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Abstract: Energy consumption data from smart meters has been shown to infer socio-demographic characteristics, which
impacts privacy. However, the impact of time granularity on the ability to classify such characteristics has not
yet been investigated in existing literature. In this paper, we answer this question by analyzing a dataset of
more than 1,000 households over one year. We obtain three main findings: (i) While a coarser time granularity
leads to decreased classification performance, we find that, unexpectedly, classification performance only varies
insignificantly within two relatively large granularity intervals. For example, one-hour granularity exhibits
nearly the same classification performance as 15-minute granularity. This indicates that, depending on the
use case, data collection can be minimized, as any resolution between 15 minutes and one hour can be used
without significantly impacting prediction performance. (ii) We propose a new evaluation methodology where
an interpretable classification algorithm can predict a household’s socio-demographic characteristics from a
load profile of a single, arbitrary week of the year. Compared to existing methodologies, where training and
testing data are sampled from a single known week, using arbitrary weeks as input makes classification harder,
thus requiring more sophisticated classification algorithms. (iii) We present such an interpretable classification
algorithm, which outperforms those that train and evaluate classifiers separately for each week. At the same
time, our algorithm exhibits a comparable performance to approaches that require a load profile of the whole
year instead of a single, arbitrary week.

1 INTRODUCTION

Smart metering technology provides detailed energy
consumption data, offering valuable insights for utili-
ties and consumers to optimize energy usage, enable
dynamic pricing, and enhance efficiency (Darby, 2010;
Weranga et al., 2014). However, the widespread de-
ployment of smart meters raises privacy concerns due
to the detailed collection of electricity consumption
patterns, which can reveal sensitive information about
household habits, appliance use, and occupancy behav-
ior (Kim et al., 2011; Kolter and Jaakkola, 2012; Fan
et al., 2013). Since energy consumption is linked to
socio-demographic characteristics like dwelling type
and household income, load profiles can be exploited
to predict these characteristics (Beckel et al., 2013;
Beckel et al., 2014; Hopf et al., 2016; Wang et al.,
2019a). Increasing the time granularity of load profiles
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has been suggested as a potential privacy enhancing
technology (Efthymiou and Kalogridis, 2010; Eibl and
Engel, 2015; Engel and Eibl, 2017; Erkin et al., 2013;
Finster and Baumgart, 2014). However, all of these
proposed methods primarily focus on fine-grained load
profiles with short time intervals, such as milliseconds
or seconds, which are commonly utilized in Nonintru-
sive Load Monitoring (NILM) analyses (Hart, 1992;
Zoha et al., 2012).

In contrast, this paper investigates the privacy im-
plications of using coarse-grained load profiles with
time intervals ranging from minutes to days, aligned
with European Union recommendations that specify
a minimum resolution of 15 minutes for data collec-
tion (Commission, 2012). These recommendations
aim to strike a balance between data utility and privacy
preservation. On the one hand, finer time granularity
offers a more informative and comprehensive view of
load patterns. On the other hand, such detailed data
poses a higher risk of identifying socio-demographics
and potentially infringing upon the privacy of indi-
viduals, as shown in (Lisovich et al., 2010; Molina-
Markham et al., 2010; Eibl and Engel, 2015).
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This implies the main research question of this pa-
per: How does the time granularity of coarse-grained
load profiles influence the privacy of individual house-
holds with respect to the identification of household-
specific socio-demographic characteristics? Prior re-
search has addressed facets of this question: (i) (Eibl
and Engel, 2015) analyzes the influence of time gran-
ularity on the inference of private information about
households; (ii) (Beckel et al., 2013; Beckel et al.,
2014; Hopf et al., 2016) focus on the identification
of socio-demographic characteristics from 30-minute
load profiles.

Despite existing literature frequently highlighting
the need for further research, the specific impact of
time granularity on privacy, particularly for load pro-
files with intervals of 15 minutes or coarser in pre-
dicting socio-demographic characteristics, remains un-
derstudied (Alahakoon and Yu, 2016; Wang et al.,
2019b; Asghar et al., 2017). This paper addresses this
gap by examining the privacy influence of various
time granularities in weekly load profiles, from 15
minutes to 7 days, on the identification of household-
specific socio-demographic characteristics. The study
is conducted using 1,589 suburban load profiles col-
lected over one year, offering new insights into how
time granularity affects privacy in the context of socio-
demographic prediction.

In contrast to existing methodologies that focus
on training and evaluating one specific week or use
an entire year’s data for prediction, our method tries
to predict socio-demographic characteristics from ar-
bitrary weeks of the year. This complexity requires
the classification algorithm to take into consideration
various seasonal changes, intensifying the challenge
of the prediction task.

