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Abstract: The rise of Big Data has exposed the limitations of relational databases in handling large datasets, driving the
growth of NoSQL databases. Today, various database systems based on distinct models – or their combinations
– are available, raising the question of which is best suited for a specific use case. While several papers
compare subsets of these systems, they are often limited in scope. In this paper, we offer a comprehensive
comparison of six systems, representing all major data models, through both static and dynamic analysis. We
demonstrate their strengths and weaknesses across several realistic use cases.

1 INTRODUCTION

In the early 1970s, E. F. Codd’s relational data
model (Codd, 1970) became the standard for database
systems. However, the rapid advancements in tech-
nology and the growing need to manage massive data
volumes led to the development of new data models
and database management systems (DBMS). NoSQL
databases, introduced to address the limitations of tra-
ditional relational databases, have gained popularity,
particularly for handling the three Vs of big data: vol-
ume, velocity, and variety. These databases are de-
signed with scalability, availability, and performance
in mind, making them ideal for applications like so-
cial networks, IoT, and e-commerce, which demand
more than traditional relational DBMSs can offer.

Performance is crucial for any software sys-
tem, impacting user experience and competitiveness.
DBMS performance is often benchmarked by query
execution time, influenced by factors like hardware,
data model, and database design. While query perfor-
mance can be enhanced, it often comes at the cost of a
less expressive query language, leading to the devel-
opment of aggregate-oriented systems. These systems
optimize data retrieval by storing related data as sin-
gle units, so-called aggregates, thus improving per-
formance but increasing data redundancy. Since nei-
ther of these strategies is universally optimal, this pa-
per explores the conditions under which each should
be selected. The key contributions are as follows:

• We perform a static analysis of six popular
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open-source systems (SQLite, MySQL, Neo4j,
ArangoDB, Cassandra, MongoDB), focusing on
their features and supported query languages.

• We compare the expressive power of the query
languages across different data models (i.e., rela-
tional, graph, column-family, and document).

• We design a range of common query scenarios
and dynamically compare the performance of the
selected systems.

• We provide recommendations for optimal query-
ing strategies based on the results of both the static
analysis and dynamic performance comparisons
across various data representations.

Outline The paper is organized as follows: Sec-
tion 2 reviews related work on querying and perfor-
mance benchmarking. Section 3 outlines the method-
ology. Section 4 focuses on the static analysis of fea-
tures and limitations of the selected DBMSs. Sec-
tion 5 compares the expressive power of query lan-
guages. Section 6 presents the dynamic analysis and
results of the experiments. In Section 7, we conclude.

2 RELATED WORK

We first acknowledge the work of (Taipalus, 2024),
who systematically reviewed DBMS benchmarks,
highlighting common pitfalls in DBMS benchmark-
ing. Taipalus drew inspiration from (Raasveldt et al.,
2018), who proposed a fair DBMS performance test-
ing checklist, which we also followed in this paper.
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Database performance testing covers many
DBMSs with different data models, query languages,
and scalability levels. (Abramova and Bernardino,
2013) comparison of MongoDB and Cassandra
showed Cassandra’s superior performance. (Győrödi
et al., 2015)’s work recommended MongoDB over
MySQL for data-intensive applications. (Wang
et al., 2015) showed that in-memory processing
with SQLite outperforms MySQL and MongoDB’s
disk-based processing. For highly connected
data, (Almabdy, 2018) found Neo4j better suited
than MySQL. (Sholichah et al., 2020) noted Neo4j’s
higher flexibility but slower performance and greater
memory usage than MySQL.

Although the number of existing comparative
studies is not small, as we can see, they are usually
limited in scope. We aim to select a representative
set of DBMSs that covers all popular data models
and perform their extensive study. We will examine
both static features and query languages and perform
experimental measurements to objectively highlight
their strengths and weaknesses.

3 METHODOLOGY

To evaluate the selected DBMSs, we first define
the selection criteria, focusing on data model sup-
port, open-source availability, single-node deploy-
ment, and popularity. We then detail the static anal-
ysis, where the capabilities and limitations of each
DBMS are assessed, followed by an examination of
the expressive power of their query languages. Fi-
nally, we present the dynamic analysis methodology,
including the queries executed, experimental config-
uration, and the process for evaluating query perfor-
mance across different systems, ensuring a compre-
hensive and fair comparison.

3.1 Selection Criteria

The selection of the database systems in this study
was guided by several key criteria. First, we pri-
oritized diversity in data model support, choosing
systems that represent relational, graph, document,
and wide-column models, allowing for a comprehen-
sive comparison of query performance across differ-
ent data structures. Second, we focused on databases
that are open-source, ensuring accessibility and trans-
parency in the implementation and testing processes.
Third, we required each system to have the ability to
deploy on a single computer node, making them suit-
able for environments with limited resources while
still providing insights into scalability and perfor-

mance. Finally, popularity was a significant factor,
as we selected widely used systems with large user
and developer communities, as indicated by rankings
on DB-Engines1. This ensures the relevance to the
academic and industrial sectors.

3.2 Comparison Objectives

The objectives of the static analysis are to evaluate
the features of the selected DBMSs and their query
languages’ expressive power. The following system
features are reviewed:

• Data Model. The supported logical models, such
as relational, graph, document, and wide-column,
that determine how data is organized and struc-
tured.

• Data Types. The variety of basic/complex data
types, including collections, arrays, and user-
defined types (UDTs).

• Consistency. Whether the system adheres to
ACID properties (ensuring strong consistency) or
BASE properties (offering eventual consistency
for scalability).

• Scalability. The system’s ability to scale horizon-
tally (by adding more nodes) or vertically (by up-
grading hardware resources).

• Sharding and Replication. The support for par-
titioning data across nodes (sharding) and main-
taining data redundancy through replication to en-
sure availability and fault tolerance.

• Schema Approach. The systems can be schema-
full, requiring a predefined schema; schema-free,
allowing flexible, on-the-fly schema evolution; or
schema-mixed, which combines both approaches,
offering predefined schema with some flexibility.

• Entity and Relationship Representation. How en-
tities and relationships are modelled. Some sys-
tems explicitly support entities and relationships
(e.g., graph databases), while others focus only
on entities and use foreign keys or references to
represent relationships.

