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Abstract: In semantic segmentation, the creation of pixel-level labels for training data incurs significant costs. To address
this problem, semi-supervised learning, which utilizes a small number of labeled images alongside unlabeled
images to enhance the performance, has gained attention. A conventional semi-supervised learning method,
ClassMix, pastes class labels predicted from unlabeled images onto other images. However, since ClassMix
performs operations using pseudo-labels obtained from unlabeled images, there is a risk of handling inaccurate
labels. Additionally, there is a gap in data quality between labeled and unlabeled images, which can impact
the feature maps. This study addresses these two issues. First, we propose a method where class labels
from labeled images, along with the corresponding image regions, are pasted onto unlabeled images and
their pseudo-labeled images. Second, we introduce a method that trains the model to make predictions on
unlabeled images more similar to those on labeled images. Experiments on the Chase and COVID-19 datasets
demonstrated an average improvement of 2.07% in mIoU compared to conventional semi-supervised learning
methods.

1 INTRODUCTION

In recent years, with advancements in image recogni-
tion technology, various models have been proposed,
such as the fully convolutional network FCN (Long
et al., 2015), encoder-decoder structures like Seg-
Net (Badrinarayanan et al., 2017) and U-Net (Ron-
neberger et al., 2015), and the more advanced
Deeplabv3+ (Chen et al., 2018). However, a large
amount of labeled data is generally required when
performing image recognition using deep learning.
Among these tasks, semantic segmentation is partic-
ularly demanding as it requires pixel-level labeling,
making the preparation of a large dataset of labeled
images costly.

In recent years, when using a large amount of la-
beled images, it has become possible to achieve high
accuracy. However, when training with only a small
number of labeled images, the accuracy significantly
decreases. In real-world applications, it is desirable
to reduce high costs by achieving high accuracy with
only a limited number of labeled images. Against
the background, a learning method called semi-
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supervised learning, which utilizes a small amount of
labeled images alongside unlabeled images for model
training, has garnered attention.

In semi-supervised segmentation, a technique
called pseudo-labeling (Lee et al., 2013) is the domi-
nant approach. Semi-supervised segmentation heav-
ily relies on the quality of these pseudo-labels. In
medical imaging, which is the focus of this paper,
there is often a significant class imbalance, making it
difficult to predict rarely occurring classes, which in
turn degrades the quality of pseudo-labels. Further-
more, since the model learns by treating the predicted
pseudo-labels as ground truth, incorrect learning can
lead to decreased accuracy. Therefore, when learning
rare classes, it is crucial to ensure proper learning in
the limited opportunities available.

A conventional semi-supervised segmentation
method is ClassMix (Olsson et al., 2021). ClassMix
involves cutting out the region of a randomly selected
half of the predicted classes (e.g., one class if there
are two) from one image and pasting it onto another
image. By considering the shape of the class during
the cut-and-paste process, ClassMix helps the model
learn semantic boundaries between classes more ef-
fectively. However, ClassMix has two major issues.
The first issue is that it performs ClassMix using pre-
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dictions on unlabeled images. When ClassMix uses
the prediction results for unlabeled images, the accu-
racy of the mixed images becomes dependent on the
model’s prediction accuracy for unlabeled images. If
the model makes incorrect predictions, the quality of
the mixed images deteriorates. The second issue is
that the regions of half the classes are selected ran-
domly. Especially, since the background class has a
large number of samples, it is likely to already have
high accuracy. Therefore, learning by pasting classes
that are already predicted with high accuracy does
not provide much benefit. Additionally, rare classes
are less likely to become pseudo-labels because their
prediction confidence remains low until learning pro-
gresses. This approach is not effective in datasets with
significant class imbalances. To address these two is-
sues, we propose a method called Supervised Class-
Mix (SupMix).