The paper is structured as follows: Section 2 ex-
plores relevant literature and Section 3 formally de-
fines the problem being addressed. Section 4 outlines
the methodology for predicting socio-demographic fea-
tures from weekly load profiles. Section 5 details our
findings, Section 6 compares them to existing methods
and discusses implications. Finally, Section 7 com-
pletes the study, highlighting conclusions and future
research.

2 RELATED WORK

Most existing research focuses on NILM, which disag-
gregates household consumption into individual appli-
ance loads using fine-grained data with second-level
granularity (Zeifman and Roth, 2011; Zoha et al.,
2012; Armel et al., 2013; Pathak et al., 2018; Kim
et al., 2011; Kolter and Jaakkola, 2012; Fan et al.,

2013). While this approach provides detailed insights,
it also raises significant privacy concerns, as fine-
grained data can reveal sensitive information such as
appliance usage, occupancy patterns, and daily rou-
tines (Lisovich et al., 2010; Molina-Markham et al.,
2010; Greveler et al., 2012; Chicco, 2016; Eibl and En-
gel, 2015). Additionally, some studies have explored
the privacy risks related to detecting specific proper-
ties, such as appliance detection (Chen et al., 2013;
Kleiminger et al., 2013; Kleiminger et al., 2015).

In contrast, this work explores coarse-grained data
from several hundred households, with time intervals
of 15 minutes or coarser, a format aligned with Euro-
pean Commission guidelines for smart meters (Com-
mission, 2012). Prior research on coarse-grained pro-
files has largely focused on small datasets of 5-30
households, examining patterns such as daily consump-
tion, routines, and consumption forecasting using inter-
vals ranging from 15 minutes to one day (Verdu et al.,
2006; Silva et al., 2011; Abreu et al., 2012). Another
study explores the relationship between load profiles
and air temperature, analyzing hourly load profiles
from several hundred households (Birt et al., 2012).

Recent research has increasingly focused on pre-
dicting socio-demographic characteristics based on
household energy consumption behavior. (Beckel et al.,
2013) propose a classification method that predicts
properties such as floor area and the number of occu-
pants from more than 3,000 Irish load profiles, col-
lected at 30-minute intervals over a period of 1.5 years.
Their supervised classification system demonstrate
that most household properties could be accurately
predicted, achieving over 70 percent accuracy. In a
follow-up study, the authors extend their method by
incorporating regression techniques and enhancing fea-
ture extraction through the inclusion of temporal and
statistical characteristics of load profiles (Beckel et al.,
2014). Building on this work, (Hopf et al., 2016)
expand the feature set and further improve classifica-
tion accuracy to 80 percent using the same dataset.
Meanwhile, (Viegas et al., 2016) develop a more inter-
pretable and transparent approach by leveraging fuzzy
models, achieving over 70 percent accuracy in pre-
dicting the presence of children, although predictions
for household income and education level were less
accurate, with around 60 percent accuracy. Building
on these advancements in predicting household char-
acteristics, other studies have focused on identifying
the presence of specific appliances within households.
For instance, (Burkhart et al., 2018) and (Ferner et al.,
2019). explored the detection of swimming pools us-
ing load profiles from the same geographic region,.

The first major distinction of this work lies in the
methodological setting, specifically the training and
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evaluation process. Our approach builds on the feature
extraction technique proposed by (Beckel et al., 2014),
which utilized the Commission for Energy Regulation
(CER) dataset with a time granularity of 30 minutes
to classify socio-demographic characteristics such as
family home, large home, and house type. However,
there are two key differences between our work and
theirs: (i) While Beckel et al. primarily focused on as-
sessing data utility our focus shifts towards assessing
privacy preservation achieved through varying time
granularities. (ii) There is also a significant divergence
in the training methodology. Beckel et al. trained and
evaluated their model using data from the same week
(week 26). In contrast, we train our model using a
full year of data, organized into weekly snippets, and
then test it by predicting socio-demographic charac-
teristics for a single, arbitrary, and unknown week.
This introduces more variability and complexity, as
our model needs to account for seasonal fluctuations
and other temporal changes. While this approach pro-
vides more training data (52 weeks per household), it
also brings uncertainty in predicting characteristics for
an unknown week. By incorporating weeks from all
seasons, our goal is to improve the model’s ability to
generalize to any given week, regardless of seasonal
consumption variations. It turns out that our approach
leads to better performance values as described in more
detail in Section 6.