• Aggregates. Whether a system is aggregate-
ignorant or aggregate-oriented. The former sys-
tems use flat structures and references between
entities, while the latter systems encapsulate com-
plex related data into a single document or ob-
ject, facilitating retrieval but possibly increasing
redundancy.

• Absence of Value Representation. How missing or
null values are handled. Some systems use NULL

1https://db-engines.com/en/ranking
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values, while others may leave missing properties
or combine both approaches.

For the expressive power of query languages,
we focus specifically on data manipulation language
(DML) operations, such as selecting, inserting, updat-
ing, and deleting data. We evaluate how each system’s
query language handles complex queries, including
joins, aggregations, traversals, and filtering, empha-
sising efficiency and flexibility. The aim is to deter-
mine whether certain systems are more suited to spe-
cific types of queries (or datasets).

3.3 Methodology of Dynamic Analysis

For the dynamic analysis, we selected an e-commerce
platform as the data domain, inspired by the
UniBench benchmark (Zhang and Lu, 2021). The
platform models products, vendors, customers, or-
ders, and social relationships. The data model in-
cludes both normalized (relational and graph models)
and denormalized (document and wide-column mod-
els) structures.

We selected a set of queries to cover various data
access patterns, including:

A. Selection, Projection, Source (of Data)
A1. Non-Indexed Columns: Select vendor named

‘Bauch - Denesik’.
A2. Non-Indexed Columns — Range Query:

Select people born between 1980-01-01 and
1990-12-31.

A3. Indexed Columns: Select vendor with the ID
24.

A4. Indexed Columns — Range Query: Select
people born between 1980-01-01 and 1990-12-
31.

B. Aggregation
B1. COUNT: Count the number of products per

brand.
B2. MAX: Find the most expensive product per

brand.

C. Joins
C1. Non-Indexed Columns: Join vendor and order

contacts on the type of contact.
C2. Indexed Columns: Join all products with their

orders.
C3. Complex Join 1: Retrieve all order details.
C4. Complex Join 2: Retrieve all people having

more than 1 friend.
C5. Neighborhood Search: Find all direct and

indirect relationships between people up to a
depth of 3.

C6. Shortest Path: Find the shortest path between
two people.

C7. Optional Traversal: Get a list of all people and
their friend count (0 if they have no friends).

D. Set Operations
D1. Union: Get a list of contacts (email and phone)

for both vendors and customers.
D2. Intersection: Find common tags between posts

and people.
D3. Difference: Find people who have not made

any orders.

E. Result Modification
E1. Non-Indexed Columns Sorting: Sort prod-

ucts by brand.
E2. Indexed Columns Sorting: Sort products by

brand.
E3. Distinct: Find unique combinations of product

brands and the countries of the vendors selling
those products.

F. MapReduce:
F1. Find the number of orders per customer (only

those who have made at least 1 order).

The experiments were conducted on a virtual
machine with the following hardware configuration:
Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz (8
cores), 32 GB DDR4 RAM, and 80 GB SSD, running
Ubuntu 20.04 LTS. Docker and Docker Compose cre-
ated a consistent testing environment with Docker im-
ages for each DBMS, except for SQLite. We main-
tained default database configurations to ensure fair-
ness, adjusting settings only when necessary to sup-
port the testing process.

For each DBMS, the queries were translated into
the respective query language.2 We ensured that
queries were consistent across systems to enable fair
comparisons. While each DBMS has unique features,
the goal was to retrieve equivalent data from each sys-
tem, with any format differences being adjusted dur-
ing result processing.

Query caching was disabled for all systems to
avoid skewed results. We also set a 300-second time-
out threshold for query execution. If a query exceeded
this limit, it was terminated.

Each query was executed 20 times to ensure reli-
able results. The minimum and maximum execution
times for each query were discarded, and the average
was calculated for the remaining values. The results

2For reproduction purposes, all queries are avail-
able in the GitHub repository https://github.com/corovcam/
Query-Languages-Analysis-Thesis
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were processed using a Jupyter notebook with Pan-
das3 and NumPy4 (see Section 6).

4 STATIC ANALYSIS – DATABASE
SYSTEMS

This section compares six popular database manage-
ment systems: SQLite, MySQL, Neo4j, ArangoDB,
Cassandra, and MongoDB. Each system is examined
based on key features, including consistency mod-
els, scalability, schema management, entity and re-
lationship types, and how they handle missing val-
ues. The accompanying table highlights the similar-
ities and differences between these systems. At the
same time, the following discussion explores unique
aspects of their architecture and functionality, offer-
ing deeper insights into their strengths and specific
use cases.

4.1 SQLite

SQLite (Contributors, 2024) is an open-source
RDBMS developed by Dwayne Richard Hipp. As of
March 2024, it ranks 10th on the DB-Engines list and
is widely used in web browsers, operating systems,
mobile devices, and embedded systems.

Unlike traditional databases, SQLite is server-less,
self-contained, and requires zero configuration, mak-
ing it an ideal embedded database. It is lightweight,
around 250 kB, storing both data and schema in a sin-
gle file. Additionally, it can function as an in-memory
database5, where the entire database resides in mem-
ory for faster access. However, optimizing perfor-
mance can be more complex as data requirements in-
crease compared to systems like MySQL.

SQLite lacks built-in user management, access
control, or authentication. Instead, it relies on the host
operating system’s file permissions to control access.
Its unique feature is its ability to allow multiple appli-
cations to access the same database at the same time,
rare for server-less databases.6

SQLite supports five core storage classes, such as
INTEGER and TEXT, with other common SQL types
like VARCHAR and DATETIME being handled through
Affinity Types. As a flexibly typed database, it allows
any type of data to be stored in any column, regard-
less of its declared type, which is an intentional design

3https://pandas.pydata.org
4https://numpy.org
5https://sqlite.org/inmemorydb.html
6https://www.sqlite.org/serverless.html

feature.7

4.2 MySQL

MySQL (Corporation, 2024) is a widely used open-
source relational DBMS developed and maintained
by the Oracle Corporation. As of March 2024, it
ranks 2nd on the DB-Engines list, making it a pop-
ular choice for web applications and widely adopted
by high-profile websites. Known for its strong perfor-
mance, reliability, and ease of use, MySQL is also
highly scalable, making it suitable for both small-
scale applications and large enterprise systems.

