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Abstract: Human gait is a biomechanical process vital to health, with abnormalities often linked to neurological 
disorders like Parkinson's disease (PD). In PD patients, arm swing during walking becomes asymmetric and 
reduced in amplitude, providing a potential biomarker for early diagnosis and monitoring disease progression. 
This pilot study focuses on detecting variations in arm swing amplitude and asymmetry using data collected 
from smartwatches worn by 24 participants under different gait conditions. Participants walked while carrying 
progressively heavier loads (0 kg, 2 kg, and 4 kg) to simulate restricted arm swing. Machine learning models 
were developed to classify these conditions using accelerometer and gyroscope data. Results showed that the 
K-Nearest Neighbours algorithm performed best, achieving up to 94.3% accuracy. Although the models 
effectively distinguished between load and no-load conditions, it was difficult to differentiate between 
different load levels. These findings highlight the potential of wearable devices for PD gait analysis, though 
further refinement and testing with PD patients are needed for clinical application.

1 INTRODUCTION 

Human gait is the biomechanical process of 
locomotion, characterized by the coordinated, 
rhythmic alternation of weight-bearing between the 
lower limbs, enabling forward movement while 
maintaining an upright posture. Although the walking 
process is unique to everyone, commonalities exist 
that enable the definition of a characteristic and 
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standardized pattern for normal human gait (Braune 
& Fischer, 1987).  

During gait, the central nervous system generates 
oscillation of the arms to stabilise gait, regain balance 
and reduce energy expenditure. Due to the close 
relationship between arm swing and gait, it is 
common for gait estimations, such as step counting, 
to be derived by monitoring arm swing movements 
(Meyns et al., 2013). 
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Gait biomechanics is fundamental to health, as 
various diseases can disrupt the mechanical 
interactions involved, leading to impaired movement, 
instability, or mobility limitations. Many gait 
abnormalities arise involuntarily and are primarily 
linked to neurological, musculoskeletal, or systemic 
disorders, further impacting an individual's functional 
capacity (Cicirelli et al., 2022). 

Festinating gait, characterized by an accelerated 
and unsteady walking pattern with short, rapid steps 
that seem to propel the individual forward, is one of 
the most common motor symptoms observed in 
patients with Parkinson’s Disease (PD). 

PD is a progressive neurodegenerative disorder 
that affects the central nervous system, resulting in 
both motor and non-motor symptoms. The condition 
arises when dopamine-producing neurons in the brain 
become deficient, leading to impaired motor control 
and other systemic effects (Wirdefeldt et al., 2011).  

Symptoms of PD usually manifest gradually, with 
a barely perceptible tremor in one hand often being 
the initial sign in most cases. While tremors are 
common, the disorder may also cause muscle 
stiffness and reduced movement. The movements 
become reduced in amplitude, speed, and symmetry, 
leading to increased fatigue and the adoption of 
compensatory postures to maintain balance (Morris et 
al., 2001). 

These motor symptoms affect not only gait in the 
lower limbs but also arm swing. Therefore, in PD 
patients, the arm swing has a lower amplitude, 
cadence and step width during gait. In addition, the 
PD usually manifests with more pronounced effects 
on one side of the body., which causes the effects on 
gait to be reflected asymmetrically, both in the legs 
and in the arm swing (Djaldetti et al., 2006). 
Individuals with PD demonstrated significantly 
greater asymmetry in arm swing compared to those 
without gait pathology (Lewek et al., 2010). 

Based on this premise, the present case study was 
designed. The objective is to develop a restricted arm 
swing classifier focused on detecting variations in 
amplitude and asymmetry using machine learning 
models. To achieve this, an experiment was 
conducted in which participants wore a smartwatch 
and were subjected to progressively restricted gait 
conditions, from least to most constrained, to simulate 
different levels of restricted arm swing.  

Under these restrictions, the braking speed of arm 
swing is expected to be affected in a manner that can 
be detected by the smartwatch. To simulate this 
effect, different loads (0 kg, 2 kg, and 4 kg) were used 
during various gait measurements. As the load 
increases, a reduction in the swing angle is 

anticipated, recreating similar conditions to the 
movement restrictions experienced by PD patients. 

The asymmetry in arm swing may serve as a 
valuable biomarker for the early diagnosis of PD and 
for monitoring disease progression in its initial stages. 