The second distinguishing factor is the evaluation
of how time granularity impacts the prediction perfor-
mance of socio-demographic information. Investiga-
tions into the influence of varying time granularities
are relatively scarce and predominantly focus on fine-
grained load profiles. For instance, (Huchtkoetter and
Reinhardt, 2020) demonstrated that temporal granu-
larity significantly impacts the accuracy of load disag-
gregation in the context of NILM, with the coarsest
resolution considered being 5 minutes. Similarly, (Her-
nandez et al., 2020) examined the importance of se-
lecting the appropriate temporal resolution for char-
acterizing household load profile features, using data
from four Spanish households. Their findings suggest
that high-resolution load profiles, with a granularity
of 0.5 seconds, are effective in capturing consumption
fluctuations across households. (Granell et al., 2015)
investigated the effect of temporal resolution on clus-
tering techniques applied to fine-grained data, using
an acquisition rate of 7-8 seconds from Bulgarian and
English households in 2010. Their study concluded
that granularity levels between 4 and 60 minutes yield
optimal clustering performance, with a notable decline
in effectiveness observed beyond 60 minutes.

The most related work in this area studies the im-
plications of time granularity on edge detection meth-

ods (Eibl and Engel, 2015). The investigation high-
lights that a decrease in the appliance use detection rate
occurs when the time interval between measurements
surpasses half of an appliance’s on-time. Additionally,
the authors demonstrate that an overall decrease in the
measurement time interval, indicating coarser granular-
ity, leads to weaker detection results. (Engel and Eibl,
2017) introduce an privacy-preserving approach for
non-intrusive load monitoring that exploits the privacy-
preserving property of decreasing time granularities
which was found in (Eibl and Engel, 2015). Load
data is transformed into multiple resolutions, and each
resolution is encrypted, ensuring end-to-end security
and access control. Additionally, the study examines
this multi-resolution method’s compatibility with other
privacy-enhancing technologies, offering greater flexi-
bility in preserving privacy.

Summarizing, this paper differs from most litera-
ture in two aspects: (i) the analysis of coarse-grained
electricity consumption profiles, with intervals ranging
from 15 minutes to 7 days from a large dataset with
1,589 households are examined and (ii) it is studied
how data-granularity influences the identification of
household-specific socio-demographic characteristics.

3 PROBLEM DEFINITION

In an attack scenario where a set of households’ elec-
tricity consumption data alongside matching socio-
demographic information is leaked or made publicly
available (e.g., the datasets used in (Beckel et al., 2013;
Beckel et al., 2014; Burkhart et al., 2018; Ferner et al.,
2019; Radovanovic et al., 2022)), an attacker has ac-
cess to weekly load profiles w for a set of households
h and their corresponding socio-demographic char-
acteristics. Consumption is measured in a specific
time granularities ∆t. The goal of the attacker is to
generate a classifier f ∆t that can predict a binarized
household-specific socio-demographic characteristic
(label) y from the available load profiles. The adver-
sary uses this classifier f ∆t to determine the label y
for an unknown household given a weekly energy con-
sumption snippet cw̃,∆t of an arbitrary week w̃ of the
year. Formally, the classifier is a function

f ∆t : R n →{0,1} : cw̃,∆t 7→ y (1)

Consequently, this classifier may then be ap-
plied to weekly load profiles without matching socio-
demographic characteristics available, posing poten-
tial privacy concerns. The number of values n of
the weekly consumption snippet decreases when time
granularity ∆t gets coarser.
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2. Decrease Resolution 3. Feature Extraction
4. Classification
5. Evaluation1. Preparing Weekly Snippets

family_home

large_home

sauna

...

Figure 1: Methodological overview consisting of 5 steps: 1. preparing weekly snippets, 2. decrease of temporal resolution, 3.
feature extraction, 4. classification, 5. evaluation.

The goal of this paper is to study the influence
of the time granularity ∆t on the classification perfor-
mance. The expectation is that, similar to existing
literature, the classifier f ∆t gets worse as the time gran-
ularity ∆t is increased.

4 EXPERIMENTAL SETUP &
METHODOLOGY

Supervised machine learning techniques are employed
to assess how different time granularities of load pro-
files impact the prediction of household-specific socio-
demographic characteristics. The methodology, illus-
trated in Figure 1, consists of five stages: preparing
weekly snippets, decrease of temporal resolution, fea-
ture extraction, classification, and evaluation. Details
on the selection of household-specific characteristics
and the data preparation are provided in Sections 4.2
and 4.3. Next, Section 4.4 addresses reducing the time
granularity of load profiles, followed by feature ex-
traction (Section 4.5), classification (Section 4.6), and
evaluation (Section 4.7).

