
An Online Integrated Development Environment for Automated
Programming Assessment Systems

Eduard Frankford1 , Daniel Crazzolara1 , Michael Vierhauser1 , Niklas Meißner2 ,
Stephan Krusche3 and Ruth Breu1

1University of Innsbruck, Department of Computer Science, Austria
2University of Stuttgart, Institute of Software Engineering, Germany

3Technical University of Munich, School of Computation, Information and Technology, Germany
{eduard.frankford, daniel.crazzolara, michael.vierhauser, ruth.breu}@uibk.ac.at,

Keywords: Teaching Tools, Automated Programming Assessment Systems, Integrated Development Environments,
Artemis, Advanced Learning Technologies.

Abstract: The increasing demand for programmers has led to a surge in participants in programming courses, making it
increasingly challenging for instructors to assess student code manually. As a result, automated programming
assessment systems (APASs) have been developed to streamline this process. These APASs support lectur-
ers by managing and evaluating student programming exercises at scale. However, these tools often do not
provide feature-rich online editors compared to their traditional integrated development environments (IDEs)
counterparts. This absence of key features, such as syntax highlighting and autocompletion, can negatively
impact the learning experience, as these tools are crucial for effective coding practice. To address this gap,
this research contributes to the field of programming education by extracting and defining requirements for an
online IDE in an educational context and presenting a prototypical implementation of an open-source solution
for a scalable and secure online IDE. The usability of the new online IDE was assessed using the Technology
Acceptance Model (TAM), gathering feedback from 27 first-year students through a structured survey. In
addition to these qualitative insights, quantitative measures such as memory (RAM) usage were evaluated to
determine the efficiency and scalability of the tool under varying usage conditions.

1 INTRODUCTION

Students’ rapidly growing interest in learning pro-
gramming has caused an increased adoption of
APASs to manage and evaluate student exercises effi-
ciently (Tarek et al., 2022). An important aspect con-
cerning the effectiveness of these systems is the abil-
ity to write code without downloading and installing
an IDE on the students’ computer (Horváth, 2018)
(España-Boquera et al., 2017). With the absence of
an online IDE, APASs, in such cases, often require
students to use a version control system (VCS), like
GIT, to submit their code. This is because APASs
commonly use update events triggered by the VCS
to execute a continuous integration (CI) pipeline and
then automatically run pre-defined test cases on the
students’ code. The results of these tests are then
used for assessment and are provided to the students
as feedback.

One example of an APAS is the interactive learn-

ing platform Artemis (Krusche and Seitz, 2018) from
the Technical University of Munich, which evalu-
ates and assesses students’ programming exercises
and provides feedback to the students. Artemis in-
cludes an online editor, but students can also submit
their programming assignments via a GIT repository.
Automated tests are then carried out on the students’
code in the repository, and the results are returned.

To avoid students also having to learn a VCS
while learning programming, some APASs have in-
troduced built-in online editors, allowing students to
complete exercises directly within the platform (Kr-
usche and Seitz, 2018) (Mekterović et al., 2020).
However, these online editors typically lack the com-
prehensive set of features commonly found in a mod-
ern desktop IDE. For example, syntax highlighting,
auto-completion, and an integrated terminal are of-
ten missing. This gap in functionality can slow down
the learning process and increase the entry barriers
for students new to programming (Leisner and Brune,

48
Frankford, E., Crazzolara, D., Vierhauser, M., Meißner, N., Krusche, S. and Breu, R.
An Online Integrated Development Environment for Automated Programming Assessment Systems.
DOI: 10.5220/0013203000003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 1, pages 48-59
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



2019). An online IDE embedded in an APAS can
support students in independently identifying issues
and correcting errors in beginner programming. Na-
tive IDEs also support students with those features,
but often student access to these native IDEs can-
not be guaranteed due to the students’ different back-
grounds, resources, and technical equipment. There-
fore, a feature-rich online IDE that can be accessed
within a browser is a good way to ensure that every
student has the same conditions and equal opportuni-
ties. The need for SE tools integrated into learning
platforms, such as an online IDE for APAS, has also
been identified in previous studies and underlines the
need for development (Meißner et al., 2024).

To address these challenges, we found that an
online IDE should at least incorporate several key
features like syntax highlighting, auto-completion,
and syntax error highlighting. Additionally, students
should be able to compile and run code directly in the
APAS without submitting their code, therefore trig-
gering the execution of the test cases and leading to a
significant overhead.

While one might argue that this excessive tooling
could inhibit the memorization of basic syntax, we
believe this concern does not apply to programming
education. Programming syntax is highly language-
specific and does not necessarily translate to an un-
derstanding of the broader concepts essential for pro-
gramming. For instance, focusing on learning the
syntax of a single language by rote could lead to diffi-
culties when transitioning to other languages. Instead,
our position is that tools like syntax highlighting and
code completion enable students to focus on solving
problems and developing algorithms, which are fun-
damental skills in programming. These tools help stu-
dents identify errors and improve their code quality,
ultimately strengthening their conceptual understand-
ing rather than detracting from it.

The primary goal of this work is to further investi-
gate and address the mentioned challenges by explor-
ing the following research questions:

• RQ1: What are the primary challenges and neces-
sary architectural considerations for developing a
feature-rich online IDE for APASs?

• RQ2: What are students’ perceptions of the usabil-
ity and usefulness of the new online IDE?

