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Abstract: This study synthesizes the outcomes of land use changes obtained through the implementation of dynamic 
modeling by cellular automata across two metropolitan regions in Portugal and Brazil. The purpose is to 
analyze the primary findings acquired, considering the particularities of each nation and evaluate the 
potentialities of the used data. The study examined the metropolitan regions of MRRJ (Rio de Janeiro, Brazil) 
and AMP (Porto, Portugal). Modifications were implemented in the DinamicaEgo software to the 
fundamental data representing static and dynamic variables for each context. The findings revealed a 
substantial increase of urban areas in the MRRJ, and the modeling demonstrated its applicability across the 
two contexts, considering the requisite modifications for the data accessible in each country. 

1 INTRODUCTION 

Cellular models in urban modelling became implicit 
in early computer models of the 1960s, e.g., the work 
of Chapin and Weiss for North Carolina (Chapin and 
Weiss,1968) Waldo Tobler's model for Detroit in 
1970 (Tobler, 1970), and the model developed by 
Couclelis for Los Angeles in 1989 (Couclelis,1989).  

Cellular automata (CA) have emerged as the 
prevailing architectural design employed in spatial 
simulation models. Cellular automata, as defined by 
Stephen Wolfram, are mathematical representations 
of physical systems in which time and space are 
discrete (Wolfram, 1983). These representations take 
the form of a regular uniform grid, where each 
location contains a discrete variable. In accordance 
with a predetermined set of local rules and the values 
of the variables in their immediate vicinity at the 
previous time increment, the variables in each cell are 
updated simultaneously. CA models have the 
capability to emulate various concerns associated 
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with land use changes. They can be used to create 
self-modifiable models for high-resolution urban land 
use dynamics, prototypes to simulate land conversion 
via integrated Geographic Information Systems (GIS) 
(Clarke, et al 1997; White et al, 1997; Wu, 1998) and 
have numerous applications for simulating scenarios 
involving urban dynamics (Barredo et al, 2003; 
White, and Engelen, 1993). The use of dynamic 
models can support the definition of environmental 
public policies that involve the assessment of land use 
and land cover as a fundamental component to unders-
tand changes that may result from combined biophysi-
cal and socioeconomic factors, with both short-term 
and long-term impacts (Meyer and Turner, 1992).  

In this context, the research aimed to identify 
potential scenarios of land use and land cover change 
until the year 2050 in the Metropolitan Area of Porto 
(AMP) and the Metropolitan Region of Rio de Janeiro 
(MRRJ), specifically within the boundaries of 
urbanized territories, while observing changes 
between classes and specificities. 
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2 STUDY AREA 

The study area encompasses two Metropolitan 
Regions: Metropolitan Area of Porto (AMP) and the 
Metropolitan Region of Rio de Janeiro (MRRJ -
Figure 1). Although referred to by different 
acronyms—AMP for the Metropolitan Area of Porto 
in Portugal and MRRJ for the Metropolitan Region of 
Rio de Janeiro in Brazil—both regions fulfil 
analogous roles within their respective national 
contexts. In 2021, the Porto Metropolitan Area 
(AMP), composed of 17 municipalities, had a 
population of approximately 1,7 million inhabitants 
distributed across an area of 2,040 km². Meanwhile, 
the Rio de Janeiro Metropolitan Region (RMRJ), 
consisting of 22 municipalities, was home to around 
12 million inhabitants in an area of 6,700 km², with 
significantly higher population density due to the 
concentration of people in municipalities like Rio de 
Janeiro, São Gonçalo, and Duque de Caxias. These 
regions represent important urban hubs in their 
respective countries, facing distinct challenges in 
terms of planning and urban development. 

Each area functions as a logistical hub for regional 
planning, economic development, and the 
coordination of urban services. Both regions 
represent densely populated areas that support 
integrated infrastructure alongside public policy 
frameworks. This functional alignment underscores 
the significance of metropolitan regions as 
foundational elements in urban planning and 
governance in each country. 

