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Abstract: This study explores the application of multimodal machine learning techniques to evaluate the originality and
complexity of drawings. Traditional approaches in creativity assessment have primarily focused on visual
analysis, often neglecting the potential insights derived from accompanying textual descriptions. The research
assesses four target features: drawings’ originality, flexibility and elaboration level, and titles’ creativity, all
labelled by expert psychologists. The research compares different image encoding and text embeddings to
examine the effectiveness and impact of individual and combined modalities. The results indicate that incor-
porating textual information enhances the predictive accuracy for all features, suggesting that text provides
valuable contextual insights that images alone may overlook. This work demonstrates the importance of a
multimodal approach in creativity assessment, paving the way for more comprehensive and nuanced evalua-
tions of artistic expression.

1 INTRODUCTION

The assessment of creativity is a dynamic field where
artificial intelligence (AI) opens possibilities to en-
hance the objectivity, scalability, and depth of eval-
uations across various tasks. Traditionally, creativity
assessments, such as the Alternate Uses Task (AUT)
in verbal creativity and drawing-based tasks in visual
domains, have relied heavily on human judgment, fac-
ing challenges in consistency and efficiency. AI, how-
ever, introduces data-driven methods to quantify cre-
ativity aspects like originality and flexibility with ob-
jective precision. For instance, platforms like SemDis
(Beaty and Johnson, 2020) use natural language pro-
cessing to measure semantic distance, automating the
scoring of verbal creativity and reducing the subjec-
tivity and labor intensity of manual evaluations (Allen
et al., 2015; Shaban-Nejad et al., 2022). Such ad-
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vances lay a foundation for reliable, large-scale cre-
ativity assessments, making comprehensive analysis
feasible (Stojnic et al., 2022).

In visual creativity assessment, a specialized
area focuses on drawing completion tests commonly
used in psychology to explore aspects of person-
ality, emotional state, and cognitive style. These
tests, like the Thematic Apperception Test (TAT)
and Draw-A-Person Test (DAP), ask participants to
complete drawings, revealing deeper psychological
traits. While valuable, these assessments have tra-
ditionally depended on subjective evaluations, limit-
ing consistency and scalability. AI enhances these
assessments by analysing graphic features—such as
line quality, shape complexity, and spatial arrange-
ment—objectively, improving reliability and identi-
fying subtle patterns that might be missed by human
evaluators (Liu et al., 2020; Wang et al., 2023; Tan
et al., 2023; Gado et al., 2021).

AI-based approaches in figural creativity have
shown particular promise. Convolutional neural net-
works (CNNs) (O’Shea and Nash, 2015) have been
applied to measure originality in drawing tasks, align-
ing closely with expert ratings and reducing both
time and costs while ensuring consistency (Cropley
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and Marrone, 2022; Kvam et al., 2023). Similarly,
platforms like AuDrA (Patterson et al., 2023) utilize
modified ResNet (He et al., 2015) architectures to
score features like elaboration and divergent thinking,
achieving correlations with human evaluations and
highlighting AI’s potential to standardize creativity
assessments (Easton et al., 2019; Davis et al., 2022).
This trend reflects the broader integration of AI in ed-
ucation, where it increasingly supports learning and
assessment practices (Pezzulo et al., 2023).

Building on these advances, recent work has ex-
plored supervised learning techniques, such as Vision
Transformers and Random Forest classifiers, to auto-
mate scoring in tasks like the Torrance Tests of Cre-
ative Thinking-Figural (TTCT-F) (Acar et al., 2024).
This approach extends this by integrating textual data,
including titles or descriptions accompanying draw-
ings, to enable a multimodal assessment of creativity.
This combined analysis of visual and textual data al-
lows AI to capture nuanced aspects—particularly in
originality and flexibility—that may be overlooked by
image-only models (Weidinger et al., 2022). As hu-
man creativity often involves both visual and verbal
expression, this multimodal approach is essential for
more comprehensive evaluation (Bahcecik, 2023).

AI’s applications in assessing emotional content
within drawings also show promise. Using senti-
ment analysis, AI can detect emotional cues in hu-
man figure drawings, traditionally used to evaluate
emotional well-being and intelligence. This ability
enables faster, more precise emotional assessments,
aligning with the increasing recognition of emotional
intelligence in psychological evaluation (Imuta et al.,
2013; Røed et al., 2023; Devedzic, 2020).