We conducted a comprehensive study involving
several key steps to address these research questions.
First, we gathered and defined key requirements for
an online IDE in an educational context. Based on
these requirements, we designed and implemented
a prototypical open-source solution to be integrated
with an APAS. Finally, we evaluated the implementa-
tion by conducting user studies to assess its effective-

ness and gather student feedback.
Our evaluation shows that the implemented online

IDE effectively addresses the identified challenges
and is positively received by students, enhancing their
learning experience. Through this study, we aim to
contribute to the field of programming education by
providing insights into developing and integrating an
effective online IDE within an APAS and presenting
how the students perceive and utilize the tool.

The remainder of this paper is structured as fol-
lows: Section 2 provides an overview of related work.
Section 3 elaborates on the requirements an online
IDE should fulfill. Section 4 then presents details
about the prototypical implementation of the online
IDE, which we evaluate in Section 5. In Section 6,
we present the evaluation results and a respective dis-
cussion. Section 7 outlines potential threats to valid-
ity, and we conclude in Section 8, reflecting on the
broader implications of this work.

2 RELATED WORK

Web-based IDEs are gaining popularity with both
open-source and commercially hosted options becom-
ing more widely available. For instance, (Wu et al.,
2011) introduced CEclipse, an online IDE designed
for cloud-based programming. With CEclipse, the au-
thors have focused on implementing an online IDE
with functions similar to Eclipse’s. However, since
2011, Eclipse has been developed further with new
helpful functions, rendering CEclipse obsolete. In ad-
dition, the authors have mainly focused on program
analysis issues to ensure security and analyze pro-
gram behavior to improve programmer efficiency. In
contrast, the approach presented in this paper focuses
on a high-performance online IDE designed explicitly
for APASs.

More recently, (Trachsler, 2018) unveiled
WebTigerJython, a web-based programming IDE for
Python, featuring a clean interface and a textual code
editor. However, the author focused on computer
science courses at Swiss schools in his master’s
thesis. The requirements for this online IDE differed
from ours, as the author had to ensure programming
on a tablet and, therefore, only implemented basic
functionalities for developing and executing Python
programs in the browser. Compared to our work, the
thesis did not focus on integrating APASs.

(Pawelczak and Baumann, 2014) implemented
Virtual-C to teach C programming with visualization
tools to help students understand programming con-
cepts. Their work integrated live coding functions in
the lectures for programming assignments and self-

An Online Integrated Development Environment for Automated Programming Assessment Systems

49



learning functions. However, the authors of Virtual-
C only focused on a programming environment for a
C-programming course. Therefore, the general appli-
cability in other programming languages is question-
able. Also, since the paper was published in 2014, the
enhancements to now common IDE features are not
integrated into Virtual-C, making it outdated.

(Bigman et al., 2021) presented PearProgram, a
learning tool for introductory computer science stu-
dents. Their work focuses on pair programming ac-
tivities in a remote learning setting. While PearPro-
gram provides a code editor, its features are limited
and focus on teaching the principles of pair program-
ming rather than on programming itself, as we focus
on in this paper.

Similarly to PearProgram, CodeHelper by (Liu
and Woo, 2021) is a lightweight IDE facilitating on-
line pair programming in C++ courses. While Code-
Helper also targets pair programming in education,
the authors focused more on implementing and in-
tegrating CodeHelper but did not evaluate their ap-
proach. Furthermore, since the tool was created fo-
cusing on C++ courses, the general applicability in
other programming languages remains uncertain.

(Tran et al., 2013) implemented an online IDE
called IDEOL that leverages cloud computing to fa-
cilitate real-time collaborative coding and code exe-
cution. By shifting the heavy IDE cores to the cloud,
IDEOL offers benefits such as work mobility, device
independence, and lower local resource consumption.
However, its features only focus on creating an in-
teractive and responsive environment where real-time
guidance, communication, and collaboration can be
delivered.

Another notable web-based solution is MOC-
SIDE, which offers a coding environment with auto-
grading capabilities (Barlow et al., 2021). However,
there is no documentation of the supported IDE fea-
tures in its editor, and the open-source GitHub project
seems not to exist anymore.

The inclusion of commercial options like Repl.it1,
GitHub Codespaces2, and Gitpod3, reveals an even
broader spectrum of web-based IDEs with extensive
feature support. In a more detailed analysis of com-
mercial online IDEs, we found that most of them
use the open source editor Eclipse Theia4. However,
there are few studies on the integration of Theia in
APASs. An analysis of its performance in Section 4
also revealed significant concerns about using Theia
in APASs.

1https://replit.com
2https://github.com/features/codespaces
3https://www.gitpod.io
4https://github.com/eclipse-theia/theia

Several APASs also introduced basic online edi-
tors to assist students with their submissions and gen-
eral coding experiences. Notable platforms include
Edgar (Mekterović et al., 2020), Fitchfork (Pieterse,
2013), CodeRunner (Lobb and Harlow, 2016), Code-
Board (Truniger, 2023), CodeOcean (Staubitz et al.,
2016), PythonTutor (Guo, 2013) and Artemis (Kr-
usche and Seitz, 2018). However, these platforms typ-
ically only offer basic IDE features, which come out
of the box by including editors like: ACE5, Monaco
Editor6 and CodeMirror7, therefore, lacking many of
the more advanced IDE features, like advanced code-
completion, syntax error highlighting or an integrated
terminal or debugger, which is normally available in
other native IDEs or commercial online IDEs.