MySQL operates on a client-server architecture,
requiring a server to run. The server enables multi-
user access and provides essential features like access
control, user management, and built-in security. Due
to its extensive set of features, the initial setup can
be more complex than lightweight alternatives like
SQLite (see Section 4.1).

MySQL supports a range of data types, including
numeric, date/time, and various string types, along
with more advanced types like XML and JSON for
structured data. It also allows efficient querying and
manipulation of JSON documents.8 From version
8.0.17, it supports Multi-Valued indexes, enabling in-
dexing of JSON array values stored in columns.9

4.3 Neo4j

Neo4j (Inc., 2024) is an open-source graph DBMS
developed by Neo4j, Inc., ranked 23rd on the DB-
Engines list (March 2024). It is commonly used in
areas requiring complex relationships between enti-
ties, such as social networks, recommender systems,
fraud detection, network analysis, and emerging fields
like ML, AI, and IoT.

Neo4j employs a labelled property graph (LPG)
model (Angles and Gutierrez, 2008), consisting of
nodes (vertices), relationships (edges), and key-value
pair properties. The model supports both basic graph
traversals (like depth-first search) and complex algo-
rithms (e.g., shortest path or minimum spanning tree).

Neo4j operates on a client-server architecture,
communicating via HTTP or the high-performance
Bolt protocol. Though it was initially developed in
Java, it offers drivers for multiple programming lan-
guages.

Supported data types include simple types (e.g.,

7https://www.sqlite.org/quirks.html
8https://dev.mysql.com/doc/refman/8.0/en/json.html
9https://dev.mysql.com/doc/refman/8.0/en/

create-index.html#create-index-multi-valued
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strings, integers), structural types (lists, maps), tem-
poral (dates, durations), and spatial (points).

4.4 ArangoDB

ArangoDB (ArangoDB GmbH, 2024a) is an open-
source multi-model DBMS (MMDBMS) developed
by ArangoDB GmbH, ranked 84th on the DB-
Engines list (March 2024). Its flexibility supports
various applications, including social networks, real-
time analytics, recommendation systems, and fraud
detection. Available both commercially and as a man-
aged cloud service via ArangoGraph Insights Plat-
form10.

As an MMDBMS (Lu and Holubová, 2019),
ArangoDB supports document, graph, and key-value
data models in a single core. It primarily works
with JSON-formatted data stored in a binary format
called VelocyPack11. Values can be primitive types
(e.g., boolean, string) or compound types (arrays, ob-
jects).12

ArangoDB uses the RocksDB storage en-
gine (Zhang et al., 2016), a persistent key-value
store optimized for fast storage and retrieval of
large datasets. It supports concurrent writes with
document-level locks and ensures durability through
a write-ahead log.13

4.5 Cassandra

Cassandra (The Apache Software Foundation, 2024)
is a wide-column DBMS, developed by Avinash Lak-
shman and Prashant Malik at Facebook (Lakshman
and Malik, 2010), and now maintained by the Apache
Software Foundation. As of March 2024, it ranks 12th
on the DB-Engines list. It is widely used in domains
needing high availability and fault tolerance, such as
event logging, messaging, e-commerce, and content
management systems, where fast reads and writes are
crucial.

Cassandra uses a wide-column model, organized
into column families (tables), which contain rows
(records) and columns (fields). Columns store key-
value pairs with timestamps, and rows are key-
linked collections of columns. Column families are
grouped into keyspaces (similar to databases), dis-
tributed across clusters using partitioners and repli-

10https://arangodb.com/arangograph-insights-platform/
11https://github.com/arangodb/velocypack
12https://docs.arangodb.com/3.11/aql/fundamentals/

data-types/
13https://docs.arangodb.com/3.11/components/

arangodb-server/storage-engine

cation strategies.14

Cassandra draws on design concepts from Ama-
zon Dynamo15 and Google Bigtable16, with a stor-
age engine based on the Log-Structured Merge-
Tree (Zhang et al., 2016), optimized for write-heavy
workloads.17

Cassandra supports various types, including na-
tive types (strings, numbers), collections (lists, sets),
UDTs, and tuples. However, collection types may
cause performance issues due to full data scans, and
using sets is recommended over lists to avoid read-
before-write penalties.18

4.6 MongoDB

MongoDB is a document-based DBMS developed by
MongoDB Inc., ranked 5th on the DB-Engines list
(March 2024). It is used for content management,
real-time analytics, and high-speed logging. Mon-
goDB is available as an open-source Community Edi-
tion, a commercial Enterprise Edition, or via the SaaS
solution MongoDB Atlas.19

As a document-oriented DBMS, MongoDB stores
flexible-schema JSON-based documents (ECMA In-
ternational, 2021). Internally, it uses BSON (Binary
JSON), which is more efficient and allows documents
up to 16 MB in size.20 Databases in MongoDB con-
sist of collections (similar to tables), grouping related
documents that are key-value pairs. Documents can
be nested, supporting complex data structures.

BSON supports standard JSON types (strings,
numbers, arrays) and additional types like datetime
and geospatial data in a binary format.

MongoDB uses the WiredTiger storage en-
gine, optimized for most workloads with features
like document-level concurrency, compression, and
checkpointing. The Enterprise version offers an in-
memory storage engine for specific use cases.21

14https://cassandra.apache.org/doc/4.1/cassandra/
architecture/overview.html

15https://aws.amazon.com/dynamodb/
16https://cloud.google.com/bigtable
17https://cassandra.apache.org/doc/4.1/cassandra/

architecture/dynamo.html
18https://cassandra.apache.org/doc/4.1/cassandra/cql/

types.html
19https://www.mongodb.com/products
20https://bsonspec.org/
21https://www.mongodb.com/docs/manual/core/

storage-engines/
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4.7 Comparison of Selected Systems

The comparison of DBMSs (see Table 1) reveals sev-
eral interesting distinctions that go beyond their ba-
sic features. One notable aspect is the flexibility of-
fered by databases like ArangoDB and MongoDB,
which support both BASE and ACID models, allow-
ing them to adapt to different consistency and per-
formance needs. This dual approach offers a mid-
dle ground for developers requiring transactional in-
tegrity and performance in distributed environments.

Cassandra’s use of the BASE model, while fo-
cused on eventual consistency, offers tunable levels
of consistency, making it highly adaptable for high-
availability systems. Additionally, its lightweight
transaction model, powered by Paxos, allows it to
handle more consistent operations when necessary
without sacrificing its distributed nature.