Before providing a step-by-step description of
the methodology, Section 4.1 offers an overview
of the dataset, which includes 15-minute load pro-
files collected over a year and their associated socio-
demographic characteristics.

4.1 Dataset

The used dataset, PEAK Load Data, stems from a
field test, which collected electricity consumption pro-
files of 1,589 suburban households in Upper Austria
via smart meters between September 30, 2017 and
October 15, 2018. The field test aimed at testing var-
ious incentive schemes for motivating consumers to
shift loads towards times of high renewable production.
More information about the study and the collection

of the data can be found in (Radovanovic et al., 2022).
The acquired data contains accumulated 15-

minute load profiles and household-specific socio-
demographic characteristics e.g., household type,
household size, household appliances and heating type.
To put some of the suburban household characteristics
into perspective, the following statistics are illustrated:
The yearly average energy consumption per household
is 5,327 kWh, with the median being 4,409 kWh and a
standard deviation of 3,721 kWh. The average house-
hold size is 138 (mean), 130 (median) and 58 (standard
deviation) in square meters, respectively. With 2.8 and
1.2 residents per household, respectively.

4.2 Selection of Household-Specific
Characteristics & Class Labels

Table 1 shows some characteristics gathered during the
field test and their absolute frequencies, indicating the
number of positive and negative samples for each char-
acteristic. The selection of certain characteristics for
the prediction task is influenced by three main criteria:
First, their potential impact on privacy, with aspects
like household composition (e.g., family, single) iden-
tified as more sensitive compared to factors such as
heating type, as highlighted in (Beckel et al., 2012).
Second, we align our choice with characteristics used
in (Beckel et al., 2014) to maintain comparability with
existing classification results. Third, the imbalance
ratio of the characteristics is also considered, with a
threshold of five being chosen to ensure a balanced dis-
tribution of positive and negative samples, addressing
the data imbalance issue discussed in more detail in
Section 4.6. This approach enables a balanced analy-
sis of the bold characteristics, emphasizing enhanced
privacy considerations.

Preceding the utilization of these characteristics, la-
bel binarization is applied to multi-class or numerical
data for clarity. For instance, households are labeled as
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family home if they have more than two residents, and
as large home if the living area exceeds 100 square me-
ters (Beckel et al., 2014). This labeling is consistently
applied across the dataset, with socio-demographic
details repeated for all 52 weekly data snippets in the
classification task.

Table 1: List of household-specific characteristics and their
number of positive and negative samples, respectively.

Characteristic Number
Positives

Number
Negatives

Imbalance
Ratio

family home 595 613 1.03
dryer 713 495 1.44
heat pump 400 808 2.02
split house 829 379 2.19
large home 831 377 2.20
deep freezer 868 340 2.55
pool 328 880 2.68
apartment 283 925 3.27
gas heating 280 928 3.31
electric water 274 931 3.40
sauna 256 952 3.72
home owned 967 241 4.01

4.3 Preparing Weekly Snippets

The preprocessing steps included: (i) removing house-
holds with excessive missing data, (ii) grouping load
profiles into weekly snippets, and (iii) selecting and bi-
narizing labels for classification. The original dataset
comprises 1,589 households, but due to missing data
from issues like meter disruptions or changes, the num-
ber of usable households is reduced to 1,208. Only
data from a common period of 52 full weeks (Octo-
ber 2, 2017, to September 29, 2018) is used to ensure
seasonal coverage and comparability. Each house-
hold’s yearly load profile is then regrouped into 52
weekly snippets (Beckel et al., 2014; Radovanovic
et al., 2022). With the original 15-minute time gran-
ularity, this results in a data matrix of size n × m
with n = 1,208 ·52 = 62,816 and m = 7 ·24 ·4 = 672,
where n describes the number of household-week com-
binations and m represents the number of consumption
measurements for these weekly load profiles.

4.4 Decrease of Temporal Resolution

Prior to analyzing the privacy influence of differ-
ent time granularities, it is necessary to generate
load profiles with coarser granularity. The prepro-
cessed data with 15-minute intervals, shaped as n×m
(1,208 ·52×7 ·24 ·4), is used as input. Aggregation is
performed by summing the consumption values within

each time interval. For instance, increasing the granu-
larity from 15 minutes to 30 minutes involves summing
the two measurements in that interval. This process
changes the shape of the data matrix, reducing the
number of measurements, m, based on the new time in-
terval ∆t. For a 30-minute granularity (∆t2), the matrix
has m = 336 (7 ·24 ·2) data points, halving the original
value of m. This procedure is applied for all resolu-
tions in Figure 3, generating a separate data matrix
with n = 1,208 ·52 and varying m for each ∆t.

