute to IE. One defines accordingly in explicit
and perhaps also implicit Create Table R, LN
through FK and every IA calculated using this LN.
In the wake, it is LP dimension that predefines in
explicit SIR SQL Create Table R, IAs and LN
making LNF and CAF typical queries addressing R.

With respect to RI FKs, one defines every such
FK as if it was an (SQL) FK for kernel SQL dialect.
Whatever is the kernel, one may always define every
such FK through kernel’s dialect for SQL Foreign
Key constraint. Some kernels provide also for
References keyword in FK specs as SA, e.g., SQLite.
In SIR SQL Create Table, one should place every
Foreign Key constraint after IE, hence after the last
‘}’ in practice. The only semantic difference to
kernel’s specs of the same name SQL FK may be
that RI FK references a SIR.

An SA F in submitted SIR SQL Create Table R is
LP FK, iff in explicit Create Table R there is LN on
F and there are some IAs defined using this LN.
Every FK F can be IR FK only or LP FK only or
both. Every LP FK is either primary key named
(PKN) FK, (Litwin, 2022) or LN defined (LND) FK.
PKN FKs do not require LN and IAs in submitted
Create Table R. LND FKs do. For every PKN FK in
submitted Create Table R, the pre-processing adds
LN and IAs transparently. PKN FKs appear in fact

the common practice already, except that they are
defined only as RI FKs. LND FKs should serve less
frequent specific needs we discuss soon.

PKN FKs. An FK F in base table R is PKN iff (i)
F is not PK of R, (ii) there is a base table R1 with PK
named F as well and sharing the domain of R.F, (iii)
F is RI FK and R1 is the referenced table or (iv) F is
atomic and there is only one R1. In the latter case, if
FK is not RI FK, we speak about natural (PKN) FK,
or NFK in short.

Observe that, by definition then, NFKs do not
enforce RI, i.e., are LP FKs only. RI is thus optional
for PKN FKs. Recall that Codd apparently
considered RI optional for FKs as well. Unlike did
the SQL designers. Observe also that NFKs do not
require any specific declarations in submitted SIR
SQL Create Table, unlike PKN RI FKs. On the other
hand, observe that R1 is always necessarily different
from R. Recall finally that some kernels, e.g.,
MySQL provide for referenced keys that are not PKs.
Even if a latter (candidate) key shares the name with
FK, it is not PKN FK.

E.g., consider (3) as submitted SIR SQL Create
Table. Suppose that DBA already created S and P.
Then, S# and P# are PKN FKs. None is RI FK, i.e.,
enforces RI, e.g., through the familiar Foreign Key
SQL table constraint. Each is thus NFK. Hence, e.g.,
insert of (S6, P6, 300) would go through.

A submitted Create Table R is implicit if it
contains PKN FKs. For every PKN FK F, F defines
so-called natural (NI) through F. The term
designates (i) so-called natural IAs (NIAs) and (ii)
LN on F through which the values of every NIA are
computed for queries. Both NIAs and LN are in the
explicit Create Table R only. In other words, the pre-
processing adds these to submitted Create Table R
whenever it finds PKN FKs within.

More in depth, for every PKN FK F1,F2…,
numbered in the (left-to-right) order in R and
referencing respectively R1, R2,…, NIAs
constituting NI through Fi ; i = 1,2… ; have names
and values of all and only non PK attributes of Ri. In
particular, whenever needed, an NIA name can be
the qualified Ri attribute name. Then, for every NIA,
LN on R.F = Ri.F, with vector equality for every
composite F defines its every value and every null.
Also, all the NIAs constituting NI through F1 follow
the last BA or IA specified in implicit Create Table
R. Then, all the NIAs of NI through F2 follow NI
through F1 etc. Finally, for every Fi, NIAs in NI
through Fi are in their source order in Ri.