Neo4j stands out for its unique graph-based struc-
ture, where relationships between entities (edges) are
first-class citizens. This suits it, particularly for ap-
plications like social networks and recommendation
systems, where interconnected data is key. The flex-
ibility of relationships in Neo4j contrasts with rela-
tional DBMSs like MySQL and SQLite, which rely
on foreign keys to define associations.

Regarding scalability, Cassandra and MongoDB
lead the way with built-in horizontal scaling and
sharding capabilities, allowing them to handle mas-
sive datasets. While Neo4j is scalable in its Enter-
prise version, and ArangoDB also offers sharding, the
graph nature of Neo4j means scaling is more complex
than document-based system like MongoDB.

Another interesting detail is how Cassandra han-
dles relationships through data denormalization and
UDTs. While it lacks traditional foreign keys, its
approach is optimized for speed and partitioning,
making it highly efficient in distributed environ-
ments despite requiring more manual data structur-
ing. Lastly, ArangoDB and MongoDB’s schema-
free nature, paired with optional schema validation,
strikes a balance between flexibility and structure,
making them versatile choices for developers who
may need to evolve data models over time. This con-
trasts fully schema-based systems like MySQL and
SQLite, where schema changes can be more rigid.

In terms of absence handling, MongoDB and Cas-
sandra treat missing values distinctively, distinguish-
ing between null and missing properties, which is
a useful feature for more nuanced data management
compared to the simpler NULL handling in systems
like MySQL and SQLite.

5 STATIC ANALYSIS – QUERY
LANGUAGES

Next, this section studies and compares the expressive
power of query languages of the analysed DBMSs:
SQL, Cypher, AQL, CQL, and MQL. It explores
features like projection, selection, joins, and graph
traversal, highlighting how each language aligns with
its DBMS’s architecture and design goals.

5.1 Structured Query Language (SQL)

SQLite and MySQL employ SQL (Chamberlin and
Boyce, 1974) as its primary query language, a stan-
dard widely used in relational DBMSs. SQL is pow-
erful for data querying and manipulation, based on
the relational model (Codd, 1970) using relational al-
gebra and calculus (E. F. Codd, 1971).

It supports traditional CRUD operations and key
clauses like SELECT, FROM, and WHERE for data se-
lection and filtering. Table joins, including JOIN
and OUTER JOIN, are crucial for handling rela-
tionships, and aggregation is performed via GROUP
BY and HAVING. Set operations such as UNION,
INTERSECTION, EXCEPT, and DISTINCT are also sup-
ported. Result modifications are handled by ORDER
BY, LIMIT, and OFFSET, while recursive queries use
WITH RECURSIVE.

While SQL can simulate MapReduce opera-
tions using GROUP BY ... HAVING, it is not designed
for distributed processing like Hadoop22. MySQL
follows the ANSI/ISO standards, including SQL-
2023 (ISO, 2023; Kelechava, 2018), and supports ad-
ditional features like Stored Procedures, Triggers, and
User-Defined Functions, though there are minor devi-
ations (MySQL Corporation, 2024).

Similarly, SQLite adheres to ANSI/ISO standards
but omits some features23, such as clauses in ALTER
TABLE. It also imposes limits, like a maximum of 64
table joins per query24, affecting recursive queries.

5.2 Cypher

The main query language in Neo4j is Cypher, a
declarative, human-readable language designed for
pattern matching, allowing flexible querying and ma-
nipulation of graph data without requiring a prede-
fined schema. It supports all CRUD operations and
extends functionality with APOC (Awesome Proce-
dures on Cypher), which provides a vast collection

22https://hadoop.apache.org/
23https://sqlite.org/omitted.html
24https://sqlite.org/limits.html

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

46



Table 1: Comparison of individual features of Database Management Systems (DBMS).

SQLite MySQL Neo4j ArangoDB Cassandra MongoDB

Data model Relational Relational Graph Multi-model Column Document

Consistency ACID ACID ACID BASE / ACID BASE BASE / ACID

Scalability V V / H V / H V / H V / H V / H

Sharding N Y1 Y2 Y Y Y

Replication N Y Y Y Y Y

Schema Full Full Free Free Full Free

Entity types Relation Relation Vertex Document Table Document

Relations Foreign Key Foreign Key Edge Reference /
Embedded Doc;
Edges collection

Denormalization +
UDTs

Reference /
Embedded Doc

Aggregates Ignorant Ignorant Ignorant Oriented Oriented Oriented

Absence of value Null Null Absence Null Null / absence Null / absence

Query language SQL SQL Cypher AQL CQL MongoDB QL

1 MySQL NDB Cluster 2 Neo4j Enterprise

of additional procedures and functions.
Cypher’s DML features focus on the MATCH clause

to find nodes and relationships, followed by a graph
specification. The WHERE clause filters results, and
RETURN projects the selected paths, nodes, or prop-
erties. Additionally, OPTIONAL MATCH optionally
matches entities in the traversal.

Moreover, ORDER BY, SKIP, and LIMIT sort, skip,
and limit results, while WITH passes results be-
tween queries. Set operations can be performed us-
ing UNION, WHERE NOT (similar to SQL’s EXCEPT),
and the apoc.coll.intersection() function from
the APOC library. The CALL clause invokes user-
defined/external functions, and FOREACH performs op-
erations on a list of items. Subqueries are supported
via CALL {MATCH ...}.

Cypher, by default, matches all nodes and rela-
tionships based on the graph specification, with no
need for a MATCH * clause. Aggregation is tied to the
graph specification itself rather than individual prop-
erties. Functions like collect() gather query re-
sults into a list, and other aggregation functions like
count(), min(), max(), avg(), and sum() allow for
result summarization.

5.3 Arango Query Language (AQL)

Arango Query Language (AQL), used in ArangoDB,
is a declarative query language capable of querying
multiple data models simultaneously, whether docu-
ments, graphs, or key-value pairs. It fully supports all
CRUD operations.

The core DML statement is FOR doc IN docs
RETURN doc, with RETURN {attr1:val1,...} al-
lowing document projection. Moreover, RETURN
DISTINCT ensures unique projections, and FILTER fa-
cilitates document selection using a set of logical op-
erators.