SupMix mixes regions except for background
class, which has a large number of samples from la-
beled images, into pseudo-labels from unlabeled im-
ages. By attaching labels from different labeled im-
ages to the pseudo-labels, the accuracy of the pseudo-
labels is improved without relying on the model’s pre-
diction accuracy, thereby addressing the issue of low
accuracy in the initial pseudo-labels. Furthermore, by
pasting regions other than background class from la-
beled images onto different unlabeled images, class
imbalance can be mitigated. This helps to address the
second issue of class imbalance.

In the research on semi-supervised learning, the
domain gap between labeled and unlabeled images is
often not considered. However, in real-world scenar-
ios, there is an abundance of unlabeled images. If
this domain shift can be properly addressed, semi-
supervised learning can integrate more knowledge
from unlabeled images. Therefore, this study focuses
on minimizing the domain gap between predictions
from labeled and unlabeled images. Specifically, we
use a Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) to train the model so that the fea-
ture maps obtained from labeled images and those
from unlabeled images are indistinguishable. By re-
ducing the domain gap between the features extracted
from labeled and unlabeled images, the model can ef-
ficiently acquire information from the unlabeled data,
ultimately leading to improve the accuracy.

We conducted experiments on the Chase (Guo
et al., 2021; Fraz et al., 2012) and COVID-
19 (QMENTA, 2020) datasets. Our goal was to im-
prove the accuracy over UniMatch (Yang et al., 2023),
a good precision method in semi-supervised segmen-
tation. We compared the performance of UniMatch
with our proposed method under conditions where

only 1/4 and 1/8 of the total labeled images were used.
Across all datasets, our proposed method achieved
higher mIoU than the UniMatch. For the Chase
dataset, when we use 1/8 of the total labeled images,
the IoU for the class with a small number of samples
“retinal vessel” improved by 3.30% compared to Uni-
Match. When 1/4 of the labeled images is used, the
IoU for “retinal vessel” increased by 2.63%. In the
COVID-19 dataset, the IoU for the the class with a
small number of samples “ground-glass” improved by
10.7% when we use 1/8 of the labeled images, and by
4.76% compared to UniMatch when 1/4 of the labeled
images is used.

The structure of this paper is as follows: In Sec-
tion 2, we discuss related researches. Section 3 ex-
plains the details of the proposed method. In Section
4, we present experimental results and provide a dis-
cussion. Finally, Section 5 concludes the paper and
outlines future challenges.

2 RELATED WORKS

2.1 Consistency Regularization

Consistency regularization frameworks (Jeong et al.,
2019; Chen et al., 2021b; Zou et al., 2021) are based
on the idea that the predictions of unlabeled images
should remain invariant even after applying augmen-
tations. A common technique in classification tasks
is called augmentation anchoring. Consistency regu-
larization involves training in such a way that the pre-
dictions of augmented samples are forced to be con-
sistent with the predictions the original unaugmented
images. Our method utilizes this augmentation an-
choring technique. The model is trained to maintain
consistency between pseudo-labeled images, which
are predictions of unlabeled images with weak aug-
mentations, and synthetic images created by pasting
the class shape of labeled images onto the pseudo-
labeled images (SupMix). By using labeled images,
the accuracy of the labels improves, ultimately lead-
ing to better overall performance.

2.2 Augmentation Methods

The Cutout (Devries and Taylor, 2017) algorithm is
a technique that masks a square region within an im-
age. By hiding specific partial areas, the model is en-
couraged not to rely on any particular region, allow-
ing for a better understanding of the overall meaning
of the image. The Random Erasing (Zhong et al.,
2020) algorithm, on the other hand, removes ran-
dom rectangular areas. Unlike Cutout, it does not
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restrict itself to squares, and the size and location
of the erased regions are determined randomly. The
Mixup (Zhang et al., 2018) algorithm is a method that
linearly mixes two images and their corresponding la-
bels, enabling the model to learn intermediate repre-
sentations and become more robust to diverse data.
The CutMix (Yun et al., 2019) algorithm blends two
different images by cutting out a random rectangular
region from one image and pasting it onto another.
CutMix also mixes the labels of both images based
on the proportion of the rectangular area.