Beyond assessment, AI holds potential for thera-
peutic applications. By tracking changes in patient
drawings over time, AI helps clinicians monitor emo-
tional and cognitive progress throughout therapy, fa-
cilitating personalized interventions that leverage the
creative process as a therapeutic tool (Zhang et al.,
2024; Lee et al., 2015). AI’s role in these settings not
only enhances therapeutic effectiveness but also un-
derscores the healing potential of creativity (Searle,
2018).

AI’s capacity to compare drawings against norma-
tive data further enhances its diagnostic capabilities,
helping detect psychological conditions early by iden-
tifying deviations from typical profiles (Sheng et al.,
2019; Ferrara and Qunbar, 2022). Additionally, by
assessing cognitive styles in drawing tasks, AI of-
fers insights into thought processes and personality
traits, advancing diagnostic accuracy and deepening
our understanding of individual differences in creativ-
ity (Gigi, 2015; Creely and Blannin, 2023; Cetinic

and She, 2021).
This research advances these developments by in-

troducing a novel tool that combines visual and tex-
tual data for a more thorough creativity assessment
in drawing tasks. The influence of visual and textual
data has been studied separately, and by integrating
titles or descriptions often accompanying drawings,
this approach captures added layers of creativity, es-
pecially in originality and flexibility, where text can
enrich insights beyond what image-based models of-
fer. The model, trained on expert evaluations, aligns
closely with human expertise while minimizing sub-
jective inconsistencies, allowing for scalable, precise
assessments across diverse psychological tests (Harré
and El-Tarifi, 2023).

2 METHODS

2.1 Data

The drawings in this dataset were collected as part of
a study aimed at investigating the effects of intracra-
nial stimulation on creativity. In this original study,
53 participants were asked to create drawings in two
phases: one before receiving intracranial stimulation
(pre-stimulation phase) and another after the stimula-
tion (post-stimulation phase). For each drawing, par-
ticipants were also asked to provide a title or a brief
description that reflected their interpretation or con-
cept of the image.

The primary goal of that study was to explore
whether intracranial stimulation could influence the
originality of the participants’ drawings. The dataset
used in this research consists of these drawings along
with their corresponding titles, both from the pre-
stimulation and post-stimulation phases. These im-
ages were collected and made available for further
analysis, and they serve as the foundation for the cur-
rent study.

The dataset used consists of 486 samples, includ-
ing numerical and textual data related to scanned im-
ages of drawings. Each image is assigned labels
corresponding to various features, including the ti-
tle given by the participant to their drawing, which
is used for classification with a deep learning model.
The study targets four numerical variables: O, FLE,
E, and T, which represent different aspects of creativ-
ity that the model seeks to predict. Each entry in the
dataset contains the following fields:

• IMAGE: A scanned image of one of the drawings
completed by the participant.

• TEXT: Title assigned to the drawing by the par-
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ticipant (in Spanish).

• O: Label given by an expert psychologist indicat-
ing whether the drawing demonstrates creativity,
expressed as 0 (not original) or 1 (original).

• FLE: Label provided by an expert psychologist
that assesses the participant’s flexibility in draw-
ing. Each drawing is assigned a numerical cat-
egory related to its theme (people, landscapes,
etc.), and flexibility is calculated based on the
number of different categories represented.

• E: Label assigned by an expert psychologist that
measures the level of elaboration of the drawing.

• T: Label provided by an expert psychologist in-
dicating whether the title given to the drawing is
creative or not, also expressed as O (0 or 1).

2.2 Participants

In total, 53 participants contributed to the creation of
the dataset. Demographic and personal characteristics
of the participants include age, gender, educational
level, mother tongue and certain habits, such as stim-
ulant and tobacco use, as well as number of hours of
sleep.

The main features of the participant dataset are:

• Gender: Gender of the participant, recorded as
‘M’ (male) or ‘F’ (female). The distribution was
balanced, with 49.1% men and 50.9% women.

• Age: Age in years of participants, ranging from
10 to 60 years.