AQL excels in data aggregation through the
COLLECT ... INTO or WINDOW operation, enabling
grouping and sophisticated data summaries25. Ad-
ditionally, SORT, LIMIT offset, count, and LET
clauses handle sorting, limiting, and variable assign-
ment. AQL does not have specific set operations but
uses FILTER cleverly for similar results26.

Joins in AQL are simple to declare. A One-To-
Many join is achieved with nested FOR loops, while
Many-To-Many joins use embedded lists of document
IDs and subqueries. Furthermore, Edge Collections
model Many-To-Many relationships efficiently in the
graph model. Outer joins are achieved by filtering
zero-length arrays27.

AQL supports graph traversals with the statement:
FOR vertex[, edge[, path]]

IN [min[..max]] INBOUND/OUTBOUND/ANY
startVertex GRAPH graphName

allowing unlimited traversals, subject to the max pa-
rameter of the query28.

5.4 Cassandra Query Language (CQL)

Apache Cassandra uses CQL as its query language,
closely resembling SQL, making it intuitive and easy
to learn. CQL supports features like CRUD opera-
tions, querying, and batch operations while focusing
on performance and scalability. It is also extensible,
allowing developers to add custom functions (UDF)
and data types (UDT).

25https://docs.arangodb.com/stable/aql/
examples-and-query-patterns/grouping/#aggregation

26https://docs.arangodb.com/stable/aql/
examples-and-query-patterns/diffing-two-documents/

27https://docs.arangodb.com/stable/aql/
examples-and-query-patterns/joins/#outer-joins

28https://docs.arangodb.com/3.11/aql/graphs/traversals
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Cassandra’s DML operations use SQL-like
SELECT, FROM, and WHERE clauses with some key
differences29. Queries must begin by specifying
the partition key, followed by clustering columns.
Filtering on non-indexed columns is possible with
ALLOW FILTERING, but it’s discouraged due to un-
predictable performance impacts. Moreover, results
can be grouped using GROUP BY (only on primary key
values) and aggregated via standard or user-defined
functions30. Ordering is restricted to clustering
columns, and limits can be applied using LIMIT and
PER PARTITION LIMIT.

A key characteristic of CQL is the lack of join sup-
port between tables. Therefore, Cassandra adopts a
query-driven architecture, requiring data to be denor-
malized and duplicated for complex queries, a trade-
off for its high availability and fault tolerance31.

Finally, Cassandra supports MapReduce for dis-
tributed processing through Hadoop integration, en-
abling big data processing across multiple nodes.

5.5 MongoDB Query API

MongoDB’s Query API (MQL) powers all CRUD and
aggregation operations, optimized for JSON (ECMA
International, 2021) and JavaScript (Mozilla Corpo-
ration, 2024), though it integrates with various lan-
guages like Java, Python, and C#. It is accessi-
ble via MongoDB Compass and the MongoDB Shell
(mongosh)32.

DML operations use the db.collection.find(
{att1:val1, att2:val2}) method to query docu-
ments based on criteria, supporting comparison, log-
ical, element, and other operators33. Sorting, limit-
ing, and skipping results can be done via .sort(),
.limit(), and .skip(), while .count() returns the
collection size, and .distinct() retrieves unique
field values.

Complex aggregations are handled by
db.collection.aggregate() through an Ag-
gregation Pipeline composed of stages like $match
and $project for filtering and projecting. Op-
erations like min, max, avg, sum, and count are
done in the $group stage, while set operations like
$unionWith, $setUnion, and $setIntersection

29https://cassandra.apache.org/doc/4.1/cassandra/cql/
dml.html#select-statement

30https://cassandra.apache.org/doc/4.1/cassandra/cql/
functions.html

31https://cassandra.apache.org/doc/4.1/cassandra/
data modeling/data modeling rdbms.html

32https://www.mongodb.com/docs/mongodb-shell/
33https://www.mongodb.com/docs/manual/reference/

operator/query/

are supported.
The $lookup stage enables left outer joins be-

tween collections; $graphLookup handles recur-
sive graph queries or unlimited traversals34. These
lookups allow nesting queries by running addi-
tional pipelines on joined documents. Though
.mapReduce() is supported for distributed queries, it
is deprecated in favour of aggregation pipelines due
to better performance35.

5.6 Query Languages Comparison

Table 2 illustrates query language expressive power
differences across DBMSs, shaped by their data mod-
els and system architecture. As we can see, rela-
tional databases like MySQL and SQLite offer stan-
dard SQL features such as joins, unions, and recursive
queries, ideal for structured data but limited in han-
dling non-relational models like graphs or documents.
Neo4j’s Cypher, designed for graph traversal, enables
efficient querying of highly connected data, providing
recursive queries and graph pattern matching that are
more user-friendly than relational systems.

Cassandra, built for distributed scalability, omits
joins and recursive queries. This reflects its high
availability and partition tolerance design, where
complex operations like joins would reduce effi-
ciency. Consequently, data in Cassandra must be de-
normalized to handle relationships, prioritizing scala-
bility over query complexity.

MongoDB, with its document model, provides ro-
bust aggregation pipelines and flexible schema ca-
pabilities, but its support for joins is through the
$lookup stage rather than native relational joins, re-
flecting its JSON-oriented structure. ArangoDB, as a
multi-model database, supports rich features like joins
and graph traversals, offering more expressive query
capabilities across different data models, making it a
highly versatile option compared to other systems.

6 DYNAMIC ANALYSIS

Being acquainted with the features of the DBMSs,
this section presents the experimental results, includ-
ing the measured query statistics for the selected
DBMSs, visualized in Table 3. We provide insights
into the results and discuss which DBMS performs
best under different data access patterns. For each
query listed in 3.3, we summarize the results, identify

34https://www.mongodb.com/docs/manual/reference/
operator/aggregation/lookup/

35https://www.mongodb.com/docs/manual/core/
map-reduce/
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Table 2: Data Manipulation Language features of particular DBMS(s).

SQLite (SQL) MySQL (SQL) Neo4j (Cypher) ArangoDB (AQL) Cassandra (CQL) MongoDB (MQL)

Projection SELECT SELECT RETURN RETURN
{attr1:val1,attr2:val2}

SELECT $project,
find(attr1:val1,attr2:val2)

Source FROM FROM graph specification FOR doc IN docs FROM db.[collection name]

Selection WHERE WHERE WHERE FILTER WHERE $match, find()

Aggregation GROUP BY ...
HAVING

GROUP BY ...
HAVING

count, min, max, avg COLLECT ... INTO;
WINDOW

GROUP BY aggregation pipeline

Join JOIN JOIN - FOR a IN b
FOR c IN d
FILTER a.cId ==
c. id ...