2 BACKGROUND 

In recent years, numerous studies have investigated 
the potential of wearable devices for healthcare 
applications. Some research has concentrated on the 
development of specialized devices, like STAT-ON® 
(Rodríguez-Martín et al., 2019), while others have 
utilized commercially available devices to assess PD 
symptoms (Polvorinos-Fernández, et al., 2024; 
Sigcha et al., 2023). Wearable devices allow the 
definition of a wide range of digital biomarkers 
related to PD motor symptoms such as tremor, 
bradykinesia or gait disturbances (Polvorinos-
Fernández, et al., 2024). 

A study conducted by (Warmerdam et al., 2020) 
using a wrist-worn inertial sensor to compare the gait 
patterns of a healthy individual with those of a PD 
patient exhibiting gait impairments. The results 
revealed that the gait of the PD patients was non-
cyclical, with numerous fluctuations and 
irregularities, in contrast to the healthy individual's 
gait, which displayed a repetitive and cyclical pattern.  

(Takami et al., 2020) performed gait tests using a 
accelerometer measurement device with healthy 
individuals under varying conditions: normal gait, 
gait with one arm restricted, both arms restricted, and 
exaggerated arm swing in the Wernicke-Mann 
position. The results showed that, compared to 
normal gait, arm swing velocity significantly 
decreased when participants performed gait exercises 
with one arm restricted or with no arm movement. 

(Siragy et al., 2020) studied how PD patients with 
and without arm swing restriction walked over 
different terrains. The arm-swing analysis revealed 
that PD patients appropriately reduced their step 
length as a compensatory mechanism for the 
restricted arm swing. 

The need for advanced tools to improve the 
diagnosis and continuous monitoring PD is 
increasingly evident. The use of smart technologies 
for managing diseases like PD is gaining popularity, 
with wearable technologies standing out due to their 
low cost, long battery life, and non-invasive nature. 
These features make them ideal for developing 
continuous monitoring systems for PD.  

In the case of gait observation, providing 
objective, gait-based measurements, wearable sensor 
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systems allow clinicians to personalize rehabilitation, 
therapeutic, or pharmacological interventions to meet 
each patient’s specific needs. This personalized 
approach enhances treatment efficacy and contributes 
to more effective management of disease progression. 

This pilot study presents a starting point for the 
identification of abnormal gait patterns in patients 
with PD. The proposed algorithm could be used for 
early detection of movement disorders, with a 
specific focus on analysing braking dynamics during 
gait, based on data collected from a wearable device. 

3 MATERIALS AND METHODS 

3.1 Data Collection 

The data used in this study were collected during the 
BIOCLITE project, using a custom-designed m-
health wearable application, which utilized 
smartwatches to track motor symptoms in PD 
patients.  

Data were collected from a group of 24 
volunteers, with a balanced gender distribution and 
ages ranging from 24 to 40 years, with no known gait 
pathology (Polvorinos-Fernández, et al., 2024). All 
participants were persons without known pathologies 
and performed the three specific activities outlined in 
the protocol of this work. Data collection covered a 
period of two days in which, in five to ten minutes 
interval, each participant performed the three 
proposed activities. 

3.2 Acquisition Device 

The BIOCLITE project use a commercial smartwatch 
for data collection. During each of the measurement 
sessions the smartwatch was worn on each patient's 
preferred wrist. This wearable device allows to 
collect movement signals in the time domain using its 
built-in inertial sensors. For this study, the 
accelerometer and gyroscope (along three axes) were 
used for data collection. The accelerometer measured 
in m/s², while the gyroscope measured in rad/s. 

In this work, the smartwatch used for data 
collection has a dimension of 39.3×40.4×9.8 mm and 
a weight of 28.7g. The smartwatch is equipped with 
an LSM6DS0 package, which integrates a 3-axis 
digital gyroscope and a 3-axis digital accelerometer.  

The sampling frequency is configured at 50 Hz. 
This frequency was chosen because it is well-suited 
for the analysis of human movement, which typically 
focuses on a frequency range of 0.8 to 1.5 Hz during 
normal and abnormal gait (Winter, 2009).  

3.3 Experimental Protocol 

During the data collection sessions, each participant 
performed a test under different conditions to 
approximate several gait conditions.  

Each participant must walk in a straight line from 
the starting point to a marked point, wait for 3 seconds 
at that point, turn around to change the direction of 
movement, wait another 3 seconds and walk back to 
the starting point. Participants were instructed to 
perform the test at their preferred walking speed, 
repeating the process three times: once with no load, 
a second time carrying a 2 kg weight, and a third time 
carrying a 4 kg weight. This order was established to 
try to avoid fatigue affecting the participants, even 
though there was a rest period between each test.  