4.5 Feature Extraction

Feature extraction, essential for classification, trans-
forms preprocessed data into a more efficient for-
mat (Bishop, 2006), generating load-profile-specific
features for each household across all time granular-
ities (∆t) and household-week combinations. Three
initial approaches are explored: automated extraction
using the ts-fresh1 library, autoencoder-based encod-
ing, and manual feature crafting. The handcrafted
approach was prioritized for its ability to simplify the
feature space and enhance interpretability, and align
with previous work, specifically adapting features from
Beckel et al. (Beckel et al., 2012; Beckel et al., 2013;
Beckel et al., 2014) for comparability.

Table 2 lists 35 off-the-shelf numerical charac-
teristics, consisting of five categories: (i) consumption
characteristics, (ii) ratios of consumption characteris-
tics, (iii) temporal dynamics, (iv) statistical properties,
and (v) the first ten principal components. These fea-
tures span from daily consumption aggregates and
comparative ratios between different times, to event-
specific markers and statistics, including variance and
the frequency of peaks. The focus on event-specific
markers and statistical features, especially those high-
lighted in bold, illustrates their heightened sensitivity
to load profiles at finer, 15-minute intervals. This dis-
tinction underscores the greater depth and detail in
analyzing consumption patterns at these finer granu-
larities, compared to the broader, more generalized
insights derived from coarser, hourly data. For in-
stance, a water cooker’s peak energy consumption is
detectable at 15-minute granularity but remains invisi-
ble at one-hour granularity.

Most statistical methods for computing load-
profile-specific features assume a normal distribu-
tion (Osborne, 2002; Beckel et al., 2014). To align
with this assumption, we apply the same transforma-
tion functions as in (Beckel et al., 2014). Features
that could result in undefined expressions, such as
dividing zero by zero, are replaced with zero. For in-
stance, when only a single electricity consumption is

1https://tsfresh.readthedocs.io
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Table 2: List of features that are used for the classification, initially proposed by Beckel et. al (Beckel et al., 2014). Except for
the first two features, c total and c weekend, all of the listed features are computed only over the 5 working days (Monday to
Friday). The last column shows the maximum resolution up to which the corresponding feature is computable.

Feature Category Feature Description Max.
Resolution

(1) Consumption
c total Total consumption of one week including the

weekend
7 days

c weekend Total consumption of the weekend Saturday and
Sunday

2 days

c workday Total consumption of the 5 workdays Monday to
Friday

5 days

c daytime Total consumption during daytime (6 a.m. - 10
p.m.)

4 hours

c morning Total consumption of mornings (6 a.m. - 10 a.m.) 4 hours
c noon Total consumption around noon (10 a.m. - 2 p.m.) 4 hours
c evening Total consumption in evening time (6 p.m. - 10

p.m.)
4 hours

c night Total consumption during night time (1 a.m. - 5
a.m.)

4 hours

c max Maximum consumption value at workdays 5 days
c min Minimal consumption value at workdays 5 days

(2) Ratios
r mean/max Mean consumption divided by maximum con-

sumption
5 days

r min/mean Minimum consumption divided by mean con-
sumption

5 days

r morning/noon Morning consumption divided by consumption
around noon

4 hours

r evening/noon Evening consumption divided by consumption
around noon

4 hours

r noon/day Consumption around noon divided by daytime
consumption

4 hours

r night/day Night consumption divided by daytime consump-
tion

4 hours

r workday/weekend Workday consumption divided by weekend con-
sumption

2 hours

(3) Temporal
t above 0.5kw Proportion of time, where consumption ex-

ceeds 0.5 kW
5 days

t above 1kw Proportion of time, where consumption ex-
ceeds 1 kW

5 days

t above 2kw Proportion of time, where consumption ex-
ceeds 2 kW

5 days

t above mean Proportion of time, where consumption ex-
ceeds the mean

5 days

(4) Statistical
s variance Variance of all weekly consumption values 3 days
s diff Sum of changes compared to previous days 3 days
s x-corr Cross-correlation of subsequent days 12 hours
s number peaks Number of peaks over the week 3 days

(5) PCA Components
PCA1 First principal component 5 days
PCA2, . . . ,PCA10 Principal components 2 to 10 12 hours

recorded per day, ratios like evening/noon consump-
tion (r evening/noon) cannot be calculated. Table 2
lists the maximum resolution up to which all 35 fea-

tures can still be computed.
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4.6 Classification

Supervised machine learning techniques are used to
classify house- hold-specific socio-demographic char-
acteristics. This involves training a model to differenti-
ate between two classes (positive and negative) based
on extracted features from the training data. Essen-
tially, the classifier learns the relationship between an
input feature vector and the corresponding class label.
For training and evaluation, a subset of known class
labels (Table 1) and their associated feature vectors
(Table 2) is computed.