- $lookup

Graph Traversal JOIN 4 JOIN MATCH FOR v IN IN-
BOUND/OUTBOUND
...

- $graphLookup

Unlimited Traversal WITH RECURSIVE WITH RECURSIVE 1 FOR v IN 0..MAX - - ($graphLookup$
with limitations)

Optional OUTER JOIN OUTER JOIN OPTIONAL MATCH “outer joins” - -

Union UNION UNION UNION 5 - $unionWith,
$setUnion
(aggregation)

Intersection INTERSECTION INTERSECTION apoc.coll.intersection 5 - $setIntersection
(aggregation)

Difference EXCEPT EXCEPT WHERE NOT 5 - $setDifference
(aggregation)

Sorting ORDER BY ORDER BY ORDER BY SORT ORDER BY sort

Skipping OFFSET OFFSET SKIP LIMIT offset, count - skip

Limitation LIMIT LIMIT LIMIT LIMIT LIMIT limit

Distinct DISTINCT DISTINCT DISTINCT RETURN DISTINCT DISTINCT db.docs.distinct( ... )

Aliasing AS AS AS LET doc = (...) AS ”alias” : ”$field”

Nesting (SELECT ...) (SELECT ...) CALL {MATCH . . .} FOR d IN docs FOR
u IN d ...

- -

MapReduce - (GROUP BY ...
HAVING)

- (GROUP BY ...
HAVING)

- 2 - (COLLECT ...
INTO)

GROUP BY .mapReduce3;
aggregation pipeline

1 everything is matched by default with no limitation 2 everything is aggregated by default 3 deprecated 4 maximum of 64 tables 5 see (ArangoDB GmbH, 2024b)

the best and worst performing DBMS, and explore the
reasons behind their performance. Finally, we recom-
mend choosing the most suitable DBMS for specific
scenarios.

Non-Indexed Columns Selection (A1). Most
systems performed similarly when selecting non-
indexed columns, except for Apache Cassandra,
which required a full table scan using ALLOW
FILTERING. This makes Cassandra less ideal for non-
indexed selections unless the schema is well-defined.

Non-Indexed Columns – Range Query (A2).
Cassandra outperformed other systems due to its op-
timization for range queries. However, using ALLOW
FILTERING could still cause performance issues with
large ranges. Cassandra’s performance in range
queries highlights its efficiency, especially when deal-
ing with large datasets.

Indexed Columns Selection (A3). All sys-
tems performed comparably when querying indexed
columns, as the ID was indexed in each system. Neo4j
was slightly slower, but the difference was minor.
When exact value queries rely on indexed columns,

all systems are generally effective, though schema de-
sign plays a crucial role.

Indexed Columns – Range Query (A4). Cas-
sandra excelled again in range queries involving in-
dexed columns, especially with larger datasets. How-
ever, for smaller datasets, performance across systems
was similar. This suggests Cassandra’s advantage in
range queries, particularly when dealing with exten-
sive data.

Aggregation COUNT (B1). Performance across
all systems was comparable, with Cassandra show-
ing slightly better results due to its optimization for
aggregation queries. Simple one-entity aggregations,
like counting, are efficiently handled by all systems,
with Cassandra’s slight edge making it a strong choice
for this pattern.

Aggregation MAX (B2). Similar to count, the
performance for finding the maximum value was con-
sistent across systems, with Cassandra again per-
forming slightly better. When aggregations are com-
bined with other operations like joins, other systems
may be more suitable depending on the specific use
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Table 3: Table illustrating the query execution times (the best in the category are grey, the worst are red).
Volume DBMS A1 A2 A3 A4 B1 B2 C1 C2 C3 C4 C5 C6 C7 D1 D2 D3 E1 E2 E3 F1

1k SQLite 0.00 0.00 0.00 0.00 0.00 0.00 4.34 0.01 0.70 0.00 5.76 † 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.00

MySQL 0.00 0.00 0.00 0.00 0.00 0.00 1.67 0.02 0.06 0.01 16.60 † 0.01 0.03 0.02 0.01 0.00 0.00 0.02 0.00

Neo4j 0.05 0.05 0.02 0.04 0.01 0.02 28.54 0.05 0.19 0.03 4.73 0.03 0.04 0.08 0.32 0.04 0.01 0.01 0.04 0.02

ArangoDB 0.00 0.00 0.00 0.00 0.00 0.00 45.69 0.07 0.19 0.05 15.33 0.00 0.02 0.09 0.08 0.01 0.00 0.00 0.03 0.00

Cassandra 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.00 n/a n/a 0.00 0.00 0.00 0.01 n/a 0.00 0.01 0.01

MongoDB 0.00 0.00 0.00 0.00 0.00 0.00 4.69 0.00 0.37 0.06 2.41 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00

4k SQLite 0.00 0.00 0.00 0.00 0.00 0.00 43.99 0.04 6.77 0.02 39.95 † 0.02 0.05 0.04 0.01 0.01 0.01 0.03 0.00

MySQL 0.01 0.01 0.00 0.01 0.01 0.01 15.45 0.04 0.17 0.03 87.23 † 0.04 0.08 0.05 0.01 0.02 0.01 0.05 0.01

Neo4j 0.03 0.04 0.02 0.03 0.02 0.02 † 0.11 1.09 0.06 58.04 0.03 0.11 0.15 5.73 0.06 0.02 0.01 0.05 0.03

ArangoDB 0.00 0.01 0.00 0.01 0.01 0.01 † 0.20 1.12 0.28 144.54 0.00 0.04 0.28 0.42 0.04 0.01 0.00 0.14 0.01

Cassandra 0.02 0.01 0.00 0.00 0.01 0.01 n/a 0.00 0.00 0.00 n/a n/a 0.00 0.00 0.00 0.00 n/a 0.00 0.00 0.00

MongoDB 0.00 0.00 0.00 0.00 0.00 0.00 48.24 0.00 0.79 0.22 13.94 0.13 0.01 0.09 0.01 0.00 0.01 0.01 0.05 0.00