 
Figure 1: Study area - Areas considered in the study for 
comparison purposes 

Situated in southeastern Brazil, the Metropolitan 
Region of Rio de Janeiro (MRRJ) is an extremely 
urbanized, multifaceted, and diverse region. This 
region, which includes the capital city, Rio de Janeiro, 
and significant neighbouring municipalities including 
São Goncalo, Duque de Caxias, and Niterói, is 
renowned for its geographical, historical, and 
economic importance. Based on a survey carried out 

in 2022 by the Brazilian Institute of Geography and 
Statistics (IBGE, 2022), the Metropolitan Region of 
Rio de Janeiro is the second most populous 
metropolitan area in Brazil, comprising 74% of the 
total population of the state of Rio de Janeiro, with an 
estimated 12 million inhabitants.  

The Metropolitan Area of Porto is the second 
largest in Portugal, encompassing 17 municipalities 
around the city of Porto. According to data from the 
Land Use and Occupation Map - COS2022 (Instituto 
Nacional de Estatística, 2022). 

The AMP has emerged as a strategic area for 
advancing mobility and sustainability projects, 
essential for the region's future. 

3 MATERIALS AND METHODS 

The CA model used in this work is implemented in 
the Dinamica EGO (Environment for Geoprocessing 
Objects) platform 7.4, a software developed by 
researchers from Federal University of Minas Gerais 
(UFMG). The methodology used is presented 
according to the scheme shown in Figure 2.  

 
Figure 2: Workflow (*WoE – Weights of Evidence). 

Simulation models utilize two types of 
explanatory variables, divided between Static and 
Dynamic. The former remains unchanged at each 
temporal step of the model, while the latter changes 
with each iteration based on the distance from the 
central axis being analyzed.  

The first step in the modeling process is 
parameterization using the Weight of Evidence 
method, following the Bayesian approach. This 
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involves assigning weights to different input 
variables based on their relevance to the specific 
problem.  

Historical transition matrices are calculated. The 
transition matrix describes a system that changes in 
discrete increments of time. In the Dinamica EGO 
platform, matrices are calculated using a Markovian 
model, which combines the Markov Chains technique 
with Cellular Automata. Dinamica EGO also employs 
Markov chains to determine the amount of change, as 
well as cellular automata to reproduce patterns of 
these changes from probability maps, which are 
calculated using the Weight of Evidence statistical 
method (Soares Filho et al, 2002). Cellular automata 
(CA)-based models have been widely used due to 
their ability to simulate dynamic spatial patterns. The 
choice of the CA-Markov model in this study is 
justified by its integration of Markov transition 
matrices with dynamic spatial modeling, enabling the 
capture of land use changes with high temporal and 
spatial granularity. 

For the desired period—a range of years—two 
types of matrices are generated: a global matrix, 
representing the transition rates for the entire training 
period, and a multistep matrix, which reflects annual 
changes. The global matrix aggregates all transitions 
across the specified period, while the multistep matrix 
allows for more granular modeling by representing 
changes on an annual basis. 

It is important to clarify which transitions are 
being modeled, as this directly influences the 
simulation outcomes. In DINAMICA, transitions are 
managed through two Cellular Automata (CA) 
algorithms: the Patcher, which simulates the 
aggregation of land patches, and the Expander, which 
models the expansion of existing areas. These 
mechanisms ensure that spatial patterns align with the 
observed dynamics, providing a robust framework for 
projecting future scenarios. 

In Dinamica EGO, a set of sub-regional functors 
is used to process the data separately in each sub-
region. In this model, transitions are simulated 
annually for each of the subdivisions, dividing a map 
into parts for separate data processing and then 
combining the results. This allows the modeler to 
define operations that should be applied only to 
specific sub-regions or different parameters and 
coefficients. The result is a model that respects the 
regional context. In both cases, the transitions of 
interest focus on changes to urban, vegetation, and 
cultivated areas. 

The dynamic variables considered in this study 
are exclusively related to land use and land cover in 
the years specified for each region: AMP and MRRJ. 

These variables reflect temporal changes that directly 
influence the projected scenarios and are updated in 
each iteration of the model. The static variables, on 
the other hand, remain constant throughout the 
modeling process and represent potential factors 
influencing the observed and projected land use 
changes. These variables include hydrography, 
transportation systems, and topography, which play a 
fundamental role in defining spatial patterns of urban 
expansion and enable the simulation of future 
scenarios. The dynamic variables include distances 
from existing urban areas, which are updated at each 
iteration of the model, while static variables, such as 
elevation and the hydrographic network, remain 
unchanged. Dinamica EGO uses Markov matrices to 
determine transition rates and spatial patterns based 
on weights of evidence calculated using the Bayesian 
method. 