Through the analysis of related work, we found
that, up until now, there has still been a noticeable gap
in the current capabilities provided by online IDEs
used in APASs. While existing commercial online
IDEs generally perform well in providing platforms
for coding, they largely do not focus on teaching pro-
gramming skills or evaluating coding exercises in an
educational context. On the other hand, APASs do
provide support for teaching coding and the assess-
ment of programming exercises. Still, they often lack
comprehensive IDE features such as advanced code
completion, syntax error highlighting, and execution
capabilities commonly found in commercial online
IDEs. Thus, this study aims to bridge this gap by
explicitly designing an online IDE for APASs and its
prototypical implementation to evaluate the approach.

3 REQUIREMENTS FOR ONLINE
IDEs IN PROGRAMMING
EDUCATION

To create an online IDE tailored to APASs, we must
first define the relevant requirements that must be ful-
filled. Thus, we used an anonymous online question-
naire to conduct a quantitative and qualitative analysis
of students’ requirements.

3.1 Requirements Engineering Process

To identify relevant requirements for online IDEs in
APASs, we conducted an in-depth analysis of state-
of-the-art desktop IDEs such as Visual Studio8, Intel-

5https://ace.c9.io
6https://github.com/microsoft/monaco-editor
7https://codemirror.net
8https://code.visualstudio.com/

CSEDU 2025 - 17th International Conference on Computer Supported Education

50



liJ IDEA9, and Eclipse10. This analysis aimed to iden-
tify key features that contribute to their effectiveness
and popularity among developers.

In a second step, to ensure that all requirements
for an IDE in the educational context are covered, we
asked 48 APAS users from three different Austrian
universities: (1) Paris Lodron University Salzburg, (2)
Johannes Kepler University Linz, and (3) University
of Innsbruck to evaluate and rate the importance of
the collected IDE features and, if needed, to provide
additional features they perceive as important for an
online IDE.

The survey respondents were predominantly first-
semester students (n=35), with three participants each
in their second and third semesters. One participant
was in their fifth semester, one in the sixth, and one in
the seventh semester. Four respondents did not spec-
ify their semester.

The link to the survey containing the following
questions was displayed on the login page of the
Artemis platform:

• P1. In which semester are you currently enrolled?
• P2. In how many university courses (including

current ones) have you used Artemis?
• P3. How well do you know GIT commands and

functionality? (Single choice regarding five op-
tions ranging from “not at all familiar” to “very
familiar”)

• P4. What tool did you primarily use to solve pro-
gramming exercises in Artemis? (Single choice
regarding five options ranging from “online editor
only” to “local IDE only”)

• Rate the importance of the following IDE features
(Single choice on a five-point scale ranging from
“Very Important” to “Very Unimportant”)

– F0. Syntax Highlighting - uses colors to differ-
entiate various components of the source code.

– F1. Debugger / Breakpoints - enables pausing
code execution at specific lines to inspect vari-
ables and program state.

– F2. Auto-completion / Code Suggestions - of-
fers possible code completions or suggestions
based on the context of the typed code.

– F3. Syntax Error Highlighting - marks parts of
the code that may lead to syntax errors, aiding
in debugging.

– F4. Brace Matching Highlighting - highlights
corresponding braces in the code, helping to vi-
sualize scope boundaries.

9https://www.jetbrains.com/idea/
10https://www.eclipse.org/downloads/

– F5. Key Shortcuts - includes shortcuts for com-
mon actions like copying, pasting, cutting, and
searching.

– F6. Compiler / Interpreter (Run Button) - al-
lows you to compile and run code without exe-
cuting tests.

– F7. Dedicated Shell Console - provides access
to a console where you can execute commands
and run code manually with custom options.

• O1. Do you have any additional suggestions for
improving the code editor?

• O2. Are there any other critical features a code
editor should have to better support your coding
needs?
Additionally, for each feature question, we dis-

played an image of the feature when used in a tra-
ditional IDE to make sure that all students knew what
the features were about.

3.2 Gathered Requirements

The preliminary questions P1-P3 revealed that the
majority is not familiar with GIT commands (29% -
“Not at all familiar”, 27% - “Slightly familiar”, 17%
“Neutral”, 23% “Moderately familiar” and only 4%
“Very familiar”). However, more than half of the stu-
dents (58%) use mostly local IDEs and GIT to solve
the exercises, indicating that the available online edi-
tor is not feature-rich enough to complete an exercise
there adequately.

Based on the feature questions (F1-F7) and map-
ping the answer possibility “Very Important” to 1 and
“Very Unimportant” to 5, we were able to order the
requirements by importance. The results are shown in
Table 1.

Table 1: Mean Importance of IDE Features (Ordered).

Feature Mean
Importance

Syntax Highlighting 1.56
Syntax Error Highlighting 1.69
Compiler / Interpreter (Run
Button) 2.03

Auto-completion / Code Sug-
gestions 2.06

Debugger / Breakpoints 2.08
Brace Matching Highlighting 2.19
Dedicated Shell Console 2.44
Key Shortcuts 2.47

Additionally, the open questions (O1 and O2) re-
vealed that students value the following features:
• Presentation Mode. The IDE should include a

presentation mode that rearranges the UI for better
display of solutions in a classroom setting.

An Online Integrated Development Environment for Automated Programming Assessment Systems

51



• Integrated Console Output Pane. To efficiently
monitor the code output, the IDE should incorpo-
rate a console output pane within its interface.

• Resizable Editor’s Pane. The IDE should allow
users to resize the editor’s pane, offering flexibil-
ity in managing the workspace according to their
preferences.

• Mobile Device Compatibility. The IDE should be
responsive for mobile devices, ensuring accessibil-
ity and usability on various devices.

• Multiple File Handling. It should support opening
and working with multiple files simultaneously, al-
lowing for more complex project development.