A significant challenge when working with field
test data, such as the dataset described in Section 4.1,
is the class imbalance for certain characteristics, as
shown in Table 1. For instance, there are 256 house-
holds with a sauna and 952 without. Classifiers trained
on such imbalanced labels may exhibit bias, incor-
rectly assigning samples from the minority class to the
majority class. Previous studies have demonstrated
that this class imbalance negatively affect the per-
formance of certain classifiers (Beckel et al., 2013;
Beckel et al., 2014).

To mitigate this issue, data undersampling is ap-
plied during training, a common method for handling
class imbalances (Japkowicz, 2000; He and Garcia,
2009). In this approach, random samples from the
overrepresented class are removed to ensure that both
positive and negative classes are equally represented,
with the sample size adjusted to match that of the un-
derrepresented class. Importantly, this undersampling
is only applied to the training and validation sets, leav-
ing the test set unaffected for proper evaluation.

Numerous classifiers suitable for binary clas-
sification tasks are well-documented in the litera-
ture (Bishop, 2006), differing in their implementation
and computational complexity. In this study, three
classifiers have been selected: (i) the XGBoost classi-
fier (Chen and Guestrin, 2016), (ii) the support vector
machine (SVM) (Hearst et al., 1998) and (iii) a simple
version of a neural network, the multi layer perceptron
(MLP) (Haykin, 1998). These classifiers are used as
off-the-shelf algorithms and are applied without in-
depth parameter-optimization. XGBoost is chosen as
the primary classification method to enable a detailed
analysis of feature importance and relationships.

4.7 Evaluation Measures

In the domain of supervised machine learning, the
accuracy, defined as the ratio of the number of cor-
rect classifications to the total number of samples, is a
commonly used metric for evaluating classifier perfor-
mance (Sokolova and Lapalme, 2009). The accuracy

can be calculated as follows:

ACC =
T P + T N

T P + T N + FP + FN
. (2)

TP, FN, FP, and TN represent the number of sam-
ples that are correctly predicted as positive, incorrectly
predicted as negative, incorrectly predicted as posi-
tive, and correctly predicted as negative, respectively.
Precision and recall are calculated as follows:

Precision =
T P

T P + FP
, Recall =

T P
T P + FN

.
(3)

Thus, the F1 score is defined as:

F1 = 2 · Precision · Recall
Precision + Recall

. (4)

Accuracy and F1 score are commonly used statistics
that represent the proportion of correct predictions and
the harmonic mean of precision and recall, respectively.
Although widely used for binary classification, these
metrics can give overly optimistic results, particularly
with imbalanced datasets (Chicco and Jurman, 2020).

For a more informative evaluation, especially when
dealing with an imbalanced dataset as mentioned in
Section 4.6 and shown in Table 1, the MCC (Matthews
Correlation Coefficient), also known as the phi coeffi-
cient, is computed. The coefficient takes into account
true and false positives and negatives, making it a
balanced measure suitable for the evaluation of im-
balanced class sizes. MCC values range from -1 to
+1, where +1 indicates a perfect classifier, 0 repre-
sents random predictions, and -1 signifies complete
disagreement between the classifier’s predictions and
the actual labels (Matthews, 1975). In the context of
binary classification, the MCC is computed as follows:

MCC = T P·T N−FP·FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

.

(5)

5 RESULTS

This section presents the influence of time granularity
on predicting household-specific socio-demographic
characteristics, using the MCC as the key evalua-
tion metric. Figure 2 shows the performance of the
XGBoost classifier, with each line representing a spe-
cific characteristic. The y-axis shows the scaled MCC
(0 to 1, where 0 indicates random guessing and 1 signi-
fies perfect prediction), and the x-axis represents time
granularities from 15 minutes to 7 days.

By systematically increasing the time granularity
of the load profiles, a noticeable decline in the predic-
tion performance for all selected socio-demographic
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Figure 2: Matthews Correlation Coefficient (MCC) for the classification result of the XGBoost classifier for all time granularities.
The colors represent the household-specific socio-demographic characteristics listed in the legend.

characteristics has been observed. For time granular-
ities ranging from 15 minutes to one hour, the pre-
diction performance remains consistent and achieves
similar results. However, beyond one hour, a drop
in accuracy is observed for most characteristics, ex-
cept for home owned and sauna. For example, fam-
ily home starts with an MCC of 0.57 at 15 minutes
and declines to 0.54 at one hour. To put this in to per-
spective, an MCC falling within the range of +0.7 to
+0.4 is generally considered to signify moderate clas-
sification performance, while +0.2 to +0.4 indicates
moderate performance. MCC values near 0 suggest
random guessing, and those below +0.2 indicate poor
classification (Chicco et al., 2021).