ClassMix (Olsson et al., 2021) is an augmentation
technique where randomly selected classes predicted
from one image are cut out and pasted onto another
image. Unlike CutMix, which cuts out a random rect-
angular region, leading to differences in context be-
tween the cut-out image and the destination image,
making learning more difficult, ClassMix considers
the shape of the class when cutting and pasting. This
allows the model to learn the semantic boundaries of
each class more effectively. However, conventional
ClassMix relies on predictions from unlabeled im-
ages, which introduces the problem of depending on
the prediction accuracy of those unlabeled images. To
address this issue, we propose to paste a small num-
ber of classes from labeled images instead of relying
on predictions from unlabeled images, which helps
maintain the quality of pseudo-labels.

2.3 Adversarial Methods

Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014) are used in various tasks beyond im-
age generation, such as semantic segmentation (Chen
et al., 2021a; Tsuda and Hotta, 2019) and appearance
inspection (Schlegl et al., 2017; Zenati et al., 2018;
Akcay et al., 2019), and have achieved strong per-
formance. In the field of semi-supervised semantic
segmentation, several methods leveraging GANs have
also been proposed.

The first adversarial approach (Souly et al., 2017)
used in semi-supervised semantic segmentation in-
volves the generator increasing the number of sam-
ples available for training, while the discriminator
also acts as the segmentation network. The output
of the discriminator classifies each pixel as belong-
ing to a correct class or a fake class. This enables the
segmentation network to improve the ability to dis-
tinguish between real (supervised and unsupervised
samples) and generated samples. By treat supervised
and unsupervised samples as the same class in dis-
criminator, the method makes close the features of
supervised and unsupervised samples indirectly.

However, none of the existing methods directly

consider the domain gap between labeled and unla-
beled images. Therefore, we aim to reduce the do-
main gap between the predictions of labeled and un-
labeled images. To achieve this, we pass both labeled
and unlabeled images through the model to obtain
feature maps and then feed them into a discrimina-
tor, training it to distinguish between the two. The
segmentation model is trained in such a way that it
becomes difficult to differentiate whether the feature
maps are from labeled or unlabeled images. This ap-
proach allows us to extract rich information from a
large amount of unlabeled images, and we believe that
it leads to improve the accuracy.

3 PROPOSED METHOD

We focus on semi-supervised segmentation, particu-
larly with imbalanced medical datasets. We attempted
two improvements. The first challenge is a modifica-
tion of ClassMix (Olsson et al., 2021) described in
Section 3.1. The second challenge is to address the
domain gap between the feature maps of labeled and
unlabeled images. This is explained in Section3.2.

3.1 Supervsed ClassMix(SupMix)

We focus on enhancing ClassMix. First, as a prelimi-
nary step for the subsequent improvements, we intro-
duce ClassMix and clarify the issues. As shown on
the left of Figure 1, ClassMix is a technique where
half of the predicted classes from one image are ran-
domly selected, and their corresponding regions are
cut out and pasted onto another image. This method
cuts and pastes regions while considering the shapes
of the classes, allowing for more accurate learning
of the semantic boundaries of each class. We will
now introduce the ClassMix algorithm. First, we
prepare two unlabeled images, xA ∈ R3×H×W and
xB ∈ R3×H×W , where H and W represent the height
and width of the images. The two unlabeled im-
ages xA and xB are then fed into a model f (such as
DeepLabv3+ (Chen et al., 2018) specialized for seg-
mentation).