Additionally, two requirements, based on the
setup at the University of Innsbruck, include:

• Compatibility with the APAS Artemis. The IDE
must be fully compatible with the Artemis learning
platform, ensuring seamless integration and inter-
action to provide a cohesive user experience.

• Low Resource Usage. Given observed peaks of
more than 500 weekly active users in the past three
years on the Artemis platform, it is essential that
the new IDE solution uses a limited amount of
memory and is capable of scaling resources on-
demand to handle exam situations.

In conclusion, the requirements for the online IDE
encompass both features to improve usability, along
with scalability considerations, reflecting the needs
of an educational environment with varying levels of
user engagement.

4 REFERENCE
IMPLEMENTATION

After gathering key requirements, the focus shifted to-
wards evaluating existing solutions for the potential
integration into Artemis. For this phase, we leveraged
results from a previous study, where we conducted
a systematic tool review of online IDEs (Frankford
et al., 2024). As part of this, we assessed and ex-
tracted the set of supported features and programming
languages and evaluated the availability of these tools
as open-source solutions to ensure the source code is
accessible and enables easy integration into APASs.
The main findings were that existing online editors in
APASs only support partial feature sets. The Artemis
code editor, for example, already fulfills the follow-
ing requirements: (1) Syntax Highlighting, (2) Syntax
Error Highlighting, (3) Multiple File Handling, and
(4) Low Resource Usage. However, commercial on-
line IDEs, like Gitpod and Codespaces, support all

IDE features as defined in the requirements specifica-
tion. Still, we cannot access the commercial options’
code bases, making integration impossible.

As discussed in Section 2, we found that most of
the online IDEs use the Eclipse Theia editor, which is
publicly available and open-source. Consequently, in-
tegrating Theia into the Artemis platform was consid-
ered a viable option. However, a closer examination
of its memory usage revealed that Theia consumes too
many resources, given that Artemis should be able to
serve hundreds of users simultaneously. This increase
in memory consumption, particularly during exam
periods, where peaks are expected, raised concerns
about Theia’s feasibility. Even without Java plugins,
the containerized Theia IDE exhibited a significantly
larger memory footprint (approximately 135 MB)
than Artemis’ base Java Docker container. Adding
Java plugins, essential for Java IntelliSense features,
almost doubled the memory requirement to about 265
MB.

This observation led to the conclusion that Theia,
in its entirety, is not a feasible solution for online IDEs
in the educational sector where resources are limited.
To mitigate this issue, the focus shifted to enhancing
Artemis’ native code editor.

One reason Theia has high memory requirements
is that it integrates a language server handling the lan-
guage server protocol (LSP), which is responsible for
the IDE features directly within the IDE. Because of
this, we decided to extract this component and use
one language server for multiple user sessions, result-
ing in a significant decrease in memory usage. We
were able to additionally implement a load-balancing
mechanism, which always selects the language server
with the least workload because the language server
offers a set of key performance metrics like (1) Aver-
age Load, (2) CPU Usage, (3) Total Memory, (4) Free
Memory and (5) Number of Active Sessions. As a
result, we were able to address the resource concerns
effectively. In the following Figure 1, you can see
a comparison of the Artemis online editor’s mem-
ory usage without IDE features, with IDE features
(named online IDE), and then the reference, which
is the Theia online IDE.

The VCS service in Artemis is also integral to our
solution, serving as the central element for storing and
distributing exercise data between Artemis and the
LSP servers. This centralized VCS ensures consistent
synchronization across instances. If a user session is
closed, it can be reopened on a different LSP server,
with the central VCS maintaining data coherence.

Incorporating data cloning for each user session
into the LSP server’s workflow inevitably leads to
an escalation in disk space usage. This necessitates

CSEDU 2025 - 17th International Conference on Computer Supported Education

52



Figure 1: RAM comparison of the different IDEs.

regular cleanups to eliminate data that is only tem-
porarily utilized. We have integrated an automated
cleanup system within each LSP server to streamline
this process. This system checks every five minutes
to identify inactive sessions – defined as those with no
LSP messages or file-modifying activity in the past 60
minutes. Subsequently, it removes them along with
their corresponding files.

Another key requirement, the integrated terminal,
introduces various security challenges due to the po-
tential execution of arbitrary code and the risk of users
trying to access other files by traversing the directo-
ries. This threat has been mitigated by ensuring that
a new Docker container is started for each integrated
terminal, and therefore, the code runs in a more or less
controlled environment.

Terminal sessions are initiated only upon user re-
quest to conserve resources and prevent unnecessary
server load rather than starting automatically.

In addition to cleaning exercise data, we have also
implemented a process for managing Docker contain-
ers spawned during sessions. While idle contain-
ers generally have minimal impact on resource usage
and memory footprint, accumulating such containers
could lead to inefficient resource utilization. This
cleanup process is synchronized with the termination
of the related web socket connection to improve re-
source management efficiency. Consequently, when a
connection is closed or disrupted, and a container is
no longer in use, its resources are released.

Analyzing the interaction between the new online
IDE and the LSP server, we observed a substantial
exchange of WebSocket messages during user ses-
sions. This high communication volume is inherent
to the LSP and its language servers, which need real-
time updates with every user interaction, such as typ-
ing or hovering over code elements, to provide en-
hanced IDE features. Despite the relatively small size
of JSON-RPC messages, the sheer frequency and vol-
ume can impose a substantial load on the server when

multiplied by the concurrent user count.
To address this challenge, we have employed cus-

tom debouncing techniques within Artemis. De-
bouncing is a method that throttles the rate of oper-
ations, in this case, message transmissions. It works
by postponing message dispatch until a certain pe-
riod of inactivity has passed. For operations such as
code lenses, documentation on hover, or code com-
pletion, we introduced a delay of one second, while
file change actions were assigned a two-second delay.