With respect to every LN defining NI through Fi,
expressed only in the explicit Create Table R, we
recall, if implicit Create Table R has no From clause,

SIR SQL for Logical Navigation and Calculated Attribute Free Queries to Base Tables

197

then pre-processing expresses LN on F1 as: From
R_ Left Join R1 on R_.F1 = R1.F1. Else, it
expresses LN on F1 as: Left Join R1 on R_.F1 =
R1.F1, appending it to From clause in the implicit
Create Table R. Next it appends to From clause
being built up LN for F2, if there is any, expressed
as: Left Join R2 on R_.F2 = R2.F2 etc. We qualify
of, simply, NI, all the resulting NIAs and LN joins
added.

Figure 3 SIR SQL Foreign Keys. RI FK enforces RI. PKN
FKs imply NI, NFKs in particular. LND FKs specify SI.
An FK can be RI FK only or LP FK only, or both.

E.g. Let us follow up on previous example. The
pre-processing of (3), creates (2) as explicit Create
Table SP. IAs following T_WEIGHT together with
From clause form NI. All these IAs are NIAs. IAs
named upon S attributes and LN on S# form NI
through S#. Likewise, IAs sourced in P and LN on
P# form NI through P#.@

LND FKs. An SA F, perhaps composed, is LND
FK iff (i) in submitted Create Table R, for some R1
with key C not named F or not a PK, there is LN
(join) on F = C and (ii) in the attribute list, there are
IAs either named upon attributes of R1 or being CAs
addressing the latter through value expressions or
simple aliasing. The former IAs may, in particular,
result from R1.# clause we discussed earlier. SA F
that is LND FK does not enforce RI, unless one
declares F also RI FK, Figure 3.

For every LND FK F, we qualify of specific
inheritance (expression) or of SI in short, through F,
the just described IAs and LN, (in submitted Create
Table thus). By the same token, the term SI
designates the result for all the LND FKs in R and
we qualify of specific every IA of SI, SIA in short.

E.g. Suppose that SP DBA prefers IAs sourced in
S named and placed in SP differently from NIAs in
(2). Namely, these IAs should be as in the following
submitted Create Table SP:

Create Table SP (SN TEXT {SNAME, S.CITY
As SCITY} P# TEXT, QTY INT {WEIGHT*QTY
As T_WEIGHT From SP_ Left Join On SP_.SN =
S.S#} Primary Key (S#, P#));

Here, SNAME and SCITY are SIAs. SN is an
LND FK only, hence LP only, i.e., does not enforce

RI. Together, LN and the attributes sourced in S
constitute SI through SN. It is (entire) SI in fact,
since P# provides for NIAs only. Also, STATUS
remains private to S, i.e., only SP clients knowing
that SN and S# share a domain (in Codd’s
vocabulary) may select it and only through the LN in
the query then. We leave the explicit Create Table
SP resulting from the above submitted one as
exercise. @

Summing up on SIR SQL FKs and Codd’s ones.
As we already hinted to, for every SIR R with some
LP FKs, NI or SI values in every R-tuple reflect
Codd’s “logical pointer” idea, (Codd, 1978). Namely,
for every PKN or LND FK, one calculates all these
values using LN. The possibility of such calculus for
queries selecting values of some attributes of R and
of some of the referenced tables was novel by
Codd’s times. It apparently motivated the “logical”
qualifier. The rationale for Codd was that in a “well
designed” DB, all the non-key attributes referenced
by any FK of R, are, conceptually, also attributes of
R. E.g., these were the attributes we spoke about for
S_P.SP, i.e., every non-key attribute of S or of P.
Some of these attributes in R may be furthermore
subject to aliasing or a value expression. For every
tuple of R, if FK has then value matching a value of
the referenced key C, usually PK, then the value of
every such conceptual R attribute, hence of an IA in
R, is the one in the sole eventual tuple with PK=FK
for NI or, following the notation above, with F=C
for SI. For an IA being CA, such a value can further
be subject to a value expression. If FK value in R
tuple does not match any C value, as it can happen
for Codd’s FK, then every such IA is null in the
tuple. In other words, the general form of LN is an
outer semi join. As we have already hinted to, such
form remains valid even if LP FK is also RI FK,
although an inner join does then as well.

