
Grammar Verification for Students:
A Grammar Design Recipe with Verification Steps

Marco T. Morazán
Computer Science Department, Seton Hall University, 400 South Orange Ave, South Orange, NJ, U.S.A.

Keywords: Context-Free Grammars, Grammar Design, Grammar Correctness, Formal Languages Education.

Abstract: Formal Languages and Automata Theory courses introduce students to grammars as formal systems to gener-
ate words in a language. Although grammars appear conceptually simple, students struggle to develop them
given that production rules are nondeterministically applied, which leads to uncertainty about grammar cor-
rectness. This struggle may be mitigated by offering students a framework for grammar design. This article
advocates that such a framework may be provided using a design recipe in a programming-based approach to
Formal Languages and Automata Theory. It puts forth a novel initiative to include grammar verification in
such courses. The proposed approach is outlined and illustrated using an extended example. Reflections on
expectations and on why the initiative can be successful are presented.

1 INTRODUCTION

In most Formal Languages and Automata Theory
(FLAT) textbooks and, therefore, courses, students are
exposed to regular (rg) and/or context-free grammars
(cfg) (e.g., (Vázquez and Sáiz, 2022; Hopcroft et al.,
2006; Linz, 2011; Martin, 2003; Morazán, 2024;
Rich, 2019; Sipser, 2013; Sudkamp, 2006)). As any
FLAT instructor has witnessed, many students strug-
gle developing grammars. Sipser, for example, states
that context-free grammars are even trickier to con-
struct than finite automata (Sipser, 2013). To help
students, Sipser outlines techniques to help students
construct grammars that include divide-and-conquer
for languages that are the union of simpler languages,
a transformation algorithm for languages that are reg-
ular (i.e., build a dfa and transform the dfa to a
grammar), and the use of recursion (e.g., generate
the beginning and ending terminal symbols of a word
and recursively generate the middle symbols). Rich
(Rich, 2019), in contrast, offers 3 strategies to develop
context-free grammars: generate related word regions
in tandem (e.g., the beginning and the end), generate
unrelated regions using divide-and-conquer, and use
recursion. Neither Sipser nor Rich, however, offer a
systematic methodology to develop grammars. Most
textbooks, in fact, expect students to learn by example
with no attention to systematic design principles nor
to grammar correctness.

A new trend in FLAT education takes a design-

and programming-based approach (Morazán, 2024).
In this approach, students are presented with a de-
sign recipe for grammars and a domain-specific lan-
guage, FSM (Morazán and Antunez, 2014), embedded
in Racket (Flatt et al., 2024), to easily implement
their designs. In addition to directly constructing rgs
and cfgs, students can also employ unit testing to
validate grammars and can implement the algorithms
they develop as part of their constructive proofs. An
undeniable benefit of this approach is that FSM ap-
peals to Computer Science students trained to write
programs and provides immediate feedback on gram-
mar implementation, such timely feedback has proven
useful in other areas of Computer Science when ex-
posing students for the first time to a body of work
(Race, 2001; Venables and Haywood, 2003).

A design recipe is a series of steps, each with a
specific outcome, that guides students from a prob-
lem description to a well-designed and validated pro-
gram. This approach was first pioneered by Felleisen
et al. for a first introduction to programming course
(Felleisen et al., 2018) and later expanded by the
author to the first two introduction to programming
courses (commonly referred to in the USA as CS1 and
CS2) (Morazán, 2022a; Morazán, 2022b).

The initiative presented in this article builds on
previous work done to integrate design and program-
ming into FLAT education (Morazán, 2024), which in-
cludes design recipes for building state machines and
for building grammars. There is, however, a sharp

662
Morazán, M. T.
Grammar Verification for Students: A Grammar Design Recipe with Verification Steps.
DOI: 10.5220/0013216500003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 662-669
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

contrast between these two design recipes. The for-
mer includes steps for machine verification whilst the
latter does not include verification steps for gram-
mars. This article proposes that grammar verification
ought to also be part of FLAT courses just as machine
verification. This is appropriate in FLAT courses, be-
cause of the emphasis placed on proving construction
algorithms correct. In essence, a grammar defines a
program to construct words in a language. As such,
it ought to be verified much like students verify pro-
grams when studying Discrete Mathematics (Akerkar
and Akerkar, 2007) or Software Engineering (Blan-
chard et al., 2024; Huisman and Wijs, 2023). To this
end, the design recipe for grammars is extended with
verification steps. These new steps guide students to
establish grammar correctness.