The impact of this debouncing approach was eval-
uated through an experimental comparison. The ex-
periment involved a user typing “Hello world!” in a
Java exercise file on Artemis and measuring the mes-
sage traffic with and without debouncing. The results,
illustrated in Figure 2, indicate a significant reduc-
tion in messages sent. An approximate 43% decrease
in messages sent when debouncing was applied was
achieved without negatively impacting user experi-
ence. This demonstrates the effectiveness of this tech-
nique in mitigating performance issues in an online
IDE environment.

Figure 2: Impact of debouncing on the number of received
and sent messages.

An additional ’run’ button enhances the user inter-
face of the web IDE, offering an automated execution
of predefined command sequences with a single click.
This sequence is designed to terminate any ongoing
processes, clear the terminal, navigate to the relevant
directory, and execute language-specific commands,
such as mvn clean test for Java (Maven), or pytest
for Python. This functionality replaces the need for
a ’stop’ button by allowing users to terminate and
restart terminal sessions at will, thus addressing po-
tential session freezes or faults.

The online IDE now comprises four main compo-
nents: a (1) file browser, a (2) code editor, a (3) prob-
lem statement viewer, and a (4) terminal interface.

An Online Integrated Development Environment for Automated Programming Assessment Systems

53



Each component is designed to offer specific func-
tionalities, as shown in the IDE overview in Fig-
ure 3. Currently, the LSP server solution supports
Java, Python, and C exercises, representing the three
main programming languages taught in courses at the
University of Innsbruck.

Main Findings for RQ1:

• Memory Efficiency: Connecting multiple
user sessions to a single LSP server signifi-
cantly reduces memory usage, making the
online IDE scalable for many concurrent
users.

• Load Balancing: Implementing load-
balancing mechanisms distributes work-
load evenly across servers, ensuring sys-
tem stability during peak usage times like
exams.

• Security Measures: Using restricted
Docker containers for the integrated termi-
nal addresses security concerns by isolat-
ing user code execution from the host sys-
tem.

• Optimized Communication: Custom de-
bouncing techniques reduce the commu-
nication load between clients and servers,
enhancing performance without degrading
the user experience.

5 EVALUATION

In the following, we present the evaluation results of
the new online IDE. We selected students from the
“Introduction to Programming” tutorial, a compul-
sory course of the Bachelor’s degree in Computer Sci-
ence curriculum at the University of Innsbruck. This
tutorial teaches first-year students the fundamentals of
the C programming language. We received a total of
n=27 valid responses.

Prior to the survey, we introduced the students to
the prototype of the online IDE that had been imple-
mented. Afterward, the students were tasked with
solving the Pascal’s Triangle exercise (Hinz, 1992)
using only the online IDE. They had one week to
complete the task. In the next course, we allotted ap-
proximately 15 minutes for students to complete the
online questionnaire.

5.1 Study Design

We used the Technology Acceptance Model (TAM)
to evaluate the prototype’s usability. TAM is a widely

used research model in empirical user studies to de-
termine the actual use of a technology based on the
perceived usefulness (PU) and perceived ease of use
(PEOU) (Chau, 1996). Additionally, for PU and
PEOU we also evaluated four editor properties (CEE
questions). This approach allowed us to systemati-
cally explore the users’ perceptions concerning the
perceived performance of code submissions, the qual-
ity of compilation feedback, the intuitiveness of the
user interface, and their overall impression of the fea-
tures provided (Davis, 1989).

All questions used a 7-point Likert Scale from
‘Strongly Disagree’ (-3) to ‘Strongly Agree’ (3). Re-
garding the PEOU, the following questions were
asked:

• PEOU0. Learning to operate the code editor is
easy for me.

• PEOU1. I find it easy to get the code editor to do
what I want it to do.

• PEOU2. My interaction with the code editor is
clear and understandable.

• PEOU3. I find the code editor flexible to interact
with.

• PEOU4. It is easy for me to become skillful at
using the code editor.

• PEOU5. I find the code editor easy to use.

The following PU questions were asked:

• PU0. Using the code editor in my tasks enables me
to accomplish tasks more quickly.

• PU1. Using the code editor improves my task per-
formance.

• PU2. Using the code editor in my tasks increases
my productivity.

• PU3. Using the code editor enhances my effective-
ness in the tasks.

• PU4. Using the code editor makes it easier to do
my tasks.

• PU5. I find the code editor useful in my tasks.

The survey also included an explanation and
screenshots for each of the properties that were ad-
ditionally questioned. For these questions, a 5-point
scale ranging from ‘Excellent’ (1) to ‘Very poor’ (5)
has been used:

• CEE0: Submission / Testing Performance. The
time it takes to receive feedback after submitting
the exercise.

• CEE1: Compilation / Testing Feedback. The
feedback provided from the submission of an ex-
ercise.

• CEE2: Editor’s User Interface (UI). The way the
editor is structured and displayed.

• CEE3: Editor’s Features/Functionalities. The
set of functionalities and features provided by the
editor.

CSEDU 2025 - 17th International Conference on Computer Supported Education

54



Figure 3: Overview of the new online IDE in Artemis.

In addition to the TAM-based evaluation, we
asked open questions again and measured the mem-
ory usage of the implemented online IDE. These mea-
surements were critical to assess the IDE’s perfor-
mance efficiency, especially regarding resource con-
sumption. This provided valuable insights into the
IDE’s scalability, an important requirement in the ed-
ucational sector as computing and financial resources
are limited.