• Mother tongue: The majority of participants have
Spanish as their mother tongue.

• Education: Educational level ranges from com-
pulsory secondary education to postgraduate stud-
ies.

• Sleeping hours: Sleeping hours were recorded the
night before the experimental session.

• Stimulants and Tobacco: Participants reported on
the consumption of stimulants (e.g. coffee) and
tobacco before the sessions.

• Observations: Additional notes on participants,
such as medical or behavioural observations dur-
ing the study.

2.3 Model Building

In this study, we aim to predict four creativity-related
variables — O (originality), E (elaboration), FLE

(flexibility), and T (title originality) — using mul-
timodal data that combines visual information (im-
ages of the drawings) with textual information (ti-
tles assigned to the drawings by the participants). To
achieve this, deep learning models were employed to
analyze both the visual features of the drawings and
the semantic features of the titles. The objective is to
evaluate the performance of these models in predict-
ing the mentioned variables and to explore to what
extent each data modality (image or text) contributes
to the model’s accuracy.

To obtain a more detailed understanding, all possi-
ble combinations of text and image models, which are
described in the following subsections, were tested.
Additionally, experiments were conducted using only
images and only text to predict each of the four cre-
ativity variables separately, allowing us to assess how
much information each modality contributes indepen-
dently.

The visual features of the drawings were pro-
cessed using convolutional neural networks (CNN) as
encoders to create an image embedding, while the ti-
tles assigned to the drawings by the participants were
processed using different text embedding models. For
models that utilized both text and image data, the final
layer before the output of each model was concate-
nated with the other modality, allowing both sources
of information to be combined effectively.

2.3.1 Image-Based Models

• ResNet50: A deep network with 50 layers widely
used in image classification tasks due to its ability
to handle degradation problems in deep networks.
(He et al., 2015)

• InceptionV3: A modular network design model
that efficiently uses computational resources, im-
proving image analysis accuracy. (Szegedy et al.,
2015)

• EfficientNetB0: This model optimizes both net-
work size and accuracy, offering a balance be-
tween computational performance and feature ex-
traction capacity. (Tan and Le, 2020)

• Xception: Based on depthwise separable convo-
lutions, this model excels in image classification
tasks, improving accuracy without significantly
increasing computational cost. (Chollet, 2016)

The ResNet50, InceptionV3, EfficientNetB0 and
Xception architectures were chosen due to their rele-
vance and diversity in CNN design strategies. These
architectures have consistently demonstrated high
performance in image classification tasks, such as
those in ImageNet benchmarks, and represent key ap-
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proaches in the evolution of CNNs. ResNet50 in-
corporates residual connections that enable the train-
ing of deep networks; InceptionV3 optimizes com-
putational efficiency with convolutions of varying
sizes; EfficientNetB0 introduces compound scaling to
balance accuracy and efficiency; and Xception uti-
lizes depthwise separable convolutions, achieving im-
proved accuracy with reduced computational cost.
This selection ensures a representative and diverse
analysis of visual encoding capabilities in the context
of the problem studied.

2.3.2 Text Embedding Models

• BETO (Cañete et al., 2020): A model based on
the Transformer architecture that provides contex-
tualized representation of words in the titles, cap-
turing both local and global meaning of the text.

• FastText (Joulin et al., 2016): This model gener-
ates word embeddings that include morphological
information, which is particularly useful for short
titles or unknown words.

• Keras Embedding layer: A simpler model that
enables efficient text representation using dense
layers, suitable for fast and efficient classification
tasks.

The BETO, FastText, and Keras Embedding layer
models were selected to encompass diverse strate-
gies in semantic text representation. BETO is a
Transformer-based model pre-trained specifically in
Spanish, making it ideal for capturing linguistic nu-
ances in the analyzed titles. FastText generates em-
beddings based on subword information, allowing it
to handle out-of-vocabulary words and morphological
features, which are particularly useful for short titles.
Finally, the Keras Embedding layer offers an efficient
and flexible approach for dense text representation in
classification tasks. Combining these approaches pro-
vides a comprehensive and complementary analysis
of the semantic characteristics of the titles within the
context of creativity.

2.4 Model Evaluation

To assess the models’ performance in predicting
creativity-related variables, we employ distinct met-
rics tailored to classification (binary and multiclass)
and regression tasks.