However, in Codd’s model, for any base table R,
none of such conceptual attributes could be among
the actual ones of R. As already discussed, they
would necessarily be SAs. Hence, they would
always imply normalization anomalies. The side-
effects of the latter, hinted to above, would, most of
time, offset any practical interest of the LNF queries
with respect the same outcome queries with LN to
the normalized tables. But, as also discussed already,
whenever all these attributes are NIAs instead, none
can ever imply any normalization anomalies. LNF
queries to any R with NI or SI become attractive
again, as it will appear more below. Especially, since
as S_P illustrates as well, most of time in practice, a
base table needs FKs, since most of its conceptual
attributes have to be in referenced tables.

LND NFK

RI FK
NI

LP

RI

SI
PKN LND

FK

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

198

Accordingly, most of queries addressing a table with
FKs will address NI or SI and formulate as quasi-
natural LNF ones. All this is our rationale for FKs in
SIR SQL defined as discussed.

In other words yet, for Codd apparently, at least
originally, not RI, as later for SQL, but NI or SI
were the characteristic property of any FK, e.g., as in
S_P. They were used in queries and views only. For
any base tables with FKs, NI or SI remained in
Codd’s model implicit only, [1,2,3]. In contrast,
while also following on Codd’s intentions, SIR SQL
LP FKs provide for the explicit predefinition of NI
or SI in the base tables. This frees accordingly the
queries to these tables and to referenced ones from
LN formulae.

Next, observe that for SIR SQL, any SQL Create
Table R with PKN FKs, does not define “only” an
SQL base table as at present, i.e., only with the BAs,
table constraints and options. Instead, it defines SIR
R with the same BAs, table constraints and options,
forming base R_ but also with NI. E.g., for SQL
presently, (1) defines “only” SP with attributes as at
Figure 1. But, for SIR SQL, (1) defines in fact SP
(2) without T_WEIGHT. I.e. it defines SP as at
Figure 2, without T_WEIGHT column. Accordingly
for SIR SQL, given S_P content in Figure1, (1)
specifies SP content in Figure 2 without the latter
one.

Observe finally that, as illustrated above by SP
with T_WEIGHT example, the rationale for implicit
schemes is that they are always less procedural than
the explicit ones. Furthermore, whenever base tables
of SIR SQL DB do not contain any CAs and any SI,
DBA may simply issue the present Create Table for
each of these tables. DBA provides in this way for
LNF queries without aDny additional procedurality
to define the IE. Recall, - as it was wished for our
solution. Without “moving a finger” as one says,
DBA makes accordingly SIR SQL clients likely
happier and, for sure, more productive than at
present.

2.4 SIR SQL Create Table Formally

Space limits prohibit discussing here the (boring)
formal definitions of implicit and explicit SIR SQL
Create Table. Please refer to “only a click-away”
research report entitled as this article in (Litwin,
2025)..

2.5 SIR SQL LNF or CAF Queries

Consider a sequence, say S, of Create Table
statements defining an SQL DB, say D. Typically,

some statements in S define base tables with PKN
FKs and some define the referenced tables. Also
typically, one creates every referenced table before
the referencing one. As for S_P, in particular.

Suppose now that S defines a SIR SQL DB D1.
Then, a typical query, say Q1, to D1 base tables
would select some attributes of a table R1 with FKs
and some attributes of referenced table and would be
LNF. For every Q1, the same output query Q2 to D
would require some LN between R1 and some
referenced tables and perhaps among those. Q1
should be then less procedural than Q2 by dozens of
characters. Q1 is accordingly always faster to
conceive. Recall queries Q1 to S_P and Q2 to S_P1
above.

Suppose now that S is a SIR SQL sequence, with
some Create Table defining a CA A, e.g.,
T_WEIGHT. Then, every A that one could
alternatively define as VA A’ of S’ being S except
for A and creating an SQL DB, would not be more
procedural than A’. In any case, A would not be
more procedural than A’’ defined as A, but within
any SQL query to base tables created by S without
CAs and defining an SQL DB. Also, queries to D1
should usually be LNF or CAF. Unlike, could be the
same output queries to the SQL base tables. Recall
queries Q3 and Q4 above.

See the above mentioned research report in
(Litwin, 2025) for more on these advantages of SIR
SQL DBs.