128k SQLite 0.02 0.05 0.00 0.07 0.12 0.13 † 1.85 † 0.43 † † 1.00 2.13 2.14 0.27 0.40 0.24 0.87 0.12

MySQL 0.07 0.14 0.00 0.14 0.20 0.21 † 2.16 9.97 0.93 † † 1.36 8.33 3.97 0.49 0.37 0.24 2.38 0.25

Neo4j 0.07 0.12 0.05 0.04 0.09 0.15 † 2.87 18.2 1.33 † 0.09 2.68 3.09 † 0.80 0.24 0.10 1.15 0.20

ArangoDB 0.03 0.15 0.00 0.15 0.15 0.19 † 6.31 20.67 8.07 † 0.07 0.89 8.56 10.38 1.21 0.29 0.10 3.63 0.35

Cassandra 0.32 0.01 0.00 0.00 0.00 0.01 n/a 0.00 0.01 0.00 n/a n/a 0.00 0.00 0.00 0.00 n/a 0.00 0.00 0.00

MongoDB 0.06 0.06 0.00 0.06 0.10 0.14 † 0.06 † 5.23 † 122.63 0.24 3.09 0.13 0.05 0.19 0.14 1.49 0.23

256k SQLite 0.04 0.11 0.00 0.15 0.22 0.24 † 4.00 † 0.83 † † 2.48 4.52 5.50 0.54 0.79 0.45 2.11 0.24

MySQL 0.15 0.31 0.00 0.31 0.46 0.47 † 5.62 25.02 2.13 † † 3.35 18.77 9.34 0.97 0.82 0.53 5.70 0.48

Neo4j 0.15 0.30 0.02 0.19 0.18 0.30 † 5.78 38.68 2.33 † 0.16 5.73 7.07 † 1.60 0.55 0.22 2.48 0.42

ArangoDB 0.07 0.29 0.00 0.26 0.22 0.33 † 13.61 40.86 16.41 † 0.19 1.70 15.78 22.00 2.22 0.46 0.15 8.33 0.75

Cassandra 0.78 0.01 0.00 0.01 0.01 0.01 n/a 0.00 0.01 0.00 n/a n/a 0.00 0.00 0.00 0.01 n/a 0.00 0.00 0.00

MongoDB 0.10 0.10 0.00 0.13 0.15 0.18 Err1 0.07 † 10.80 † Err2 0.40 5.65 0.26 0.10 0.32 0.23 3.10 0.28

512k SQLite 0.06 0.21 0.00 0.32 0.47 0.51 † 7.99 † 1.54 † † 4.81 8.44 10.39 1.07 1.65 0.96 0.75 0.54

MySQL 0.27 0.52 0.00 0.50 0.80 0.83 † 6.35 23.60 3.14 † † 6.26 38.28 21.02 3.21 1.24 0.66 2.80 1.03

Neo4j 0.26 0.63 0.02 0.37 0.35 0.59 † 12.98 37.74 5.99 † 0.31 11.40 16.60 † 3.23 1.18 0.48 1.69 0.96

ArangoDB 0.14 0.58 0.00 0.51 0.52 0.60 † 32.92 53.16 33.48 † 0.27 3.13 36.08 45.78 4.85 1.02 0.30 10.41 1.67

Cassandra 1.85 0.01 0.00 0.00 0.01 0.01 n/a 0.00 0.01 0.00 n/a n/a 0.00 0.00 0.00 0.00 n/a 0.00 0.00 0.00

MongoDB 0.21 0.20 0.00 0.29 0.31 0.38 Err1 0.16 † 21.54 † † 0.89 12.31 0.58 0.23 1.20 0.48 1.09 0.66

1024k SQLite 0.13 0.43 0.00 0.81 1.18 1.28 † 20.89 † 3.30 † † 10.13 20.26 22.23 2.32 3.26 1.96 1.80 1.69

MySQL 0.65 1.27 0.00 1.27 1.88 1.92 † 47.01 133.16 7.89 † † 51.89 111.85 44.02 10.28 3.23 2.02 7.82 6.91

Neo4j 0.41 0.69 0.30 0.71 0.69 1.17 † † † 14.12 † 0.61 24.93 † † 6.77 2.23 0.82 3.98 2.36

ArangoDB 0.27 0.91 0.00 1.17 0.96 1.16 † 78.06 146.85 69.19 † 0.50 6.35 87.44 95.39 11.50 2.40 0.59 12.38 4.52

Cassandra 3.60 0.01 0.00 0.00 0.01 0.01 n/a 0.00 0.01 0.00 n/a n/a 0.00 0.00 0.00 0.01 n/a 0.00 0.00 0.00

MongoDB 0.40 0.47 0.00 0.58 0.50 0.67 Err1 0.30 † 44.29 † Err2 1.77 30.38 1.06 0.44 2.70 0.94 2.26 2.16

† interrupted after 300 seconds n/a not available for efficient execution 1 MongoServerError: Used too much memory for a single array 2 MongoServerError: $graphLookup reached maximum memory
consumption

case. Cassandra and MongoDB are particularly well-
suited for operations resembling MapReduce, espe-
cially when scalability is a key requirement.

Non-Indexed Columns Join (C1). Overall, no
system is a candidate to perform cross-product joins.
MySQL showed the best performance processing
cross-product joins (but only on small volumes),
while ArangoDB and Neo4j performed the worst,
struggling with cross-products even on very small
datasets. This query type is highly data-intensive,
making it unsuitable for systems like Cassandra,
which was dropped from testing due to the unman-
ageable data volume.

Indexed Columns Join (C2). Cassandra and
MongoDB performed best for indexed column joins,
excelling with denormalized schemas (i.e., query-
oriented design). Cassandra handled larger data vol-
umes better, while MongoDB was more efficient with
smaller datasets, though both come with trade-offs

like increased disk space usage and costly updates.
Neo4j and ArangoDB performed worst, with Neo4j
struggling at higher data volumes due to timeouts.
While MySQL and SQLite offered reasonable per-
formance with smaller memory footprints, denormal-
ized schemas in Cassandra and MongoDB remain top
choices when disk space is not a concern.

Complex Join I (C3). Cassandra is the best for
complex joins (represented as redundant aggregates),
though its suitability depends on the use case (query-
oriented design vs data denormalization). Otherwise,
MySQL performed consistently well across all join
queries, offering a balanced option for more complex
joins when disk space is limited. SQLite struggled
with complex joins, and ArangoDB, while consistent,
lagged behind MySQL in performance.