The article is organized as follows. Section 2
briefly presents grammar design using FSM. Section 3
discusses the proposed new verification steps to help
students establish grammar correctness. Section 4 of-
fers reflections on expectations and on why the pro-
posed initiative is likely to be well-received by stu-
dents. The article ends with concluding remarks in
Section 5.

2 GRAMMAR DESIGN USING
FSM

2.1 Constructors and Observers

FSM provides constructors to build rgs and cfgs:

make-rg: N T R S → rg
make-cfg: N T R S → cfg

N denotes the set of nonterminal symbols (i.e., syntac-
tic categories). T denotes the set of terminal symbols
(i.e., the input alphabet). R denotes the set of produc-
tion rules. S denotes the starting nonterminal. Each
production rule has a left and righthand side. The left
hand side always consists of a single element in N. For
an rg, the righthand consists of one or two elements.
Only S may generate, ε, the empty word. Any non-
terminal may generate a terminal symbol or a termi-
nal symbol and a nonterminal symbol. For a cfg, the
righthand side consists of an arbitrary number of sym-
bols in {N ∪ T ∪ {ε}}+. We denote the language
generated by a grammar G as L(G).

There is a generic observer to extract each gram-
mar component. For instance, grammar-rules, given
a grammar, returns the grammar’s production rules.
In addition, grammar-derive, given a grammar and
a word, returns the word derivation if the word is in
the grammar’s language. Otherwise, it returns a string

1. Pick a name for the grammar and specify the al-
phabet

2. Define each syntactic category and associate each
with a nonterminal clearly specifying the starting
nonterminal

3. Develop the production rules

4. Write unit tests

5. Implement the grammar

6. Run the tests and redesign if necessary

Figure 1: The Design Recipe for Grammars.

indicating that the word is not in the grammar’s lan-
guage.

2.2 The Design Recipe for Grammars

The design recipe for grammars is displayed in Fig-
ure 1 (Morazán, 2024). It has 6 steps and each re-
quires a concrete outcome to advance grammar con-
struction. Step 1 requires specifying the name for
the grammar and its input alphabet. Step 2 requires
the definition of syntactic categories, the mapping
of these syntactic categories to nonterminal symbols,
and the clear identification of the starting nontermi-
nal. The definition of syntactic categories requires
identifying what needs to be generated by each.

Step 3 requires specifying the production rules.
These rules are designed based on what is generated
by each syntactic category as defined in Step 2. Stu-
dents must reason abstractly in terms of the mean-
ing of each syntactic category and not in terms of in-
put alphabet elements. Step 4 requires writing unit
tests. For rgs, tests must include words that are in
and are not in the grammar’s language. For cfgs,
tests must include words in the language. Words
that are not in the language must be tested with cau-
tion, given that some derivations may be infinite. The
unit tests are written using the syntax provided by
RackUnit (Welsh and Culpepper, 2024). Tests writ-
ten for w/∈L(G) determine that the string returned by
grammar-derive corresponds to a string indicating
that w is not in L(G). Tests written for w∈L(G) deter-
mine that the last element of the derivation returned
by grammar-derive corresponds to w.

Step 5 requires implementing the grammar based
on the results for the previous steps. Finally, Step 6
requires running the tests and redesigning if errors are
detected or if tests fail. We note that debugging is
performed in the context of design. That is, students
are encouraged to revisit the steps of the design recipe
to refine their programs.