For each participant and each performed test, a 
researcher was responsible for starting the recording 
of the data from the smartwatch, indicating to the 
participants the start of the test, logging the exact time 
at which the test had started, and, once the test had 
been completed, stopping the measurement. In this 
case, the activities were not recorded with a video 
camera due to patient privacy issues.  

The measurement track was a straight corridor 
where the point of departure and return was marked 
with a cross on the ground. The straight section is 30 
metres long, and the corridor is more than 5 metres 
wide, which allowed the measurement session to be 
carried out without any problems.  

For each participant and activity, a new file was 
created. Therefore, considering that there were 24 
participants and 3 different activities, a total of 72 
data files were obtained.  

3.4 Data Labelling 

For data labelling, the name of the files generated 
with the custom-designed m-health smartwatch 
application was essential. This name identifies which 
device was used (this information is not valid for this 
study given that all the performed tests were carried 
out with the same device) together with the date on 
which it was created and the exact time at which the 
recording was started. 

Based on this date and time, each of the records 
was assigned a person label (1 to 24) and an activity 
label (1 for no load gait, 2 for 2 kg gait and 3 for 4 kg 
gait), correlating with the manual registration made 
by the person in charge of the trials, who takes notes 
of which person carried out each activity as well as 
the starting time. These labels were then reviewed by 
viewing each file to ensure that they matched and 
contained valid data records. 
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Figure 1 shows the distribution of data collected 
according to the activity label. It can be observed that 
the distribution is homogeneous among the 3 gait 
conditions. The slight differences observed between 
activities can be attributed to the fact that participants 
were allowed to choose the speed at which they 
performed each test. Consequently, variations in 
walking speed among participants resulted in 
differences in the number of samples collected, as the 
sampling rate is the same for all the subjects. The 
activity with the highest number of samples is the one 
related to walking without loads. 

 
 

 
Figure 1: Distribution of data collected according to the 
activity label. 

3.5 Algorithmic Approach 

This paper presents machine learning models 
designed to predict the level of hand movement 
constraint (free, 2 kg or 4 kg) using data from 
accelerometer and gyroscope. The development of 
these models followed the schema shown in Figure 2. 

To train and evaluate the proposed models, the 
signal obtained from the smartwatch must be 
processed to get better results. 

First, the valid parts of each of the records were 
selected, as the periods from the start of the recording 
until the person starts walking, the standing period 
before and after the turn, the turn itself, and the period 
from the end of the activity until the end of the 
recording were not used. As a result, since there are 
two gait periods for each record (outward and return), 
the final database of 144 valid records was defined. 

On this basis, this study was performed using two 
different databases. On the one hand, the 
accelerometer and gyroscope signals from each of the 
3 axes were used independently (6 signals in total). 
On the other hand, the signal obtained from each of 
the three axes of each sensor was combined into one 
by means of Euclidean Norm according to equations 
1 and 2 (2 signals in total). This is since the inertial 
sensors embedded in the wearable device can have a 
random orientation, so this combination has been 
performed to avoid errors. In addition, during the 
 

 
Figure 2: Algorithm approach diagram. 

experimental phase, the participants placed the 
smartwatch in different ways and the orientation of 
the watch is different for the left and the right hand. 

 𝐴𝑐𝑐𝑒𝑙 ൌ ට𝑎𝑐𝑐𝑒𝑙௫ଶ  𝑎𝑐𝑐𝑒𝑙௬ଶ  𝑎𝑐𝑐𝑒𝑙௭ଶ (1) 𝐺𝑦𝑟𝑜 ൌ ට𝑔𝑦𝑟𝑜௫ଶ  𝑔𝑦𝑟𝑜௬ଶ  𝑔𝑦𝑟𝑜௭ଶ (2) 
 
After calculating the Eucliden norm, the 

following steps to be explained apply both to the 3 
axes separately and to the combination of these. The 
signal was filtered using a 3-order Butterworth band-
pass filter in the frequency range between 0.5 and 10 
Hz. This range is appropriate for human activity 
recognition, in particular, human gait (Winter, 2009). 

After adjusting the signal to the desired frequency 
range, it was segmented into 128-sample windows 
(2.56 seconds) with a 50% overlap. For the 144 
records, 2454 windows were generated. This 
combination of windowing and overlapping is 
suitable for different PD motor symptoms analysis 
(Patel et al., 2009; Sigcha et al., 2021). As the data is 
divided by records and each one corresponds to a 
different participant and activity, dividing each of 
these records into windows did not create a problem 
regarding labelling, as all the windows had the same 
labels associated with their source records. 