Complex Join II (C4). The best performers were
Cassandra and SQLite, with SQLite handling one-
join queries better than MySQL (yet, SQLite demon-
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strates limited scalability). ArangoDB performed the
worst, likely due to its multi-model approach. Cas-
sandra only counts friends, while MongoDB uses an
array with exact friend IDs, affecting performance.

Neighborhood Search (C5). Unexpectedly, no
system performed a query on more than 4k dataset.
On smaller datasets, the best performers were SQLite
and Neo4j. ArangoDB and MySQL performed worse.
MongoDB was not fully comparable due to incom-
plete result sets. Surprisingly, SQLite handled the
graph traversal well using recursive common table ex-
pressions but may struggle with larger joins. Neo4j
outperformed ArangoDB, making it the better graph
database for this query, but more research on its per-
formance is needed.

Shortest Path (C6). ArangoDB and Neo4j ex-
celled with optimized methods for finding the short-
est path. SQLite and MySQL performed poorly, espe-
cially at higher depths, struggling with graph traver-
sals. MongoDB’s breadth-first search approach and
Cassandra’s lack of support for graph traversals made
them unsuitable for this comparison. Neo4j and
ArangoDB are the most effective for querying inter-
connected data, particularly in complex graph queries
like the shortest path.

Optional Traversal (C7). Cassandra and Mon-
goDB excelled, handling higher data volumes effec-
tively, while MySQL and Neo4j performed the worst.
ArangoDB outperformed Neo4j by a noticeable mar-
gin, suggesting it’s better suited for querying poten-
tially non-existent relationships. SQLite maintained
consistent performance across all data volumes. This
query highlights how systems differ in modelling and
processing data; Cassandra optimizes performance
by directly storing a friendCount property, reduc-
ing the need for additional tables, while SQLite and
ArangoDB may be more suitable for handling com-
plex or aggregate operations.

Union (D1). Cassandra and SQLite performed
best, with SQLite handling the normalized schema
surprisingly well. Neo4j struggled, experiencing
timeouts during testing. MySQL’s performance was
unexpectedly poor compared to SQLite, possibly
due to SQLite’s superior query optimizer for union
queries. ArangoDB’s performance was similar to
MySQL. MongoDB handled the query well, even
with an inter-collection join, though more research
is needed to assess the scalability of its $unionWith
operation. Depending on the frequency, SQLite is
ideal for infrequent unions, Cassandra for frequent,
and MongoDB for flexibility.

Intersection (D2). Cassandra and MongoDB per-
formed best, particularly with lower data volumes.
Neo4j struggled with datasets of 4k or more, likely

due to the apoc.coll.intersection bottleneck.
SQLite again outperformed MySQL in this set opera-
tion. ArangoDB’s performance was better than Neo4j
but lagged behind relational databases. Cassandra and
MongoDB excel at real-time data processing for inter-
section queries, while SQLite offers an alternative for
minimizing server strain in such operations.

Difference (D3). Cassandra, MongoDB, and
SQLite performed best, while ArangoDB and
MySQL lagged. MySQL’s performance decreased
notably with the 1024k dataset, though the difference
was not drastic. For finding differences, Cassandra,
MongoDB, and SQLite are strong choices, with Cas-
sandra and MongoDB leveraging arrays or attributes
to reduce join operations, though this requires careful
handling of synchronization and denormalization.

Non-Indexed Columns Sorting (E1). All sys-
tems, except Cassandra, performed well in sorting by
non-indexed columns. Cassandra does not support
sorting by non-clustering columns.

Indexed Columns Sorting (E2). All systems per-
formed well in sorting by indexed columns, with Cas-
sandra showing a slight but almost unnoticeable per-
formance advantage.

Distinct (E3). Cassandra performed well in find-
ing unique combinations of product brands and ven-
dor countries. ArangoDB was the worst performer.
Higher data volumes made it challenging to iden-
tify the slowest system, as reducing Vendor-Products
relationships caused execution time drops across all
systems. Cassandra is particularly efficient, auto-
matically upserting duplicates using PRIMARY KEY.
SQLite may be a good choice for this query pattern
based on its strong performance in the experiments.

MapReduce (F1). Cassandra and MongoDB are
the top choices for very large datasets, thanks to their
scalability and support for horizontal operations.
While Cassandra performed well with smaller data
volumes, the results were inconclusive overall. This
query on small volumes resembles aggregation, with
similar execution times, but Cassandra’s lack of a
join operation and reliance on denormalized data
could limit its performance at larger scales. MySQL’s
performance notably degraded in larger datasets.

To sum up, our analysis shows that MySQL, SQLite,
and ArangoDB have the most expressive query lan-
guages, but Cassandra and MongoDB excel in per-
formance and scalability with large datasets. Neo4j
and ArangoDB are ideal for traversing interconnected
data, with ArangoDB offering more versatility in
data models and outperforming Neo4j in many cases,
though further research is needed to explore this fully.

Cassandra and MongoDB are the top performers

SQL vs NoSQL: Six Systems Compared

51



in speed and horizontal scalability, with Cassandra
being faster, while MongoDB is more feature-rich. As
data volumes increase, the choice depends on whether
joins and flexibility or data redundancy and speed are
prioritized. SQLite handles a few joins efficiently,
while MySQL is better for complex joins. Cassan-
dra and MongoDB require more disk space and may
need additional application-layer processing, but their
speed is unmatched. For uncertain data structures or
query patterns, aggregate-ignorant systems are rec-
ommended. In contrast, aggregate-oriented systems
offer significant speed advantages with more planning
and schema adaptation.

7 CONCLUSION

This paper presents an extensive comparative study
of various DBMSs employing distinct data manage-
ment strategies, including logical models, query lan-
guages, indexing techniques, and scalability. We con-
ducted both static and dynamic analyses to evaluate
the systems from multiple perspectives and address
common use cases. We confirmed some of the expec-
tations, brought novel insights, and discovered unex-
pected behaviour.

We believe that the findings will assist users in se-
lecting the optimal solution for their needs, help ven-
dors identify areas for improvement, and provide re-
searchers with insights into open challenges and fu-
ture research opportunities.
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