5.2 Results

Figure 4 presents findings from the TAM question-
naire to measure user attitudes towards the prototype
IDE. Each bar represents the percentage of responses
across a 7-point Likert scale, ranging from “Strongly
disagree” to “Strongly agree” for various attributes.

Study participants generally agreed that the tech-
nology was easy to use and clear in interaction, and
they found it reasonably easy to learn.
However, we observed a general disagreement regard-
ing the utility, effectiveness, productivity, task perfor-
mance, and task speed. High standard deviations sug-
gest that some students appreciate the online IDE, but
some seem to think the opposite.

As mentioned in Section 5.1, we evaluated student
perceptions of the online IDE based on four key as-
pects: (1) Submission/Testing performance, (2) Com-
pilation/Testing feedback, (3) Editor’s user interface
(UI), and (4) Editor’s features/functionalities. ’Com-
pilation/Testing feedback’ received the most favor-
able evaluation, with the highest mean score of 0.78
and a standard deviation of 0.83, indicating a gen-
erally positive user experience. The ’Editor user in-
terface (UI)’ scored well, with a mean of 0.67 and
a standard deviation of 0.86, suggesting that users

found the UI to be above average in terms of us-
ability. Conversely, ’Editor features/functionalities’
and ’Submission/Testing performance’ both recorded
a mean score of 0.30 but with different levels of vari-
ance (standard deviations of 0.94 and 0.71, respec-
tively).

The open-ended feedback provided valuable in-
sights into the students’ perceptions and experiences
with the online IDE, revealing both positive aspects
and areas for improvement. Many participants ex-
pressed that the editor’s utility is limited, with sev-
eral preferring to use established IDEs like VSCode or
CLion11 instead of the web-based environment. They
highlighted that while the editor may be useful for in-
troductory tasks, it is less suitable for advanced exer-
cises, as they preferred external tools with more ro-
bust features.

Several usability concerns were also identified.
Participants frequently mentioned the inability to re-
size or collapse UI panels, which disrupted their
workflow, and requested more customization options,
such as a dark mode and additional color schemes.
Another common request was enhanced code assis-
tance, including a more ’intelligent’ auto-completion
and better visible error highlighting. Some noted that
the prototype’s current implementation of these fea-
tures was either too slow or inconsistent.

Despite these criticisms, some students appreci-
ated the web IDE, citing its simplicity as a useful
tool for beginners. Positive remarks included its util-
ity for first-year students who may not yet be familiar
with other development environments. Furthermore,
feedback on compilation and testing functionality was
generally positive, though there were isolated cases
where users experienced discrepancies between local

11https://www.jetbrains.com/clion

An Online Integrated Development Environment for Automated Programming Assessment Systems

55



Figure 4: Distribution of user responses to the TAM questionnaire.

and web-based compilation results.
Users made specific feature requests, such as

adding a ’vim mode,’ implementing automated
bracket closure, and improving the reporting of test
results, particularly for failed tests. These sugges-
tions indicate a desire for more advanced, developer-
friendly features that align with those available in tra-
ditional IDEs.

While the open feedback highlights the current
limitations of the web IDE, it also emphasizes the po-
tential for enhancing its functionalities and user inter-
face to better support novice and experienced users.

Figure 5 shows the memory usage of the pro-
totype. This plot reveals a linear relationship be-
tween the number of users and the memory usage of
the IDE. As the user count increased from 0 to 5,
the memory consumption rose steadily from 53 MB
to 650 MB. This pattern underscores the IDE’s pre-

Figure 5: Function of the online IDE’s memory usage by
the number of users.

dictable resource consumption and suggests that the
IDE demonstrates a capacity for scalability, with
memory usage increasing by approximately 130 MB
for each additional user.

Main Findings for RQ2:
• Perceived Ease of Use (PEOU). Students

generally found the online IDE easy to
learn and use, with clear and understand-
able interactions.

• Mixed Perceived Usefulness (PU). While
the IDE was appreciated for introductory
tasks, many students felt it lacked utility
for advanced exercises, leading to mixed
opinions on its effectiveness and produc-
tivity enhancement.

• Suitability for Beginners. The simplicity
of the web IDE was appreciated by first-
year students who are not yet familiar with
other development environments.

• Areas for Improvement. Students re-
quested enhanced code assistance features
and advanced functionalities, especially
debugging tools or a ’vim mode’.

6 DISCUSSION

Developing and integrating an online IDE into an
APAS such as Artemis presents both challenges and

CSEDU 2025 - 17th International Conference on Computer Supported Education

56



opportunities. This research aimed to address two pri-
mary research questions, leading to a series of signif-
icant findings that contribute to the field of program-
ming education.

With the first research question, we focused on
identifying the key challenges in implementing an on-
line IDE for APASs. One main challenge we un-
covered was the high memory consumption associ-
ated with comprehensive online IDE platforms like
Theia12. One Theia container needs approximately
260 MB of RAM, which would be prohibitively ex-
pensive in the educational domain, with peak usage of
more than 500 parallel users. However, we were able
to effectively mitigate this issue by connecting mul-
tiple editors to a single LSP server and by introduc-
ing load-balancing, resulting in a significant memory
reduction by around 50% improving both economic
feasibility while still offering a good user experience
during peak usage times such as exams. Moreover,
we effectively addressed security concerns by imple-
menting a Docker environment for the integrated ter-
minal.