In summary, the calibration was conducted using 
the Expander and Patcher functions, which simulate, 
respectively, the expansion of existing patches and 
the formation of new urban patches. To address the 
specificities of the study area, the model was 
regionalized, dividing the territory into subareas with 
distinct characteristics and adjusting parameters for 
each region. This process allowed for greater 
accuracy in annual simulations, respecting regional 
contexts and producing results tailored to the 
geographic complexity of each studied area. 
Validation was based on spatial similarity between 
simulated and observed maps from 2021 (RMRJ) and 
2019 (AMP), using fuzzy methods and moving 
windows. The simulation was regionalized to account 
for local characteristics of the territory, such as 
differences between rugged terrain areas and 
lowlands. The model annually simulates transitions, 
adjusting parameters to reflect local dynamics and 
generate accurate predictions of urban expansion. 

3.1 Metropolitan Area Porto – 
Portugal - Model 

The Metropolitan Area of Porto (AMP) was modeled 
utilizing the subsequent variables: land use and 
occupation, roads and railways, hydrography, 
elevation and slope.  

The elevation and slope values were derived using 
the USGS-provided NASADEM Digital Elevation 
Model (30m spatial resolution).  

At a 1:10,000 scale, the road network is an 
integral component of the National Motorway 
Network, while the railway network is an extension 
of the National Railway Network.  
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The hydrographic network is a 1:200,000 scale 
representation of the principal channels and rivers 
extracted from the Hydrography Network of 
Continental Portugal. Only the main rivers and 
channels were considered. While pertinent to the 
simulation process, this class is regarded as limiting 
in the modeling process for the expansion of the 
urbanized class.  

In the study, the Land Use and Occupation Map 
(COS) for 2015 and 2018 was considered for the 
preliminary analysis, focusing on the base period 
2015–2018. The primary categories analyzed were 
vegetated cover, agricultural regions, and urbanized 
areas. To project future scenarios, the model 
incorporated simulations for specific years: 2030, 
2040, and 2050. A cross-tabulation analysis was 
conducted using the converted matrix dataset, 
maintaining the same spatial resolution to assess 
changes over time and validate the model's outputs. 

3.2 Metropolitan Region in Rio De 
Janeiro/Brasil - Model 

In MRRJ, the initial and final maps come from the 
time series provided by Mapbiomas (collection 7.1), 
including the years 2016 and 2021, that is, a period of 
05 years, con-sidered sufficient to identify areas of 
urban expansion.  

The MapBiomas 7.1 collection includes annual 
land use and land cover data for the period 1985 to 
2021. The secondary data taken from the platform 
have some spatial inconsistencies in the thematic 
classifications, often due to noise and main-ly in 
classes and transversal themes, e.g., agriculture and 
pasture. Currently, there are 30 classes available, 
from macro-classes 1 - Forest; 2 - Non-Forest Natural 
Formation; 3 - Farming; 4. Non vegetated area; 5 – 
Water. The static variables were obtained from 
official Brazilian agencies (hydrography, road 
system, and topography). 

The first stage of adjusting the Mapbiomas data 
consists of correcting incorrect transitions that 
normally occur in the form of isolat-ed pixels and 
have no correspondence in the real world, for 
example, a pixel classified as urban infrastructure 
should not transition to the water class.  

The established rule was that no pixel originally 
classified as urban infrastructure (class 24) - Areas 
with significant density of buildings and roads - 
should transition to other classes. After the correc-
tion, the other subclasses other than urban 
infrastructure were converted to the “Others” class, 
maintaining binary use maps.  

 Finally, the last phase involves data calibration, 
validation, and scenario observation. The maximum 
value of the Fuzzy similarity index is considered, 
using exponential decay for window sizes of 3x3, 
5x5, 7x7, 9x9, and 11x11 as a validation method. The 
index varies from 0 to 1, where 1 indicates perfect 
spatial agreement.  

Kernel Density Estimation was applied in the 
study to enhance the identification of change-prone 
areas.  