yA = Argmaxc( f (xA)) (1)
yB = Argmaxc( f (xB)) (2)

where yA ∈ RH×W and yB ∈ RH×W represent the pre-
dicted class labels obtained by passing the input im-
ages through the model. Additionally, we retrieve the
number of classes Ĉ present in yA and randomly select
half of those classes. For an even number of classes
(e.g., 2 classes), 1 class is selected. For an odd num-
ber of classes (e.g., 3 classes), half of the classes are
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Figure 1: Comparison between the conventional ClassMix and the proposed SupMix. ClassMix is mixing images between
images and their segmentation predictions. In contrast, SupMix pastes regions from a few classes in labeled images onto the
pseudo-labels of unlabeled images. The accuracy of the pseudo-labels mixed by SupMix is improved by using labeled images
and pasting them onto unlabeled images with pseudo-labels. Since the ground-truth labels are independent of the prediction
accuracy, only a few classes must be pasted onto the unlabeled images and pseudo-labels.

selected by discarding the decimal part (e.g., 1 class).

ĉ =
Ĉ
2

(3)

By using only the selected class ĉ from the
pseudo-label yA of the unlabeled input image xA, a
binary mask MA ∈ RH×W is generated.

MA =

{
1 if yA ∈ ĉ
0 otherwise

(4)

Finally, by using the binary mask, we generate the
synthesized input image xmix ∈ R3×H×W and the syn-
thesized pseudo-label ymix ∈ RH×W .

xmix = MA ⊙ xA +(1−MA)⊙ xB (5)

ymix = MA ⊙ yA +(1−MA)⊙ yB (6)

The synthesized input image xmix and the synthesized
pseudo-label ymix represent the outputs of the Class-
Mix algorithm.

However, ClassMix has two issues. The first issue
is that ClassMix is performed on both the unlabeled
images and pseudo-labels. Since yA and yB equation
6 are pseudo-labels obtained from unlabeled input im-
ages, the accuracy of ymix depends on the model’s ac-
curacy. As a result, if the model makes incorrect pre-
dictions, the accuracy of the mixed images will de-
crease (especially around the boundaries), making it
difficult to improve the model’s accuracy.

The second issue is that the classes for half the
number of all classes are randomly selected and cut
out for pasting. As shown in equation 3, randomly
selecting half number of classes can result in pasting

regions from classes with high accuracy into another
image, which reduces the effectiveness of training
even when high-accuracy classes are used. Further-
more, since pseudo-labels are used to select half of
the classes, classes with other than background class
tend to progress more slowly in training and are often
not included in the pseudo-labels. For these reasons,
ClassMix cannot adequately handle datasets with sig-
nificant class imbalance. To address these two issues,
we propose Supervised ClassMix (SupMix).

We present the overview of SupMix on the right
side of Figure 1. Unlike ClassMix, which pastes
pseudo-labels obtained from an unlabeled image onto
another unlabeled image’s pseudo-labels, SupMix
mixes regions of specific classes obtained from a la-
beled image into the pseudo-labels of a weakly aug-
mented unlabeled image. We define the labeled im-
age and its label as xl

A and yl
A, respectively. These are

subject to weak preprocessing such as cropping and
horizontal flipping. The key difference from Class-
Mix is the use of labeled data. Additionally, an un-
labeled image xu

B is prepared, which is subjected to
strong preprocessing (e.g., color jitter, blur, etc.). The
unlabeled image xu

B is passed through the model f to
generate the pseudo-label yu

B.

yu
B = Argmaxc( f (xu

B)) (7)

Next, the number of existing classes Cl is obtained
from the ground truth labels. SupMix allows select-
ing classes to paste from all classes in the ground truth
label, whereas ClassMix can only paste classes pre-
dicted within the pseudo-label Background class is
manually excluded, and we define this set as Cselected .
The reason for manually excluding the background
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class compared to other classes is that it appears fre-
quently during training due to its large number of
samples, inducing its learning effectiveness. After
excluding the background class, half of the remain-
ing classes are randomly selected, which we define as
cl

selected . This serves as a solution to the second issue.

cl
selected =

Cl
selected

2
(8)

A binary mask MA ∈ RH×W is generated from the
pseudo-label yl

A of the unlabeled input image xl
A, con-

taining only the selected class clselected.