2.6 SIR SQL Canonical Architecture

Let us call SIR (enabled) DBS, any relational DBS
(RDBS) providing for SIR SQL. To implement a
SIR DBS ‘simply’, i.e. through a couple of months
of programming only, stick to the canonical
architecture, we overview now and illustrate at
Figure 4. In the nutshell, SIR DBS consists then
from the front-end, called SIR SQL layer or SIR-
layer in short, reusing as follows any popular kernel
SQL DBS, e.g., SQLite3:

- SIR-layer takes care of every SIR SQL dialect
statement and returns any outcomes. Every SIR SQL
dialect extends to SIRs the kernel SQL dialect.

- The kernel is the actual storage for every SIR
SQL DB, becoming the same name DB for the
kernel SQL.

- SIR-layer forwards to the kernel every Create
Table R submitted without PKN FKs and without
any IA, but perhaps with VAs declared as if they
were intended for the kernel. Any Create Table R
with PKN FKs is for SIR-layer an implicit scheme,
preprocessed accordingly to the explicit one with the

SIR SQL for Logical Navigation and Calculated Attribute Free Queries to Base Tables

199

Figure 4. Canonical Implementation of S_P1.SP base table with the actual content within kernel SQL DBS. As for any SQL
view, C-view SP content is basically virtual.

(explicit) NI. The preprocessing infers every NIA
name and LN from kernel’s SYS meta-tables.
Likewise, for every base table R’ referenced through
LND FK spec, the preprocessing infers every IA
name resulting from R’.#. Easy algorithms for all
this, discussed in our previous articles, were
prototyped for SQLite kernel.

Besides, SIR-layer parses every explicit Create
Table R to Create Table R_ and Create View R
defining C-view R. To prevent any name conflicts in
C-view, for the latter, every attribute is qualified with
its source table name, including R_ for every BA.
SIR-layer then forwards both statements as an atomic
transaction to the kernel. Figure 4, at the end of the
article illustrates the result for S_P1.SP processing.

- SIR-layer also forwards to the kernel every (SIR
SQL) Alter Table R that does not contain SIR-
specific clause termed IE clause. It is indeed
supposed kernel SQL Alter Table, addressing thus
base table R that is not a SIR and should remain so.
SIR-layer also forwards any Alter Table R_. IE
clause may be explicit or implicit, even empty. It
always means that R is or should become a SIR. If R
is a SIR already, SIR-layer issues to the kernel Alter
View R with new C-view R produced from IE clause
and, for an implicit IE clause, from the altered R_
scheme and from view R scheme in kernel SYS-

tables. If R is not yet a SIR, SIR-layer similarly
produces and sends to the kernel as an atomic
transaction: Alter Table R renaming R to R_ and
Create View R with C-view R. See (Litwin, 2022)
for more.

- Furthermore, SIR-layer forwards to the kernel
any Drop Table R if R is not a SIR. Otherwise it
issues an atomic transaction with Drop Table R_ and
Drop View R.

- For SIR SQL data manipulation statements,
SIR-layer simply forwards any submitted query to
the kernel. For any SIR SQL update statement, safe
policy for every kernel and every SIR R is to address
R_. E.g., Insert To SP_..., Update SP_... and Delete
From SP_... for S_P1.SP. An update statement
addressing SIR R directly, e.g., Insert To SP…, may
or may not work. It depends on kernel’s view update
capabilities. The kernel would indeed address any
such queries to view R. In particular, no present
kernel provides for any CA updates.

2.7 SIR SQLLite3 Proof-of-Concept
Prototype

SIR-layer in Python and SQLite3 as the kernel
appeared the most suitable for this goal. The actual

Kernel SQL DBS

Implicit Schema

Explicit Schema

SIR SQL Layer
SIR SQL

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

200

prototype available at present provides also for self-
running demo. The overall effort was 2-3 months of
makeshift Python’s developer, i.e., the effort
conform to expectations. The demo creates S_P1,
either from the explicit SP scheme or from the
S_P.SP scheme. The latter is assimilated to SIR SQL
implicit scheme with empty IE, resulting from the
natural PKN FKs S# and P#. Then, one manipulates
S_P1, through LNF queries or, after adding
T_WEIGHT CA, through LNF and CAF queries.
Users familiar with Python may easily alter the
demo. E.g., to prepare their own SIR DBS reusing
another kernel: DB2, SQL Server, PostgreSQL,
MySQL… you name it. See (Litwin, 2025) for more
on the prototype.