4 RESULTS 

Regarding the parameterization of the transition 
algorithms, Expander and Patcher, the model 
achieved better validation results with a higher 
percentage assigned to the Expander algorithm: 
0.92% (RMRJ) and 0.87% (AMRJ). 

Considering the threshold mentioned in (Soares 
Filho et al, 2002), where values close to 0.6 in the 
similarity index with exponential decay indicate 
adequate spatial congruence between simulated and 
real maps, it is reasonable to conclude that, in terms 
of suitable similarity, the period from 2015 to 2018 
(AMP) and from 2016 to 2021 (MRRJ) showed 
satisfactory adjustments, especially in the 3x3 
window. 

4.1 Metropolitan Region in Rio De 
Janeiro/Brasil 

To Metropolitan Region of Rio de Janeiro Based on 
the model, the following areas are identified as 
particularly promising for urban expansion in 2050:  
Situated west of the Capital, on the boundary between 
the Santa Cruz and Guaratiba communities. 
Additional noteworthy localities within the Capital 
comprise Campo Grande, Vila Militar, Campo dos 
Afonsos, Vargem Grande, and Recreio dos 
Bandeirantes. These are areas with available spaces 
for urban occupation and increased construction. 
Furthermore, the Baixada Fluminense encompasses 
municipalities Duque de Caxias, Magé, Nova Iguacu, 
and Seropedica, all of which exhibit substantial 
prospects for development.  

In the East Fluminense, Maricá, Niterói, and São 
Goncalo are the municipalities that are undergoing 
the most significant urban development. In the 
Mountain subregion, Petrópolis municipality 
observes noteworthy urban expansion in the vicinity 
of the central area, which encompasses the Vila 
Militar and Valparaíso neighborhoods. In the 
southern region, notable residential areas include 
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Independência and Quitandinha. Notable are the 
regions of Mosela to the west and Bonsucesso and 
Itaipava to the north. The aforementioned regions 
symbolize the anticipated epicenters of urban growth 
as predicted by the model for the year 2050 (Figure 3).  

 
Figure 3: Urbanization by subregion through 2050, 
represented graphically by absolute and relative values. 

Kernel density estimation (Figure 4) was 
employed to depict urban expansion in 2050. This 
interpolator enables the determination of the 
magnitude of a particular occurrence throughout an 
entire region (Freire, 2015). Druck et al, (2004) 
describe how the Kernel density estimator creates a 
surface whose value is proportional to the sample 
intensity per unit area and fits a two-dimensional 
function to the considered events in order to estimate 
the point intensity of the process across the entire 
study region. Kernel Density estimates the intensity 
of events (in this case, urbanization) per unit of area, 
generating a continuous surface that highlights 
regions with higher concentrations of change. This 
technique complemented the analysis based on 
transition matrices, enabling the mapping of regions 
with significant urban change. The use of this 
methodology was essential due to the high variability 
in land use in the MRRJ, providing a more detailed 
 

 
Figure 4: Urban Expansion Scenario for 2050 in MRRJ. 

view of urbanization hotspots and enhancing future 
scenarios for urban planning and environmental 
management. 

Municipalities outside the capital (Rio de Janeiro) 
highlight a current trend of urban expansion and 
demand for housing and new developments. 

4.2 Metropolitan Area Porto - Portugal 

The Figure 5 highlights the results obtained after 
modeling for the years 2030, 2040, and 2050 with a 
detailed analysis of the evolution. 

 

 
Figure 5: Future Landuse Scenarios for AMP in 2030, 2040, 
and 2050. 

A 2.66 percent increase in urbanized territories is 
observed across the entire study area from 2030 to 
2040, and a 2.55 percent increase from 2040 to 2050. 
The projected increases for agricultural regions are 
1.13% and 1.08%, correspondingly. On the contrary, 
a decline in forested regions is noted, fluctuating by 
approximately 1.8% during both time periods.  

The Figure 6 delineates the regions where 
anticipated alterations occur during the examined time 
frames. There is a total of 2274 polygons. From 2023 
to 2040, there is a projected total of 1097 regions 
undergoing changes, namely involving the conversion 
of brush areas into urbanized zones and the 
transformation of brush areas into agricultural land. 

2030   2040   

2050   
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Figure 6: Regions with alterations in landuse during 2023 – 
2040 and 2040 and 2050. 