Between a time-granularity of 2-hour and 24-
hour, the prediction performance for all selected
socio-demographic characteristics drops, significantly.
Sauna and swimming pool performs not as consistent
as the other characteristics for this time-granularity
range. For instance, the performance of the swim-
ming pool drop considerably between 6 hours and 12
hours and increases slightly between 12 and 24 hours.
Whereas, the sauna illustrates the contrary trend and
increases slightly between 6 and 12 hours, followed
by a huge drop from 12 to 24 hours. Beyond 24 hours,
the trends remain relatively stable, with no significant
changes for most characteristics.

A similar decline in performance over time is ob-
served for the MLP and SVM classifiers, although their
overall prediction performance is lower compared to
XGBoost. The trend across time granularities remains
consistent with what is shown in Figure 2. Due to

space limitations, detailed plots for the MLP and SVM
classifiers are provided separately in the Git repository.

Figure 3 shows a precision-over-recall analysis
for the socio-demographic characteristics large home
(left) and swimming pool (right) using the XGBoost
classifier. These characteristics have been chosen due
to their prominence in the literature (see Section 6).
The x-axis represents recall, indicating the proportion
of actual positives correctly identified, while the y-
axis represents precision, reflecting the proportion of
correct positive predictions.

The symbols illustrate the variation in prediction
performance with different time granularities. The
cross symbol (X) indicates the level of biased random
guessing, whose performance increases with higher
imbalance ratio of the class labels. For both charac-
teristics an increase of the time granularity reduces
both precision and recall. The impact is less severe for
large home, a more stable characteristic, compared to
swimming pool which is more variable. Despite the
decline, the classifier’s performance performance re-
mains above random guessing for both characteristics.

6 DISCUSSION & COMPARISON
TO RELATED WORK

In this section, we first summarize the results, followed
by a discussion of the limitations and a comparison
of our methodology with the most similar existing ap-
proaches. If a decision has to be made concerning the
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Figure 3: Prediction performance of the XGBoost classifier as a precision-over-recall plot for large home and swimming pool.
Legend symbols represent different time granularities, with the cross symbolizing biased random guessing, visible for
large home but outside the range for swimming pool, where Recall and Precision are around 0.3.

granularity of collected load data, our findings suggest
that use cases which require data minimization or max-
imum privacy may use one-hour data without loss of
classification performance. Conversely, for use cases
which require maximum granularity (15 minutes), e.g.,
for legal or regulatory reasons, no better prediction
performance is achieved by using higher granularity.

Best results regarding prediction performance
are exhibited for the household characteristics
heat pump heating, apartment and large home with
values between 0.6 and 0.65, when relying on weekly
snippets with 15-minute time granularity. While vary-
ing MCC values are reported for the eight examined
household characteristics, the consistent decline in the
prediction performance across all characteristics indi-
cates that the type of characteristic being predicted is
not the most significant factor in the trade-off between
data utility and privacy preservation. Instead, it sug-
gests that the increase in time granularity may play a
more significant role in the change of the performance.

The approach here is limited by possible inaccu-
racy of the ground truth as the answers provided by
the participants in the questionnaire may be incorrect,
unclear, or based on estimation. Furthermore, utiliza-
tion information about household characteristics for
all single weeks is missing: the data does not specify
in which week each socio-demographic characteristic
is utilized. While some characteristics to predict are
constant for each week in the year, such as the floor
space of a house or the type of the household (apart-
ment, split house), others may fluctuate such as the

number of residents present in a week (family home)
or the types of appliances in use in a given weekly snip-
pet (swimming pool or sauna). However, the dataset
is not labeled week-by-week, which prompted us to
construct labels for each week from the information
given for a household’s yearly load profile. It is to be
noted that this results in some weeks possibly being
mislabeled or not containing the necessary information
for the classifier to perform an informed decision on
whether a certain fluctuating characteristic is present in
an arbitrary week or not. In spite of this, the classifica-
tion results for all eight examined socio-demographic
household characteristics are above what is expected
from random guessing.