3 CONCLUSION

Since five decades i.e., since 1974 when IBM
introduced SQL, every SQL DBS requires the
clients to specify most of time in queries to base
tables, LN and CAs, at least other than VAs for
some dialects. The procedurality of LN and of CA
specs is usually substantial, requiring dozens of
characters to type-in and debug, bothering many.
SIR SQL gets rid of this annoyance, most of time
reducing the queries to the LNF and CAF ones. In
particular, the LNF queries to the base table created
through Create Table as generally at present only
become possible. In fact we expect most of SIR SQL
DBAs to define DBs in this way, providing LNF
queries to clients as free bonus, without “moving a
finger”.

For CAF queries, it may suffice to add to Create
Table only the value expressions defining the CAs.
Recall also that SQL base tables at present simply do
not provide for CAs possible with SIR SQL. We
expect future SIR SQL DBs used for data analysis,
e.g., Big Data DBs, to routinely profit from this
capability. Finally, the proof-of-concept prototype
SIR DBS with SQLite as the kernel proved simple to
realize. Although the problem of LNF and CAF
queries is anything but new, our solution is the only
of the kind, to our best knowledge.

In sum, we have shown that if present SQL DBs
had SIR-layers, LNF and CAF queries to base tables
would be the standard and their present equivalents a
bad dream. Also, as it appeared for SQLite, to
provide SIR-layer for a present SQL DBS, should
cost no more than a few months effort, i.e., - peanuts
by industrial standards. We postulate consequently
that DB courses and textbooks take notice of SIR
SQL from now on. This, despite the lack of any SIR

SQL layer fully implemented as yet. After all, same
happened to present relational DBSs.

By the same token, we postulate to upgrade every
popular SQL DBSs to SIR SQL, “better sooner than
later”. Over 7+ million SQL clients worldwide will
benefit from. Bear in mind also that this spread out
makes SQL the most used DB language, (Gaffney,
& al, 2022). (Sobolevskiy, 2915), (Stonebraker,
Pavlo, 2023). Recall finally that SQL crowd makes
70% of all developers and provides for estimated
31B US$ market size of SQL DBSs, (ZipDo, 2024).

REFERENCES

Codd, E., F. (1970). A Relational Model of Data for Large
Shared Data Banks. CACM, 13, 6.

Date, C., J. (2006). An Introduction to Database Systems,
8th ed. Pearson Education Inc. ISBN 9788177585568,
2006, 968p.

Date, C., J., (2021). E.F. Codd and Relational Theory.
Revised Edition. LULU PRESS, INC., 2021.

Date, C., J., Darwen, H., (1992). Watch out for outer join.
In Date and Darwen Relational Database Writings
1989-1991. ADDISON-WESLEY,

Litwin, W. (2022). Stored and Inherited Relations with
PKN Foreign Keys. In 26th European Conf. on
Advances in Databases and Information Systems
(ADBIS 22). SPRINGER (publ.).

Gaffney, K., P., Prammer, M., Brasfield, L., Hipp, D., R.,
Kennedy,D., Jignesh, M., P., (2022). SQLite: Past,
Present and Future. In PVLDB, 15(12):3535-3547.

Sobolevskiy, M. (2915). How Many SQL Developers Is
Out There: A JetBrains Report, Dec. 23.

ZipDo, (2024). Essential Sql Statistics in 2024.
https://zipdo.co.

Litwin, W., (2025). Home Page.
https://www.lamsade.dauphine.fr/~litwin/witold.html .

Stonebraker, M. Pavlo, A., (2023). What Goes Around
Comes Around… And Around. SIGMOD Record,
June 2024, 53, 2.

SIR SQL for Logical Navigation and Calculated Attribute Free Queries to Base Tables

201