Another key challenge was the high communica-
tion load between the online IDE and LSP servers,
which we addressed by implementing custom de-
bouncing techniques in our prototypical online IDE.
This optimization reduced communication intensity,
further enhancing the system’s efficiency. Addition-
ally, regular session cleanup emerged as crucial for
maintaining system performance, emphasizing the
need for efficient resource management strategies to
develop online IDEs for educational purposes.

The investigation into user perceptions (RQ2) re-
vealed mixed responses regarding the new online
IDE’s utility, effectiveness, and productivity. While
most users found the technology generally easy to
use and learn, some disagreed on its impact on task
performance and speed. These findings suggest that
while the new IDE has improved certain aspects of
the user experience, there are still areas that require
further improvement.

The open feedback offers valuable guidance for
further enhancing the IDE. Several participants sug-
gested that while they appreciated the simplicity of
the web IDE for learning basic concepts, they would
like to see features that support more advanced cod-
ing tasks, similar to those offered by established tools
like VSCode or CLion. This indicates an opportu-
nity for the IDE to evolve beyond its current form by
incorporating advanced features such as a fully inte-
grated debugger, better code completion, and detailed
error highlighting. By expanding the feature set, the
online IDE could become a more attractive option for

12https://github.com/eclipse-theia/theia

experienced users who prefer working within a single,
consistent environment.

The feedback also included innovative sugges-
tions, such as adding a ’vim mode’ and a quick-save
feature (e.g., mapped to Ctrl-S), illustrating how users
are eager to see features that enhance efficiency and
familiarity. These ideas present opportunities for fu-
ture development. By responding to these user-driven
insights, the IDE has the potential to bridge the gap
between a beginner-friendly platform and a powerful
development tool.

The positive reception of the compilation and test-
ing functionalities demonstrates that the core features
of the online IDE are functioning well, providing
users with reliable tools for checking their code.

In summary, the open feedback highlights the po-
tential of the online IDE as a flexible and scalable
solution that, with further development, can accom-
modate a wide range of user needs. The suggestions
from users provide a clear roadmap for future im-
provements, emphasizing the importance of striking
a balance between simplicity for beginners and ad-
vanced functionality for more experienced users. By
incorporating these insights, the IDE could become an
even more effective tool for programming education.

7 LIMITATIONS

In this paper, we mainly considered the following four
categories of validity, also used by (Wohlin et al.,
2012): (1) Construct validity, (2) Reliability, (3) In-
ternal validity, and (4) External validity.

7.1 Construct Validity

Construct validity in this study refers to how accu-
rately the research design and methods capture the
key challenges of implementing an online IDE and
the subsequent user perceptions. The challenges iden-
tified, such as memory consumption, load balancing,
and security issues, were derived from the technical
implementation process and user feedback. While
these challenges represent common issues faced in
software development, especially in educational set-
tings, they may not encompass all possible hurdles
that could emerge in different contexts or with other
technologies.

The study’s construct validity may also be influ-
enced by the specific features and functionalities im-
plemented in the prototype. The chosen set of fea-
tures aimed to address the most critical needs of pro-
gramming students. However, this selection process
might not fully capture the entire spectrum of useful

An Online Integrated Development Environment for Automated Programming Assessment Systems

57



IDE features, especially those that could be more rele-
vant in different programming languages, paradigms,
or more advanced levels of study.

7.2 Reliability

The reliability of this study is significantly improved
by the open-source nature of the prototypical imple-
mentation of the online IDE within the Artemis plat-
form. By making the source code and the question-
naire results publicly available on Zenodo13, the study
allows verification and replication by the broader
community, thereby improving the transparency and
trustworthiness of the implementation process. This
open-source approach ensures that every aspect of the
IDE development, from the initial design decisions to
the specific coding practices, is accessible for review
and reuse.

7.3 External Validity

A potential limitation of this study comes from inte-
grating the online IDE exclusively within the Artemis
platform. While Artemis is an APAS with function-
alities common to many APASs, this exclusive in-
tegration may affect the generalizability of the find-
ings. However, the architectural and functional prin-
ciples applied in developing the online IDE, such
as using LSP servers for multiple user sessions
and Docker containers for sandboxing, are platform-
agnostic. These principles could be adapted for inte-
gration into other educational settings, suggesting that
our findings have relevance beyond the Artemis envi-
ronment.

The participant pool of students from a single “In-
troduction to Programming” course for the second
survey also limits external validity. With 27 respon-
dents, the sample size, while sufficient for a prelimi-
nary investigation, limits the ability to conduct com-
prehensive quantitative analyses and make broad gen-
eralizations.

7.4 Internal Validity

The internal validity of this study is based on the care-
ful design and execution aimed at minimizing external
influences on the variables investigated. Key strate-
gies to improve internal validity included a uniform
and well-tested questionnaire (TAM) and leveraging
objective metrics for system evaluation like memory
usage.

13https://doi.org/10.5281/zenodo.13959741

8 CONCLUSION

This research presents an innovative concept for an
online IDE designed for programming education. We
developed and implemented a prototype to evaluate
the concept. By providing a feature-rich online IDE
directly within an educational platform, we can offer
a more engaging and effective learning experience for
students beginning their programming journey.

The prototypical implementation addresses criti-
cal technical challenges (RQ1), such as high memory
consumption and security issues, by integrating mul-
tiple editors with a single LSP server and leveraging
Docker containers for sandboxed execution environ-
ments, and the open-source nature of the presented
solution ensures transparency and encourages com-
munity involvement for further refinement. The eval-
uation (RQ2) suggests that while the new online IDE
is user-friendly and easy to learn, there is room for im-
provement in demonstrating its utility and impact on
task performance. The mixed opinions on utility and
productivity highlight the need for further enhance-
ments to increase the practical benefits of the IDE in
real-world tasks.