The approach here is also limited as it considers
features taken from (Beckel et al., 2014) which were
constructed with a time-resolution of 30 minutes as
underlying resolution in mind. Most of the computed
features are designed to capture special daily periods
i.e., the total consumption in the evening or the ratio
between the total consumption of the morning and the
total consumption of the noon. Here, these features
are used even with coarser granularities than 24 hours,
e.g., 2 days, 3 days, and 7 days. The definition of
features that are able to capture similar information
over coarser time granularities then 24 hours is future
work and need to be investigated.

As already stated in Section 2, it was not clear,
whether our methodology that uses training data of one
year and predicts a single, arbitrary week of the year
is better than the one from (Beckel et al., 2014) where
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training and testing data are from the same, single
week of the year. It turns out that our approach leads
to better performance values: the figures in (Beckel
et al., 2014) show MCC values < 0.4 for the labels
familyhome (0.34), largehome (0.18), and housetype
(0.2), classified with the SVM. Our approach leads
to values up to 0.65 at the same time granularity of
30 min which are consistently higher for those labels.
While the definition of the labels are not exactly the
same it should be noted that (i) we tried to mimic the
labels from (Beckel et al., 2014) as good as possible to
enable a fair comparison (for example we did not have
information about children in our dataset) and (ii) the
choice of the thresholds did not include any kind of op-
timization with respect to classification performance.

The influence of time granularity on socio-
demographic features differs significantly from that
on appliance detection, as shown in the comparison
with (Eibl and Engel, 2015). In their study, time gran-
ularity starts at 3 seconds, and except for light usage,
privacy is largely preserved at our coarsest granularity
of 15 minutes. Additionally, privacy is achieved differ-
ently: while their privacy gains stem from a decrease
in recall with stable precision, in our case, both recall
and precision decline with coarser time granularities
(Figure 3).

Our prediction performance compares well
with (Ferner et al., 2019) and (Burkhart et al., 2018),
where swimming pool existence have been predicted
using load profiles from a whole year. Despite our
use of only a single week’s data and standard features
from (Beckel et al., 2013), our approach remains com-
petitive. For instance, while Ferner et al. achieved
0.93 accuracy and 0.67 precision using SVM with
Gaussian and handcrafted features, we obtained an
overall precision of 0.63 and accuracy of 0.81 at the
same 15-minute granularity (Ferner et al., 2019). With
XGBoost, however, we achieve nearly the same accu-
racy of 0.92.

7 CONCLUSION & OUTLOOK

We introduce a novel evaluation methodology tai-
lored for the prediction of household-specific socio-
demographic characteristics, utilizing load profiles
with varying time granularities, all obtained from a
single, randomly chosen week within one year. This
sets our methodology apart from existing methods,
which either choose a specific week of the year for
both training and evaluation or employ an entire year’s
worth of data for prediction. Despite the increased
complexity of randomly selecting a week within a
year for prediction, our classification algorithm demon-

strates improved performance for a selected subset of
household-specific socio-demographic characteristics
in comparison to the utilization of a single known week
and the application of an entire year’s data.

Our findings also indicate that, as time granu-
larity becomes coarser, progressing from 15 min-
utes to 7 days, the prediction performance for socio-
demographic characteristics generally declines notice-
ably, as expected. However, we observe two plateaus:
First, surprisingly, one-hour granularity exhibits pre-
diction performance comparable to that of 15-minute
granularity. Second, the prediction performance be-
tween 24 hours and 7 days of time granularity remains
nearly constant, possibly due to the customized design
of the numerical characteristics extracted from load
profiles during feature extraction. Both plateaus mean
that there are multiple intervals of granularities within
which detection performance varies only to an insignif-
icant extent. Consequently, depending on the use case,
the coarsest, the finest or any granularity within such
an interval can be chosen to achieve desired classifica-
tion performance.

One limitation of our work is the custom design,
which restricts the information captured by numerical
characteristics for granularities over 24 hours. Future
research should address this and explore novel numeri-
cal representations for weekly load profiles to improve
the balance between data utility and privacy. Addition-
ally, incorporating advanced techniques like recurrent
autoencoders and deep neural networks could further
enhance feature extraction. One further approach for
investigation pertains to whether the observed trends
remain consistent when handling monthly, quarterly,
or yearly data snippets. Finally, there is significant
room for improvement concerning the correct match-
ing of weekly load profiles to their associated socio-
demographic characteristics. We assume the charac-
teristics to be constant for the whole year, even if the
presence of some characteristics (e.g. the use of appli-
ances such as sauna or swimming pool, or the number
of residents present in a given week) may fluctuate
over the course of a year, leading to incorrect training
results for the classifier employed. This would require
new datasets with weekly logging of appliance uses.
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