Grammar Verification for Students: A Grammar Design Recipe with Verification Steps

663

1 ;; Syntactic Category Documentation
2 ;; S: generates words with number of b > number of a, starting nonterminal
3 ;; A: generates words with number of b ≥ number of a
4 (define numb>numa (make-cfg '(S A)
5 (A → ε) (A → bA)
6 (A → AbAaA) (A → AaAbA))
7

8 (check-equal? (grammar-derive numb>numa '(a b)) "(a b) is not in L(G).")
9 (check-equal? (grammar-derive numb>numa '(a b a)) "(a b a) is not in L(G).")

10 (check-equal? (grammar-derive numb>numa '(a a a a a)) "(a a a a a) is not in L(G).")
11 (check-equal? (last (grammar-derive numb>numa '(b b b))) 'bbb)
12 (check-equal? (last (grammar-derive numb>numa '(b b a b a a b))) 'bbabaab)
13 (check-equal? (last (grammar-derive numb>numa '(a a a b b b b))) 'aaabbbb)

Figure 2: A cfg for L = {w|w∈(a b)∗ ∧ w has more bs than as}.

2.3 Illustrative Example

To illustrate the result of applying the steps of the de-
sign recipe for grammars, consider implementing a
grammar over the alphabet {a, b} for the language
containing all words with more bs than as. A solu-
tion is displayed in Figure 2. The results for Step 1,
name and alphabet, are part of the implementation as
displayed, respectively, on lines 4 and 5.

To document the syntactic categories for Step 2,
students must think about what needs to be generated.
The starting nonterminal, S, must generate words that
have more bs than as. This is an invariant prop-
erty that any production rule for S must guarantee.
This means that S may generate a b with words on
either side that have a number of bs that is greater
than or equal to the number of as. Students observe
that the words on either side of S define a differ-
ent (sub)language and, therefore, needs to be repre-
sented with, A, a new syntactic category. The invari-
ant property, generate words with a number of bs that
is greater than or equal to the number of as, must
be guaranteed by any production rule for A. Words in
L(A) are generated as follows:

• generate ε

• generate an a and a b in any order with words in
L(A) before and after both of them

• generate an arbitrary number of bs
Students observe that no new (sub)languages need to
be generated and, therefore, only two syntactic cate-
gories are needed. The results for this step are dis-
played on lines 1–3 in Figure 2.

The production rules to satisfy Step 3 are devel-
oped based on the results from Step 2. S generates
words with more bs than as using the rules displayed
on line 6 in Figure 2. A generates word with a number
of bs greater than or equal to the number of as using
the rules displayed on lines 7–8.

A sample of unit tests for words both in and not in
L are developed to satisfy step 4 of the design recipe.

7 For each syntactic category design and implement an
invariant predicate to determine if a given word satis-
fies the role of the syntactic category

8 For words in L(G) prove that the invariant predicates
hold for every derivation step.

9 Prove that L = L(G)

Figure 3: Verification Steps for Grammars

These are displayed on lines 11–16 in Figure 2. The
FSM code in Figure 2 illustrates how Step 5 is satisfied.
Finally, Step 6 is satisfied by running the code and
observing that no errors are thrown and that no tests
fail.

3 GRAMMAR VERIFICATION
STEPS

3.1 Proposed Expanded Design Recipe

The design recipe for grammars provides students
with a framework for grammar implementation and
validation. In addition, it provides a lingua franca
for students and instructors to discuss grammar de-
sign. This design- and programming-based approach
makes Automata Theory more relevant to Computer
Science students and provides instructors with a
framework to understand/grade grammars developed
by students. The design recipe for grammars does
not, however, address guiding students through the
process of verification, which is at the heart of FLAT.
This means that students are left unsure about the cor-
rectness of their implementation. Therefore, design
recipe steps for grammars verification are proposed.