Ml
A =

{
1 if yl

A ∈ cl
selected

0 otherwise
(9)

Ml
A ∈ RH×W is a binary mask obtained from the

ground truth labels. This ensures that the accuracy of
the mask is always maintained when pasting it onto
another image. As a result, the pasting process does
not rely on the model’s accuracy, allowing it to be ap-
plied directly to the unlabeled image. This serves as a
solution to the first issue and is the primary advantage
of using SupMix. Furthermore, with the modification
of Ml

A, Equations 5 and 6 can be rewritten as follows.

xl
mix = Ml

A ⊙ xl
A +(1−Ml

A)⊙ xu
B (10)

yl
mix = Ml

A ⊙ yl
A +(1−Ml

A)⊙ yl
B (11)

The outputs xl
mix and yl

mix obtained from Equations 10
and 11 represent the final outputs of the SupMix al-
gorithm. While there is a concern that pasting ground
truth labels could lead to overfitting due to the re-
peated use of specific images or features, this is mit-
igated because the labeled images and their ground
truth labels undergo preprocessing. Therefore, over-
fitting is considered less likely to occur.

3.2 Sup-Unsup Feature Discriminator

In conventional semi-supervised learning, the domain
gap between labeled and unlabeled images is not con-
sidered. However, in real-world scenarios, there is
an abundance of unlabeled images. If this domain
shift can be handled appropriately, semi-supervised
learning can incorporate more knowledge from unla-
beled images. Therefore, this paper proposes the Sup-
Unsup Feature Discriminator (SUFD) to reduce the
domain gap between the predictions of labeled and
unlabeled images.

Figure 2 provides the overview of the Sup-Unsup
Feature Discriminator (SUFD). To reduce the domain
gap between the predictions of labeled and unlabeled

Figure 2: The Sup-Unsup Feature Discriminator involves
a shared encoder-decoder architecture used for both super-
vised learning and pseudo-supervised learning. Note that xl
represents the labeled image, xw represents the unlabeled
image (weak augmentation), and xs represents the unla-
beled image (strong augmentation). pl denotes the output
feature map of the labeled image, pw denotes the output
feature map of the unlabeled image (weak augmentation),
and ps denotes the output feature map of the unlabeled im-
age (strong augmentation). Additionally, y represents the
ground truth. During training, a discriminator is employed
to make it difficult to distinguish between the supervised
features and the unsupervised features without fixing, which
are obtained after applying weak augmentations.

images, a discriminator commonly used in Genera-
tive Adversarial Networks (GAN), is employed. As
shown in Figure 2, the discriminator is trained on the
feature maps obtained from the model. The semi-
supervised learning method, acting as a generator, is
trained to produce feature maps from unlabeled im-
ages that the discriminator would mistake for features
obtained from labeled images. In other words, this
structure aims to make the feature maps derived from
unlabeled images resemble features from labeled im-
ages, allowing the model to generate high-quality fea-
ture maps from unlabeled images similar to those
from labeled ones. Additionally, the loss functions
used to train the generator and discriminator are pro-
vided as

LSUFD = B(ou,1)+
1
2
(B(ou,0)+B(ol ,1)). (12)

where ou ∈ Rc×h×w is the unsupervised feature map
output by the discriminator, while ol ∈Rc×h×w repre-
sents the supervised feature map. The first term is as-
sociated with learning the generator, while the second
and third terms are related to training the discrimi-
nator. In the equation, B denotes the Binary Cross
Entropy Loss. The discriminator performs a binary
classification into two classes: 0 represents the “pre-
diction from the unlabeled image”, and 1 represents
the prediction from the labeled image”.

The generator is trained to make the discriminator
misclassify unsupervised images as predictions from
supervised images. This allows the feature maps ob-
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tained from unsupervised images to resemble those
from supervised images. The discriminator is trained
to output 0 when it identifies a prediction as being
from an unsupervised image and 1 when it identifies
it as being from a supervised image.