2.4.1 Classification Metrics

For both binary and multiclass tasks, the following
metrics provide a comprehensive view of classifica-
tion performance:

• ROC AUC: Evaluates the model’s ability to dis-
tinguish between classes, using:

– Binary AUC: Direct comparison between two
classes.

– One-vs-Rest AUC (multiclass): Calculates
AUC for each class, revealing overall discrimi-
nation ability.

• Accuracy: Measures the proportion of correctly
predicted labels across all classes.

• Recall (Sensitivity): Proportion of actual posi-
tive instances correctly identified, highlighting the
model’s capability in capturing positive cases.

• Precision: Accuracy of predicted instances per
class, showing how well each class is identified.

• Specificity: Proportion of true negatives correctly
identified, useful for understanding false positive
avoidance.

• F1 Score: Harmonic mean of Precision and Re-
call, balancing performance in cases of class im-
balance.

2.4.2 Regression Metrics

For predicting continuous variables (e.g., elaboration
scores), we apply:

• Loss (Mean Squared Error (MSE)): Measures av-
erage squared error, penalizing larger deviations
between predicted and actual values.

• Mean Absolute Error (MAE): Represents the av-
erage absolute difference between predicted and
true values, offering intuitive error measurement.

• Root Mean Squared Error (RMSE): Square root
of MSE, emphasizing larger errors and enhancing
interpretability.

• R² Score: Proportion of variance explained by the
model, indicating overall predictive strength for
continuous outcomes.

3 RESULTS

The following section presents the results of the
model evaluation for predicting each of the four target
features. Metrics are presented for all combinations of
models, including those using image data only, text
data only and both combined. The performance of
each model is evaluated using a comprehensive set
of metrics that reflect the quality of predictions in
both classification and regression tasks. These results
provide an in-depth view of the performance of each
combination on different prediction targets and allow
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Table 1: Results Predicting Originality (O).

Embedding CNN ROC AUC Accuracy Recall Precision Specificity F1 score

- ResNet50 0,76 0,77 0,71 0,40 0,84 0,51
- InceptionV3 0,81 0,78 0,66 0,42 0,88 0,51
- EfficientNetB0 0,72 0,68 0,55 0,30 0,81 0,39
- Xception 0,82 0,81 0,76 0,44 0,88 0,56
BETO - 0,78 0,73 0,71 0,37 0,81 0,49
BETO ResNet50 0,78 0,69 0,92 0,36 0,67 0,52
BETO InceptionV3 0.84 0,83 0,76 0,46 0,90 0,57
BETO EfficientNetB0 0,68 0,67 0,87 0,30 0,53 0,45
BETO Xception 0,80 0,79 0,82 0,43 0,82 0,56
FastText - 0,80 0,78 0,66 0,40 0,89 0,50
FastText ResNet50 0,74 0,66 0,97 0,34 0,59 0,50
FastText InceptionV3 0,85 0,80 0,71 0,42 0,89 0,53
FastText EfficientNetB0 0,77 0,74 0,55 0,33 0,86 0,54
FastText Xception 0,80 0,73 0,82 0,38 0,75 0,52
Keras - 0,81 0,76 0,87 0,38 0,76 0,53
Keras ResNet50 0,74 0,76 0,66 0,38 0,86 0,48
Keras InceptionV3 0,80 0,71 0,87 0,37 0,72 0,52
Keras EfficientNetB0 0,74 0,61 0,74 0,37 0,78 0,49
Keras Xception 0,75 0,71 0,82 0,37 0,63 0,51

a better understanding of the contribution of text, im-
age and their joint use in the prediction process.

3.1 Predicting Originality (O)

The table 1 presents the performance metrics for var-
ious model combinations used to predict the binary
variable O. The models are evaluated across five met-
rics: ROC AUC, accuracy, recall (sensitivity), speci-
ficity, and F1 score.

The accuracy values range from 0.61 to 0.83, with
the highest accuracy observed in the model using the
combination of BETO and InceptionV3. The ROC
AUC values vary between 0.68 and 0.85, with the best
performance in this regard achieved by the combina-
tion of FastText and InceptionV3.