The proposed grammar verification steps, 7–9, are
displayed in Figure 3. Step 7 asks students to develop
an invariant predicate for each syntactic category sat-
isfying the following signature:

word → Boolean

CSEDU 2025 - 17th International Conference on Computer Supported Education

664

1 ;; word → Boolean
2 ;; Purpose: Determine if the given word ought to be

generated by S
3 (define (S-INV w)
4 (let [(as (filter (λ (s) (eq? s 'a)) w))
5 (bs (filter (λ (s) (eq? s 'b)) w))

]
6 (> (length bs) (length as))))
7

8 (check-equal? (S-INV '()) #f)
9 (check-equal? (S-INV '(a b a)) #f)

10 (check-equal? (S-INV '(a a a a)) #f)
11 (check-equal? (S-INV '(b)) #t)
12 (check-equal? (S-INV '(a a a b b b b)) #t)
13 (check-equal? (S-INV '(b b a a b a b)) #t)
14

15 ;; word → Boolean
16 ;; Purpose: Determine if the given word ought to be

generated by A
17 (define (A-INV w)
18 (let [(as (filter (λ (s) (eq? s 'a)) w))
19 (bs (filter (λ (s) (eq? s 'b)) w))

]
20 (>= (length bs) (length as))))
21

22 (check-equal? (A-INV '(a a b)) #f)
23 (check-equal? (A-INV '(a a a a)) #f)
24 (check-equal? (A-INV '(b b a a a b a)) #f)
25 (check-equal? (A-INV '()) #t)
26 (check-equal? (A-INV '(b)) #t)
27 (check-equal? (A-INV '(a a b a b b)) #t)

Figure 4: Invariant predicates for numb>numa.

Each predicate determines if the given word satis-
fies the conditions specified in Step 2 of the design
recipe for its syntactic category. Step 8 asks students
to prove that the invariant predicates hold for each
derivation step. This is done by induction on the num-
ber of derivation steps. Step 9 ask students to prove
that the language of the grammar is correct. This is
achieved by building on the proof developed for Step
8. That is, students assume that the invariant predi-
cates for the nonterminals in the righthand side of a
production rule hold and show that the use of the rule
means that the invariant predicate for the nonterminal
on the left hand side of the rule holds.

3.2 Illustrative Example

To illustrate the development of answers for the new
steps of the proposed expanded designed recipe, we
shall continue with the design started in Section 2.3.
To satisfy Step 7, students are expected to write an
invariant predicate for, S and A, the grammar’s two
syntactic categories. For both predicates, the as and
the bs of the given word may be extracted. For S,
the length of the bs must be greater than the length

of the as. For A, the length of the bs must be greater
than or equal to the length of the as. A sample im-
plementation of the results for this step are displayed
in Figure 4. Observe that students are expected to de-
sign the predicates. Among other things, this means
that each predicate must have a signature, a purpose
statement, and unit tests using words that ought and
that ought not be generated by the syntactic category.

For Step 8, the proof that invariant predicates hold
for any derivation is done by induction on the height
of a derivation tree for an arbitrary word w. A sam-
ple proof that students are expected to produce is dis-
played in Figure 5. The minimum height is 1, which
is always the base case and means that any produc-
tion rule used must use the starting nonterminal. For
numb>numa, this means the only possible derivation
tree is generated using S → b. An argument must
be made that the generated word satisfies S-INV. To
establish this, the righthand side of each rule is ana-
lyzed to establish that the generated word has more
bs than as. For the inductive step, students must ana-
lyze any rule that may be used after the first produc-
tion rule and establish that the generated word satis-
fies the invariant predicate for the nonterminal on the
left hand side of the used production rule. Once again,
to establish this students analyze the righthand side of
the production like done for the base case. The de-
tailed arguments are found in Figure 5. The reader can
appreciate that the induction is not beyond the grasp
of an advanced undergraduate Computer Science stu-
dent that has taken an introduction to Discrete Math-
ematics course.

For Step 9, we denote the language targeted as
L, the constructed grammar as G, and the language
for the constructed grammar as L(G). The proof for
grammar correctness builds on the proof in Step 8. It
is divided into two lemmas. The first establishes that,
for an arbitrary word, w∈L if and only if w∈L(G). The
second establishes that, for an arbitrary word, w/∈L if
and only if w/∈L(G). A sample proof students are ex-
pected to develop is displayed in Figure 6. We note
that proving that predicate invariants always hold sim-
plifies the argument for grammar correctness. Stu-
dents build an argument based on invariant predicates
holding after every derivation step. Once again, the
reader can appreciate that the proof is not beyond the
grasp of an advanced undergraduate Computer Sci-
ence student.