4 EXPERIMENTS

4.1 Datasets and Implementation
Details

The Chase dataset consists of a total of 28 images.
The dataset size is 999×960, and for this experiment,
we used 23 images for training and 5 images for test-
ing. The task is to predict four classes: background
and retinal vessels. The pixel ratio of each class in
the ground truth labels was measured, with the back-
ground class at 93.36% and the retail vessel class at
6.64%. From this, it is clear that there is a significant
class imbalance.

The COVID-19 dataset consists of a total of 100
images, with 70 training images, 10 validation im-
ages, and 20 test images, all sized 256×256. The task
is to predict four classes: background, ground-glass,
consolidation, and pleural effusions. In this experi-
ment, the validation images were not used; only the
training and test images were utilized. When mea-
suring the pixel ratio of each class in the ground truth
labels, the background class is at 93.24%, the ground-
glass class is at 2.14%, the consolidation class is at
4.50%, and the pleural effusions class is at 0.12%.
From this, it is clear that the number of samples for
classes other than the background class is signifi-
cantly low.

We conduct experiments under conditions with
limited supervision labels (semi-supervised learning).
In this setting, we use 1/8 and 1/4 of the total training
images as labeled images, while 7/8 and 3/4 are used
as unlabeled images. We compare supervised learn-
ing, FixMatch (Sohn et al., 2020), UniMatch (Yang
et al., 2023), and the proposed method(ours). The
model used in this experiment is Deeplabv3+ (Chen
et al., 2018) with a ResNet-101 backbone (He et al.,
2016) pre-trained on ImageNet (Russakovsky et al.,
2015).

The experiments were conducted using an Nvidia
A6000. The batch size was set to 4, and the opti-
mizer used was SGD with a momentum of 0.9 and
a weight decay of 1× e−4. The initial learning rate
for the scheduler was 4× e−3 for Chase and 1× e−3

for COVID-19, and it decayed after each iteration ac-
cording to equation 13. The loss function used was
Cross Entropy Loss. The model was trained for 1000

epochs on the Chase dataset and 500 epochs on the
COVID-19 dataset.

Data augmentation in methods like FixMatch and
UniMatch involves using weak and strong augmenta-
tions to learn from unlabeled images. The weak aug-
mentations used include Random Crop and Random
Horizontal Flip. The strong augmentations consist of
these plus Random Color Jitter, Random Grayscale,
Blur, and CutMix. The Random Crop is set to
320 × 320 for the Chase dataset and 256 × 256 for
the COVID-19 dataset. The probability for Random
horizontal Flip is set to 0.5. The probability for Ran-
dom Color Jitter is 0.8, with brightness, contrast, and
saturation all set to 0.5, and hue set to 0.25. The prob-
ability for Random Grayscale is 0.2, while the prob-
abilities for Blur and CutMix are both set to 0.5. All
of these settings are the same as in UniMatch. In Fix-
Match and UniMatch, it is possible to set a threshold
for pseudo labels, which is set at 0.95. Additionally,
UniMatch employs dropout with a probability of 0.5.
The evaluation metric was conducted using Intersec-
tion over Union (IoU), and the evaluation was based
on the average of the experimental results obtained by
changing the initializations five times.

lrcurrent = lrinit ×
(

1− iteration
epoch

)0.9

(13)

In the proposed method, instead of strong aug-
mentation CutMix, Supervised ClassMix (SupMix) is
used. SupMix allows for specifying class labels when
performing pasting. For both Chase and COVID-19,
apart from the class with a large number of samples
(background), half of the other classes (1 class for
both Chase and COVID-19) are selected uniformly.