Recall (sensitivity) scores span from 0.55 to 0.97.
The model with the highest recall is the one that
uses FastText and ResNet50, whereas EfficientNetB0
without using text results in the lowest recall. Speci-
ficity values range between 0.53 and 0.90, where
the combination of BETO and InceptionV3 achieves
the highest specificity, while the FastText and Incep-
tionV3 combination shows the lowest.

Finally, F1 scores in the table range from 0.50 to
0.64, with the highest score obtained by the FastText
and InceptionV3 combination. The performance of
each model varies across different metrics, indicating
that no single combination of models consistently out-
performs the others in all areas.

3.2 Predicting Elaboration (E)

Table 2 presents the performance metrics for predict-
ing the continuous variable E. The evaluation metrics
provided include loss, Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and R2 score.

The lowest loss values are observed for the mod-
els without embeddings that use either InceptionV3
(2.82) or Xception (2.81), with these models also
showing the best overall performance in other met-
rics. Specifically, the InceptionV3 model achieves the
lowest MAE (1.07) and RMSE (1.30), along with the
highest R2 score (0.48). The Xception model follows
closely, with an MAE of 1.14 and an RMSE of 1.37,
and an R2 score of 0.44.

In contrast, models incorporating embeddings
show substantially higher loss values. For instance,
the BETO embedding combined with InceptionV3 re-
sults in a loss of 9.02, an MAE of 2.22, and an RMSE
of 2.82, with a negative R2 score of -1.91. Sim-
ilar trends are observed for combinations involving
other embeddings, where the R2 scores are consis-
tently negative, indicating poor model performance
for predicting E.

Overall, the results suggest that models using only
image data outperform those incorporating embed-
dings when predicting E, as evidenced by lower error
metrics and higher R2 values.
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Table 2: Results Predicting Elaboration (E).

Embedding CNN loss MAE RMSE R2 score

- ResNet50 3,95 1,36 1,74 0,05
- InceptionV3 2,82 1,07 1,30 0,48
- EfficientNetB0 7,98 1,98 2,76 -2,76
- Xception 2,81 1,14 1,37 0,44
BETO - 8,44 2,14 2,70 -1,61
BETO ResNet50 8,77 2,18 2,77 -1,81
BETO InceptionV3 9,02 2,22 2,82 -1,91
BETO EfficientNetB0 7,65 2,02 2,56 -1,32
BETO Xception 8,58 2,13 2,77 -1,86
FastText - 8,75 2,21 2,77 -1,82
FastText ResNet50 8,88 2,18 2,79 -1,84
FastText InceptionV3 8,99 2,24 2,81 -1,90
FastText EfficientNetB0 8,60 2,20 2,71 -1,58
FastText Xception 9,17 2,22 2,84 -1,93
Keras - 8,49 2,14 2,74 -1,78
Keras ResNet50 8,97 2,18 2,81 -1,89
Keras InceptionV3 8,80 2,15 2,79 -1,87
Keras EfficientNetB0 7,72 2,04 2,64 -1,66
Keras Xception 8,67 2,17 2,77 -1,84

3.3 Predicting Flexibility (FLE)

Table 3 provides the results for predicting the cate-
gorical variable FLE. Metrics such as ROC AUC, ac-
curacy, recall, precision, accuracy, specificity, and F1
score are reported for each model configuration.

Based on ROC AUC, the best performing model
is FastText without a convolutional neural network
(CNN), with an AUC value of 0.91. This model
also achieves the best accuracy (0.56) and F1 score
(0.66), maintaining a reasonable balance between re-
call (0.37) and precision (0.80). In contrast, the high-
est recall (0.53) is observed in the Keras-InceptionV3
model, which achieves an F1 score of 0.65 but shows
lower performance in terms of ROC AUC (0.79).

Regarding precision, BETO without a CNN yields
the highest score (1.00), though it has low recall
(0.10), suggesting that it correctly identifies posi-
tive instances when detected but misses many posi-
tive cases overall. On the other hand, combinations
involving ResNet50 and EfficientNetB0 show lower
recall and precision, indicating underperformance in
comparison to other model combinations.