4 REFLECTIONS

The primary expectation for the proposed initiative
to include grammar verification in FLAT education is

Grammar Verification for Students: A Grammar Design Recipe with Verification Steps

665

Theorem 1. For numb>numa invariant predicates hold.

Proof. Base case: n = 1.
If a single rule is used, it must be (S → b).
This rule generates the word b, which is a word that has more bs than as. Thus, S-INV holds.

Inductive Step:
Assume: State invariant predicates hold for n=k. Show: State invariant predicates hold for n=k+1.
n=k+1 means that any rule other than (S → b) is used. We establish that invariant predicates hold for each:

(S → AbA)
The generated word is obtained by concatenating a word with |b| ≥ |a|, the word b, and a word with |b| ≥ |a|.
The generated word, therefore, has at least one more b than as. Thus, S-INV holds.

(A → ε)
The generated empty word has an equal number of as and bs. Thus, A-INV holds.

(A → AbAaA)
The generate word is obtained by concatenating a word with |b| ≥ |a|, the word b, a word with |b| ≥ |a|, the
word a, and a word with |b| ≥ |a|. The generated word, therefore, has |b| ≥ |a|. Thus, A-INV holds.

(A → AaAbA)
The generate word is obtained by concatenating a word with |b| ≥ |a|, the word a, a word with |b| ≥ |a|, the word
b, and a word with |b| ≥ |a|. The generated word, therefore, has |b| ≥ |a|. Thus, A-INV holds.

(A → bA)
The generate word is obtained by concatenating the word b and a word with |b| ≥ |a|. The generated word,
therefore, has |b| > |a|. Thus, A-INV holds.

Figure 5: Proof for invariant predicates.

to improve student understanding. This better under-
standing is to be evidenced in at least two ways. The
first involves the development of predicate invariants.
Such development is evidence that students have rea-
soned carefully about what a syntactic category repre-
sents and understand their formal role enough to for-
mulate a validation predicate. The predicates students
developed are not intended to statically reflect their
understanding. Students will also be able to provide
them as input to a dynamic visualization tool to simu-
late the construction of the derivation tree for a given
word generated by the grammar. The visualization
tool shall indicate for each derivation step, using node
coloring, if the invariant for the expanded nonterminal
holds. In this manner, students will be able to debug
their grammars when words not in the target language
are generated by a grammar.

The second involves the development of a correct-
ness proof. Such a development reflects that students
understand the relationship between syntactic cate-
gories. In the vernacular, we can say that they under-

stand how the pieces of the puzzle fit together. Such a
development is evidence that students understand the
derivation process. An additional benefit is that such
a development further hones their proof-development
skills. The development of these skills are usually not
emphasized enough in undergraduate Computer Sci-
ence education and grammar development in a FLAT
course presents a perfect opportunity to do so.

It is well-known that mental resistance to formal
methods (i.e., proofs) exists (Gries, 1987; Zingaro,
2008). A natural question to ask is: Why do we be-
lieve we can be successful with the proposed initia-
tive? Indeed, this is an important question that cannot
be fully answered until the initiative is deployed in
the classroom and student perceptions are measured.
Nonetheless, we have reason to believe that the ini-
tiative is likely to be successful. This cautious opti-
mism is based on data collected from two US-based
universities, Seton Hall University (SHU) and Worces-
ter Polytechnic Institute (WPI), using the design-based
methodology (Morazán, 2024) to teach their FLAT

CSEDU 2025 - 17th International Conference on Computer Supported Education

666

Lemma 1. w∈L ⇔ w∈L(numb>numa).

Proof.
(⇒) Assume w∈L.
This means that w has |b| > |a|. Given that the production rules can generate more bs than as in any order, there
is a sequence of derivation steps whose yield is w. Thus, w∈L(numb>numa).

(⇐) Assume w∈L(numb>numa).
Given that predicate invariants always hold, this means that w has |b| > |a|. Thus, w∈L.

Lemma 2. w/∈L ⇔ w/∈L(numb>numa).