4.2 Quantitative Evaluation

The top Table 1 shows the experiments on the Chase
dataset. The proposed method (ours) outperformed
UniMatch in both cases where the number of labeled
images was 1/8 and 1/4. When we use 1/8 of the la-
beled images, our method achieved a 1.73% improve-
ment in mIoU compared to UniMatch, with a notable
3.30% increase in accuracy for the retinal vessel class.
When 1/4 of the labeled images is used, our method
showed a 1.38% improvement in mIoU over Uni-
Match, with a 2.63% increase specifically for the reti-
nal vessel class. The significant improvement in the
retinal vessel class can be attributed to SupMix, which
enhances learning opportunities for non-background
areas by pasting pseudo-labels from different images.
Additionally, the greater accuracy improvement with
fewer labeled images is likely due to SUFD. SUFD
is likely because the features of the unlabeled images
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Table 1: Accuracy on Chase and COVID-19 datasets for Supervised, FixMatch, UniMatch, and ours. The top table shows
results on Chase and the bottom table shows the results on COVID-19 dataset. Each row shows the IoU and standard deviation
for each class, while each column compares the case where the labeled data covers 1/8 (N images) and 1/4 (N images) in the
total dataset.

Chase 1/8 (2 images) 1/4 (5 images)
Supervised FixMatch UniMatch ours Supervised FixMatch UniMatch ours

background 74.62±37.31 95.6±0.12 96.41±0.06 96.58±0.06 39.12±44.57 96.48±0.05 96.50±0.02 96.63±0.03

retinal vessel 1.86±2.54 38.54±2.86 55.61±0.81 58.91±0.31 3.78±3.09 57.62±0.60 57.78±0.35 60.41±0.20

mean IoU 38.24±17.51 67.07±1.49 76.01±0.43 77.74±0.18 21.45±23.83 77.05±0.32 77.14±0.18 78.52±0.10

COVID-19 1/8 (9 images) 1/4 (18 images)
background 96.26±0.07 95.57±0.23 96.65±0.13 96.72±0.11 96.78±0.12 96.65±0.08 97.03±0.05 97.08±0.07

ground-glass 25.11±0.97 33.52±3.54 26.55±3.94 37.25±1.41 32.50±2.84 48.18±1.06 34.09±1.21 38.85±1.85

consolidation 39.74±2.32 0.0±0.0 49.12±1.65 50.86±1.35 45.12±3.88 0.0±0.0 47.57±1.45 50.93±1.14

pleural effusions 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

mean IoU 40.28±0.78 32.27±0.87 43.08±0.75 46.21±0.60 43.60±1.51 36.21±0.28 44.67±0.63 46.71±0.68

effectively aligned with those of the labeled images,
leading to the extraction of higher-quality features.

The bottom Table 1 shows the experiments on the
COVID-19 dataset. The proposed method (ours) out-
performed UniMatch in both cases where the num-
ber of labeled images was 1/8 and 1/4. When we
use 1/8 of the labeled images, our method achieved a
3.13% improvement in mIoU compared to UniMatch.
Notably, the ground-glass and consolidation classes
other than the background class, achieved accuracy
improvements of 10.7% and 1.74%. When 1/4 of the
labeled images is used, our method showed a 2.04%
improvement in mIoU over UniMatch. Notably, the
ground-glass and consolidation classes other than the
background class, achieved accuracy improvements
of 4.74% and 3.36%. The reason for improving the
accuracy is the same as the discussion we made for
the Chase dataset.

4.3 Qualitative Evaluation

Figure 3 shows the segmentation results on the Chase
and COVID-19 datasets. The areas highlighted in yel-
low indicate regions where accuracy has improved in
comparison with UniMatch. In the Chase dataset, we
see that the connectivity of retinal vessels has im-
proved in the yellow areas for both 1/4 and 1/8 super-
vised images. This improvement is due to the SupMix
method, where the supervised mask was pasted onto
another image while maintaining the connectivity of
the retinal vessels. Furthermore, the improvement in
retinal vascular connectivity is larger for 1/8 than for
1/4 of all supervised images when we compare Uni-
Match with our method. This is because SUFD was
able to gain more knowledge from the abundant unsu-
pervised images. Compared to UniMatch, for 1/8 of
all supervised images in the COVID-19 dataset, the
area within the yellow frame is predicted well in the
background. For 1/4 of all supervised images, we see

that the proposed method is closer to the ground truth
than any other method within the yellow frame. These
results demonstrate that our technique (SupMix and
SUFD) is superior compared to other methods.