Models involving embeddings, particularly BETO
and FastText, tend to exhibit more consistent perfor-
mance across several metrics, although with varying
degrees of success depending on the metric of focus.

3.4 Predicting Title Originality (T)

Table 4 presents the evaluation results for predicting
the binary variable T. The metrics shown include ROC
AUC, accuracy, recall, specificity, and F1 score.

The BETO embedding without a CNN stands out
as the best-performing model across most metrics. It
achieves the highest ROC AUC (0.91), the highest ac-
curacy (0.90), and the highest F1 score (0.90). The
recall of this model is also relatively high (0.80), with
a balanced specificity of 0.74.

Any of the embeddings combined with CNNs per-
form worse when compared to the performance, in
terms of ROC AUC or accuracy, achieved without
using images. Despite this, the recall for many of
these models remains relatively high, with some mod-
els, such as Keras with ResNet50 and EfficientNetB0,
achieving perfect recall (1.00). However, these same
models exhibit very low specificity, indicating a ten-
dency to over-predict positive instances.

Results generally indicate that the combination of
text-based embeddings such as BETO and FastText,
especially without an image model, performs well in
T prediction, showing a balanced trade-off between
sensitivity and specificity.
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Table 3: Results Predicting Flexibility (FLE).

Embedding CNN ROC AUC Accuracy Recall Precision Specificity F1 score

- ResNet50 0,86 0,54 0,43 0,70 0,00 0,65
- InceptionV3 0,89 0,54 0,50 0,64 0,00 0,65
- EfficientNetB0 0,81 0,26 0,09 0,60 0,00 0,21
- Xception 0,83 0,54 0,50 0,65 0,00 0,65
BETO - 0,86 0,40 0,10 1,00 0,00 0,42
BETO ResNet50 0,84 0,50 0,39 0,79 0,00 0,62
BETO InceptionV3 0,83 0,52 0,50 0,63 0,00 0,63
BETO EfficientNetB0 0,78 0,35 0,28 0,51 0,00 0,50
BETO Xception 0,89 0,52 0,48 0,81 0,00 0,63
FastText - 0,91 0.56 0,37 0,80 0,00 0,66
FastText ResNet50 0,82 0,48 0,42 0,62 0,00 0,60
FastText InceptionV3 0,80 0,51 0,46 0,61 0,00 0,62
FastText EfficientNetB0 0,80 0,36 0,11 0,92 0,00 0,44
FastText Xception 0,82 0,49 0,46 0,71 0,00 0,61
Keras - 0,80 0,53 0,38 0,86 0,00 0,64
Keras ResNet50 0,82 0.50 0,48 0,60 0,00 0,62
Keras InceptionV3 0,79 0,54 0,53 0,64 0,00 0,65
Keras EfficientNetB0 0,86 0,30 0,07 1,00 0,00 0,20
Keras Xception 0,81 0.51 0,50 0,61 0,00 0,62

4 DISCUSSION

The primary goal of this research was to explore
whether using textual descriptions of drawings, in
addition to images, can improve the prediction of
creativity-related characteristics such as originality
(O), thematic flexibility (FLE), elaboration (E), and
title creativity (T). Unlike previous studies that have
focused exclusively on image analysis to assess these
aspects, our research introduces text as an additional
(or even primary) source of information. The results
obtained allow us to reflect on whether text alone is
sufficient and whether combining it with images pro-
vides significant added value.

A key finding is that models based solely on text
were surprisingly competitive in predicting the origi-
nality of the drawing (O). For instance, the FastText
without CNN model achieved a recall of 0.97, indi-
cating that textual descriptions have great potential in
capturing whether a drawing is original or not. This
is a significant result, given that previous studies have
relied solely on images, which may have limited the
detection of more abstract aspects of originality.

However, when observing other metrics such as
precision and specificity, models that combine both
text and images (such as FastText + InceptionV3)
showed improvements by reducing false positives.
This suggests that while text alone provides valuable
information, combining both data types allows for a
more balanced and accurate prediction.

The prediction of thematic flexibility (FLE)
showed that text alone is not only sufficient but, in
many cases, the most effective data source. Text-only
models, such as FastText without CNN, achieved the
highest scores in ROC AUC and F1 score, outper-
forming models based solely on images. This indi-
cates that textual descriptions of drawings capture the
variety of themes represented well, an aspect that ap-
pears to be more abstract and conceptual and may es-
cape purely visual evaluation.