Proof. (⇒) Assume w/∈L.
This means that w has |a| ≥ |b|. Given that predicate invariants always hold, this means that S cannot generate w.
Thus, w/∈L(numb>numa).

(⇐) Assume w/∈L(numb>numa)
This means that S does not generate w. Given that the grammar can generate word elements in any order and that
predicate invariants always hold, w must have |a| ≥ |b|. Thus, w/∈L.

Theorem 2. L = L(numb>numa).

Proof. The proof follows from Figures 6 to 6.
Figure 6: Proof for L = L(numb>numa).

courses. In these courses, students employed a de-
sign recipe for state machines that includes verifica-
tion steps similar to the ones proposed in this article.
That is, students wrote proofs for state predicate in-
variants holding and for machine correctness.

The two courses enrolled a total of 106 students,
11 at SHU and 95 at WPI. A total of 53 students vol-
unteered to participate in the survey, 10 from SHU and
43 from WPI, making the overall response rate among
registered students 50% (the response rate among reg-
istered students is 91% at SHU and 45% at WPI). The
day the survey was administered, a total of 43 stu-
dents attended class at WPI (31 in-person and 12 re-
motely) and 10 students attended class at SHU (all in-
person). This attendance rate is typical for both in-
stitutions. The responses, therefore, reflect the per-
ceptions of students that regularly attend class and
not the perceptions of all students registered for these
courses. Among the respondents, 14 (26%) self iden-
tified as female, 36 (68%) self identified as male, and
the remaining 3 (6%) self identified as: 1 nonbinary,
1 agender, and 1 declined to respond. Finally, stu-
dents at both institutions received neither payment nor
benefits for participating in the survey. Using a Lik-
ert scale (Likert, 1932) to respond, 1 (Strongly Dis-
agree) to 5 (Strongly Agree), with 3 as a neutral re-
sponse, these students were presented with the fol-
lowing statements related to proofs:

Q1: I feel empowered by knowing how to
reason and write proofs about formal
languages.

Q2: Writing programs in FSM helped me
develop constructive proofs.

The distribution of responses is displayed in Figure 7.
For Q1, we observe that 70% of respondents tend
not to disagree with the statement (responses 3–5).
For Q2, we observe that 63% of respondents tend
not to disagree with the statement (responses 3–5).
These results are very encouraging and indicate that
the design- and programming-based approach used is
making inroads in dismantling the mental resistance
to formal methods. The success achieved with ma-
chine verification is the basis for our cautious opti-
mism regarding the success of the proposed initiative.

5 CONCLUDING REMARKS

This articles presents a novel initiative to include
grammar verification in Formal Languages and Au-
tomata Theory education. The design and devel-
opment process is illustrated using a programming-
based approach that requires students to document
the role of their syntactic categories, to develop in-
variant predicates based on these roles, and to pro-
vide a proof of grammar correctness. As the reader
can appreciate, none of these requirements are beyond
the abilities of an advanced undergraduate Computer

Grammar Verification for Students: A Grammar Design Recipe with Verification Steps

667

1 2 3 4 5

0.1

0.2

0.3

0.11

0.18

0.34

0.21

0.15
0.18 0.18 0.17

0.23 0.23

Score from 1 (Strongly Disagree) to 5 (Strongly Agree)

Pr
op

or
tio

n
of

R
es

po
nd

en
ts

Q1 Q2

Figure 7: Empirical data on machine proofs.

Science student. Although the proposed initiative is
based on a programming-based approach to Formal
Languages and Automata Theory, the design steps are
transferable to courses still using a pencil-and-paper
approach. That is, grammar design is not restricted to
programming-based courses.

We are cautiously optimistic that the proposed
initiative can be successful for two reasons. The
first, as mentioned above, is that none of the ver-
ification steps are beyond an advanced undergradu-
ate student that has taken an introduction to Discrete
Mathematics course. The second, is that classroom
work done with verification of state machines has
been successful and well-received by students. To-
gether, these reasons suggests that any Formal Lan-
guages and Automata Theory instructor can success-
fully make grammar verification interesting and palat-
able to Computer Science students.