4.4 Ablation Studies

We introduced the SupMix and SUFD methods, but
we have not yet verified the individual effectiveness
of each method. Therefore, we conducted experi-
ments to evaluate each method individually. The ex-
perimental procedures were carried out in the same
manner as in Section 4.1. The experimental results are
shown in Table 2. The baseline is UniMatch. Com-
parisons were made with conventional augmentation
methods: CutMix and ClassMix. SupMix and SUFD
are our proposed methods, and the combination of
these two is referred to as “ours” in the table. The ex-
periments were conducted on the Chase and COVID-
19 datasets, and results were obtained for cases where
1/8 and 1/4 of the fully supervised images were used.
Additionally, only the accuracies for the classes with
fewer samples (i.e., retinal vessels and ground-glass)
are shown to verify if the methods address class im-
balance effectively.

First, regarding SupMix, it achieved significant
accuracy improvements across all experimental re-
sults compared to conventional methods such as Cut-
Mix and ClassMix. This improvement is likely due to
the fact that the class shapes from the labeled images
were directly pasted onto other images, effectively ad-
dressing class imbalance. For SUFD, a notable ac-
curacy improvement was observed when using 1/8 of
the fully supervised images compared to conventional
UniMatch (CutMix), whereas less improvement was
seen when we use 1/4 of the images. This is because
a large amount of information could be obtained from
the abundant unlabeled images, leading to the ob-
served accuracy gains. Finally, by combining these
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Figure 3: Segmentation results on Chase and COVID-19 datasets. Each row shows the dataset name and the ratio of supervised
images used for training in all supervised images. Each column shows Input Images (Input), Ground Truth (GT), and the
results of Supervised, FixMatch, UniMatch, and Ours. In the Chase dataset, the background class is visualized in black,
and the retinal vessel class is in white. In the COVID-19 dataset, black represents the background class, blue indicates the
ground-glass class, green shows the consolidation class, and red denotes the pleural effusions class.

Table 2: Verification of the individual effects of SupMix and SUFD. Each row indicates the dataset type and the classes with
fewer samples (retinal vessel and ground-glass). In each column, the results display the accuracy when we train the network
with 1/N images in all supervised images. The values in parentheses are the improvement over CutMix. The comparison
methods include CutMix, ClassMix, SupMix, SUFD, and ours. CutMix corresponds to the standard UniMatch results, while
“ours” refers to the combined method of SupMix and SUFD.

Methods CutMix ClassMix SupMix SUFD ours CutMix ClassMix SupMix SUFD ours
Chase 1/8 (2 images) 1/4 (5 images)

retinal vessel 55.61(+0.00) 56.78(+1.17) 57.57(+1.96) 55.95(+0.34) 58.91(+3.30) 57.78(+0.00) 57.91(+0.13) 59.60(+1.82) 56.90(−0.88) 60.41(+2.63)

COVID-19 1/8 (9 images) 1/4 (18 images)
ground-glass 26.55(+0.00) 27.95(+1.40) 32.82(+6.27) 33.36(+6.81) 37.25(+10.70) 34.09(+0.00) 34.99(+0.90) 38.10(+4.01) 34.17(+0.07) 38.85(+4.76)

methods, we achieved the best results overall.

5 CONCLUSION

We propose a semi-supervised segmentation method
using SupMix and SUFD, demonstrating superior
results compared to conventional semi-supervised
learning methods. However, since the accuracy for
the most challenging pleural effusions class in the
COVID-19 dataset did not improve, we plan to en-
hance the performance by considering prior probabil-
ities and placing pleural effusions class labels in ap-
propriate positions rather than simply pasting them.
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