The fact that images do not significantly improve
FLE prediction suggests that thematic categories are
more easily expressed and understood through lan-
guage than by observing the visual details of the
drawing.

In the prediction of elaboration (E), images proved
to be clearly superior to text. Models relying exclu-
sively on visual data (such as InceptionV3) achieved
better results in terms of MAE, RMSE, and R2 score,
indicating that the visual details of the drawing are
essential for assessing its level of elaboration. Text-
based models, or combinations of text and images,
were unable to effectively capture the visual nuances
related to the complexity of the drawing.

This finding suggests that for characteristics like
elaboration, which depend on the direct perception of
visual details, the text does not provide sufficient in-
formation and may introduce noise into the analysis.
Consequently, image analysis becomes crucial to ac-
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Table 4: Results Predicting Title Originality (T).

Embedding CNN ROC AUC Accuracy Recall Precision Specificity F1 score

- ResNet50 0,57 0,45 1,00 0,54 0,00 0,70
- InceptionV3 0,50 0,41 0,86 0,54 0,02 0,66
- EfficientNetB0 0,54 0,50 0,95 0,57 0,10 0,71
- Xception 0,62 0,61 0,59 0,78 0,47 0,67
BETO - 0,91 0,90 0,80 1,00 0,74 0,90
BETO ResNet50 0,83 0,83 0,73 0,94 0,68 0,82
BETO InceptionV3 0,78 0,83 0,93 0,63 0,26 0,75
BETO EfficientNetB0 0,79 0,64 0,93 0,64 0,31 0,76
BETO Xception 0,78 0,76 0,61 0,82 0,64 0,70
FastText - 0,87 0,80 0,73 0,73 0,65 0,73
FastText ResNet50 0,55 0,50 0,98 0,56 0,08 0,71
FastText InceptionV3 0,69 0,65 0,57 0,68 0,53 0,62
FastText EfficientNetB0 0,51 0,49 0,98 0,56 0,08 0,71
FastText Xception 0,73 0,74 0,66 0,92 0,61 0,77
Keras - 0,87 0,78 0,82 0,80 0,57 0,81
Keras ResNet50 0,48 0,45 1,00 0,54 0,00 0,70
Keras InceptionV3 0,65 0,60 0,66 0,70 0,42 0,68
Keras EfficientNetB0 0,52 0,47 1,00 0,55 0,02 0,71
Keras Xception 0,59 0,57 0,66 0,66 0,37 0,66

curately assess these characteristics.
The analysis of title creativity (T) showed that

models based on text are the most effective tool
for this task. Since title creativity is expressed ex-
clusively through language, text-based models like
BETO without CNN performed exceptionally well,
achieving a ROC AUC of 0.91 and an F1 score of
0.90. In contrast, models based solely on images were
ineffective, highlighting the irrelevance of visual data
for this prediction.

5 CONCLUSION

A key contribution of this research is the demonstra-
tion that text not only provides relevant information
but can, in some cases, be more informative than im-
ages in predicting certain aspects of creativity. In pre-
vious research, the focus has mainly been on images,
overlooking the informative potential of textual de-
scriptions. Our results reveal that:

• For features such as originality (O) and thematic
flexibility (FLE), text alone is a very valuable
source, and it may be even more suitable than pic-
tures for capturing abstract concepts.

• For title creativity (T), text is the only relevant
data source, as title creativity cannot be evaluated
through images.

• For elaboration (E), images remain the best op-
tion, as this aspect depends more on the direct per-

ception of visual details.
The combination of text and images only proved

advantageous in some cases, particularly for reduc-
ing false positives in the prediction of O. However,
in most cases, text alone was sufficient or even more
effective than images.

This study demonstrates that incorporating text as
a data source in the evaluation of creativity in draw-
ings provides significant value, especially in predict-
ing abstract characteristics such as originality and the-
matic flexibility. While images remain crucial for vi-
sual traits like elaboration, researchers should seri-
ously consider using text in future studies, as it offers
a complementary, and in some cases, more powerful
perspective for capturing creativity.
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