REFERENCES
Akerkar, R. and Akerkar, R. (2007). Discrete Mathematics.

Pearson Education India.
Blanchard, A., Marché, C., and Prévosto, V. (2024). For-

mally Expressing what a Program Should Do: the
ACSL Language. In Kosmatov, N. and Signoles, J.,
editors, Guide to Software Verification with Frama-
C - Core Components, Usages, and Applications.
Springer.

Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi,
S. (2018). How to Design Programs: An Introduction
to Programming and Computing. MIT Press, Cam-
bridge, MA, USA, Second edition.

Flatt, M., Findler, R. B., and PLT (2024). The Racket Ref-
erence. PLT. Last accessed: June 2024.

Gries, D. (1987). The Science of Programming. Springer-
Verlag, Berlin, Heidelberg, 1st edition.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006). In-
troduction to Automata Theory, Languages, and Com-
putation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., USA.

Huisman, M. and Wijs, A. (2023). Concise Guide to
Software Verification - From Model Checking to An-
notation Checking, 2. Texts in Computer Science.
Springer, Cham, Switzerland, First edition.

Likert, R. (1932). A Technique for the Measurement of
Attitudes. Archives of Psychology, 140:1–55.

Linz, P. (2011). An Introduction to Formal Languages and
Automata. Jones and Bartlett Publishers, Inc., USA,
Fifth edition.

Martin, J. C. (2003). Introduction to Languages and the
Theory of Computation. McGraw-Hill, Inc., New
York, NY, USA, 3 edition.

Morazán, M. T. (2022a). Animated Problem Solving - An
Introduction to Program Design Using Video Game
Development. Texts in Computer Science. Springer,
First edition.

Morazán, M. T. (2022b). Animated Program Design - In-
termediate Program Design Using Video Game Devel-
opment. Texts in Computer Science. Springer, Cham,
Switzerland, First edition.

Morazán, M. T. (2024). Programming-Based Formal Lan-
guages and Automata Theory - Design, Implement,
Validate, and Prove. Texts in Computer Science.
Springer, Cham, Switzerland, First edition.

Morazán, M. T. and Antunez, R. (2014). Functional Au-
tomata - Formal Languages for Computer Science
Students. In Caldwell, J. L., Hölzenspies, P. K. F.,
and Achten, P., editors, Proceedings 3rd International
Workshop on Trends in Functional Programming in
Education, TFPIE 2014, Soesterberg, The Nether-
lands, 25th May 2014, volume 170 of EPTCS, pages
19–32, Australia. Open Publishing Association.

Race, P. (2001). Using feedback to help stu-
dents learn. https://phil-race.co.uk/wp-
content/uploads/Using_feedback.pdf. Last accessed:
June 2024.

CSEDU 2025 - 17th International Conference on Computer Supported Education

668

Rich, E. (2019). Automata, Computability and Complexity:
Theory and Applications. Pearson Prentice Hall.

Sipser, M. (2013). Introduction to the Theory of Computa-
tion. Cengage Learning, USA, 3rd edition.

Sudkamp, T. A. (2006). Languages and Machines - An In-
troduction to the Theory of Computer Science. Pear-
son Education, Inc., Third edition.

Vázquez, E. G. and Sáiz, T. G. (2022). Introducción
a la Teoría de Autómatas, Gramáticas y Lenguajes.
Grado en Ingeniería Informática. Editorial Universi-
taria Ramón Areces, Second edition.

Venables, A. and Haywood, L. (2003). Programming Stu-
dents NEED Instant Feedback! In Proceedings of the
Fifth Australasian Conference on Computing Educa-
tion - Volume 20, ACE ’03, page 267–272, AUS. Aus-
tralian Computer Society, Inc.

Welsh, N. and Culpepper, R. (2024). RackUnit: Unit Test-
ing. PLT Racket, v8.12 edition. Last accessed: June
2024.

Zingaro, D. (2008). Another Approach for Resisting Stu-
dent Resistance to Formal Methods. SIGCSE Bull.,
40(4):56–57.

Grammar Verification for Students: A Grammar Design Recipe with Verification Steps

669