We plan to refine the IDE for future work by in-
corporating user feedback to enhance features and
functionalities. This includes implementing advanced
tools such as an integrated debugger, improving code
completion, and optimizing performance to reduce
load times and improve reliability. We also aim to
conduct more extensive user studies across different
educational institutions and platforms to validate and
generalize our findings.

REFERENCES

Barlow, M., Cazalas, I., Robinson, C., and Cazalas, J.
(2021). Mocside: an open-source and scalable on-
line ide and auto-grader for introductory programming
courses. Journal of Computing Sciences in Colleges,
37(5):11–20.

Bigman, M., Roy, E., Garcia, J., Suzara, M., Wang, K., and
Piech, C. (2021). Pearprogram: A more fruitful ap-
proach to pair programming. In Proc. of the 52nd
ACM Technical Symposium on Computer Science Ed-
ucation, pages 900–906.

Chau, P. Y. (1996). An empirical assessment of a modi-
fied technology acceptance model. Journal of man-
agement information systems, 13(2):185–204.

Davis, F. D. (1989). Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS quarterly, pages 319–340.

España-Boquera, S., Guerrero-López, D., Hermida-Pérez,
A., Silva, J., and Benlloch-Dualde, J. V. (2017). An-
alyzing the learning process (in programming) by us-

CSEDU 2025 - 17th International Conference on Computer Supported Education

58



ing data collected from an online ide. In Proc. of the
16th International Conference on Information Tech-
nology Based Higher Education and Training, pages
1–4. IEEE.

Frankford, E., Crazzolara, D., Sauerwein, C., Vierhauser,
M., and Breu, R. (2024). Requirements for an online
integrated development environment for automated
programming assessment systems. Proc. of the 16th
International Conference on Computer Supported Ed-
ucation (CSEDU 2024) - Volume 1, pages 305-313.

Guo, P. J. (2013). Online python tutor: embeddable web-
based program visualization for cs education. In Proc.
of the 44th ACM technical symposium on Computer
science education, pages 579–584.

Hinz, A. M. (1992). Pascal’s triangle and the tower of hanoi.
The American mathematical monthly, 99(6):538–544.

Horváth, G. (2018). A web-based programming environ-
ment for introductory programming courses in higher
education. In Annales Mathematicae et Informaticae,
volume 48, pages 23–32.

Krusche, S. and Seitz, A. (2018). Artemis: An automatic
assessment management system for interactive learn-
ing. In Proc. of the 49th ACM technical symposium on
computer science education, pages 284–289.

Leisner, M. and Brune, P. (2019). Good-bye localhost: A
cloud-based web ide for teaching java ee web devel-
opment to non-computer science majors. In Proc. of
the IEEE/ACM 41st International Conference on Soft-
ware Engineering, pages 268–269. IEEE.

Liu, X. and Woo, G. (2021). Codehelper: A web-based
lightweight ide for e-mentoring in online program-
ming courses. In Proc. of the 3rd International Con-
ference on Computer Communication and the Inter-
net, pages 220–224. IEEE.

Lobb, R. and Harlow, J. (2016). Coderunner. ACM Inroads,
7(1):47–51.

Meißner, N., Koch, N. N., Speth, S., Breitenbücher, U.,
and Becker, S. (2024). Unveiling Hurdles in Soft-
ware Engineering Education: The Role of Learning
Management Systems. In Proceedings of the 46th
International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-
SEET ’24), page 242–252.

Mekterović, I., Brkić, L., Milašinović, B., and Bara-
nović, M. (2020). Building a comprehensive auto-
mated programming assessment system. IEEE Access,
8:81154–81172.

Pawelczak, D. and Baumann, A. (2014). Virtual-c-a pro-
gramming environment for teaching c in undergrad-
uate programming courses. In Proc. of the IEEE
Global Engineering Education Conference, pages
1142–1148. IEEE.

Pieterse, V. (2013). Automated assessment of programming
assignments. CSERC, 13:4–5.

Staubitz, T., Klement, H., Teusner, R., Renz, J., and Meinel,
C. (2016). Codeocean-a versatile platform for prac-
tical programming excercises in online environments.
In Proc. of the 2016 IEEE Global Engineering Educa-
tion Conference (EDUCON), pages 314–323. IEEE.

Tarek, M., Ashraf, A., Heidar, M., and Eliwa, E. (2022).
Review of programming assignments automated as-
sessment systems. In Proc. of the 2nd International
Mobile, Intelligent, and Ubiquitous Computing Con-
ference, pages 230–237. IEEE.

Trachsler, N. (2018). Webtigerjython-a browser-based pro-
gramming ide for education. Master’s thesis, ETH
Zurich.

Tran, H. T., Dang, H. H., Do, K. N., Tran, T. D., and
Nguyen, V. (2013). An interactive web-based ide to-
wards teaching and learning in programming courses.
In Proc. of International Conference on Teaching, As-
sessment and Learning for Engineering, pages 439–
444. IEEE.

Truniger, S. (2023). Codeboard: Verbesserung und er-
weiterung der automatisierten hilfestellungen.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
Software Engineering. Springer Science & Business
Media.

Wu, L., Liang, G., Kui, S., and Wang, Q. (2011). CEclipse:
An online IDE for programing in the cloud. In 2011
IEEE World Congress on Services. IEEE.

An Online Integrated Development Environment for Automated Programming Assessment Systems

59