There is a significant concentration of expansion 
near the cities of Vila Nova de Gaia, Matosinhos, and 
Gondomar, which are already densely urbanized 
areas close to the metropolitan center of Porto. This 
growth suggests a continuous trend of urbanization in 
peri-urban areas and an expansion into zones with 
existing infrastructure. 

In the period from 2040 to 2050, growth appears 
more dispersed, with new urbanization points 
emerging in regions such as Paredes, Santo Tirso, and 
Oliveira de Azeméis, indicating a possible gradual 
decentralization of the observed expansion. This 
pattern suggests a potential saturation of central areas 
and a search for new development zones on the 
periphery of the AMP, leading to a more balanced 
growth between municipalities in the northern and 
southern parts of the Metropolitan Area. These data 
highlight the need for integrated urban planning to 
meet the growing demands for infrastructure and 
services in these emerging regions. 

Figure 7 highlights the projection for the Serra do 
Monte area (Northern Region of the AMP), with three 
representations: the 2050 projection showing 
urbanized area growth; a 2023 GE image as a 

reference; and a combination of both, indicating 
urban area densification and anticipated changes. 

 

 
Figure 7: Changes in 2050 for Serra do Monte, Northern 
Region of the AMP. 

Figure 8 demonstrates the predominant vegetation 
scenario near the A28 highway, which may be 
impacted by increased urban construction by 2050. 
The imagem also highlights an on-site view of the 
area. The red arrow indicates the direction of the 
photo's viewpoint. 

 
 

 

 
Figure 8: Changes in 2050 for Póvoa de Varzim. 

Vila Nova de Gaia, located south of Porto, is 
expected to expand residential growth in areas with 
exposed soil and available land, as highlighted in 
Figure 9.  

The results presented for the Metropolitan 
Regions of Rio de Janeiro (RMRJ) and the 
Metropolitan Area of Porto offer distinct perspectives 
regarding urban expansion projections. In the RMRJ, 
there is a notable focus on specific expansion areas, 
particularly in sub-regions with significant growth, 
such as the Baixada Fluminense and the East 
Fluminense. In the case of the Metropolitan Area of 
Porto, direct changes in land use stand out, detailing 
transformations in agriculture and urbanized 
territories. The conversion of areas from scrubland 
and agriculture into urbanized territories is 
emphasized. In both contexts, the results converge by  
 

A A 

2030   2050   2023   

2050   GE 2023   2050+GE 
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Figure 9: Changes in 2050 for Vila Nova de Gaia. 

highlighting challenges related to urban growth, such 
as inadequate infrastructure and environmental 
impacts, underscoring the need for sustainable public 
policies and careful urban planning in both regions. 

5 CONCLUSIONS 

This study presents a synthesis of the outcomes 
achieved by employing cellular automata to perform 
dynamic modeling in multiple metropolitan regions 
of Portugal and Brazil. The research centers on the 
primary discoveries, taking into account the specific 
characteristics of each nation and the data utilized, 
while analyzing the metropolitan areas of Rio de 
Janeiro (RMRJ) and Porto (AMP). The DinamicaEgo 
software was modified with respect to the 
fundamental data that represented static and dynamic 
variables in each respective context. The findings 
unveiled a significant rise in RMRJ, thereby 
illustrating the model's versatility in different 
settings, contingent upon the data requirements of 
each country. 

The findings pertaining to urban expansion 
projections for the Metropolitan Region of Rio de 
Janeiro (RMRJ) and the Metropolitan Area of Porto 
(AMP) present unique and discernible viewpoints. 
RMRJ places considerable emphasis on particular 
expansion zones, particularly in rapidly developing 
subregions like Baixada Fluminense and East 
Fluminense. Particular attention is paid to explicit 
alterations in land use within AMP, which pertain to 

agricultural and urbanized regions. Both contexts 
emphasis the transformation of agricultural and 
scrubland regions into urbanized ones. The findings 
converge in that they emphasize the environmental 
impacts and insufficient infrastructure associated 
with urban expansion, thereby emphasizing the 
necessity for sustainable public policies and 
meticulous urban planning in both areas. 

In future stages of the research, new variables are 
intended to be included in the modeling process. The 
boundaries of protected areas in the AMP may improve 
the delineation of urban areas for future decades. 
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