Then, the signal was converted to the frequency 
domain using the Fast Fourier Transform (FFT). This 
was because it is expected that the dominant 
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frequencies of braking during walking will allow a 
correct differentiation between individuals walking 
freely and those carrying varying weights., so 
bringing the data into the frequency domain can be a 
key aspect to obtain good results. Since the sampling 
frequency is defined as 50 Hz, the maximum 
frequency for which data is available is 25 Hz (higher 
than the usual frequency of human movement). In this 
case, 65 spectral lines were calculated using the FFT, 
each with a bandwidth of approximately 0.38 Hz. 

For this work, the extracted features correspond to 
the amplitude of each of the 65 spectral lines of each 
signal. For the database formed by the original signals 
in 3 axes, and for 2 sensors (accelerometer and 
gyroscope), we will have 390 features. In the database 
composed of the Euclidean signal of accelerometer 
and gyroscope, 130 features will be calculated. In 
both databases, all the proposed features were 
calculated for the 2454 defined windows.  

After the feature extraction process, machine 
learning models were developed, trained, validated, 
and analysed with the two databases independently to 
evaluate their performance and effectiveness in 
addressing the study objectives. For the training and 
testing of the models, the windows defined for 21 of 
the 24 participants were divided into 60% training 
and 40% test, using Hold Out Validation. The 3 
remaining participants (randomly selected) were used 
to validate the trained models, with the aim of testing 
the reliability of the models on data never seen before.   

For this work, the variable to be predicted is the 
one corresponding to the activity category, related to 
whether, during the walk, the person was walking 
without load (label 0), with 2 kg (label 1) or with 4 kg 
(label 2). Since the target variable is categorical, 
classification models were employed. The models 
used in this study include Gradient Boosting (GB), 
AdaBoost (ADAB), K-Nearest Neighbours (KNN), 
Random Forest (RF), and Decision Tree (DT). The 
models were evaluated using accuracy, recall, 
specificity, precision, and F1-score metrics. 

4 EXPERIMENTS AND RESULTS 

This section presents the results obtained from the 
study, which involved conducting various 
experiments with different datasets. Section 4.1 
details the results derived from the 3-axis signals of 
the accelerometer and gyroscope. Section 4.2 
presents the findings based on the Euclidean norm of 
the combined signals from both sensors. In each 
section, the model with the best performance was 

identified, and validation of this model was carried 
out using data from three randomly selected subjects. 

4.1 Results of the Training Models 
Using the 3-Axis Database 

The classification models proposed in Section 3.5 
were implemented and trained using the dataset of 
390 features extracted from the frequency domain for 
each triaxial signal of accelerometer and gyroscope. 

First, it will be determined which of the models 
proposed is the one that offers the best performance. 
Figure 3 show the metrics obtained for each trained 
machine learning model using the testing data.  

It is noteworthy that recall values are high across 
all models. This indicates that the models effectively 
identify most of the true positive cases, i.e. the models 
are less likely to miss relevant cases, which makes 
them suitable for tasks where it is a priority to capture 
all positive cases, such as in medical diagnosis, of 
possible application in this study. 

 

 
Figure 3: Metrics comparison for the proposed algorithm 
using 3-axial accelerometer and gyroscope test data. 

The analysis revealed that the KNN algorithm 
demonstrated the best performance among the 
evaluated models., with an accuracy of 81.5 %, a 
precision of 82.0 %, a recall of 90.8 %, a specificity 
of 81.4 % and a F1-score of 81.6 %. On the opposite 
side, the worst model is the DT with 69.4 %, 69.3 %, 
84.8 %, 69.2 % and 69.1 % in respective metrics. 
Table 1 shows in detail the metrics obtained with the 
test dataset for the best model.  

It can be noticed that there is a trend towards 
classification performance. For the identification of 
no-load gait, related to the movement without loads, 
the specificity, recall, precision and f1-score metrics 
have a high performance, between 88,01 % to 
98,42%. On the other hand, for observations related 
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to loaded movement, these metrics are relatively 
lower, with values from 74,22% to 87,19 %. 
However, the overall accuracy of the 3 categories is 
81.51 %, which is quite high, considering that we are 
working with a not very extensive database.  

Table 1: Metrics obtained for KNN algorithm for the 3-axis 
test dataset. 

[%] No Load 2 kg 4 kg 

Accuracy 81,5 

Precision 96,6 74,2 75,2 

Recall 88,0 75,5 80,8 

Specificity 98,4 87,2 86,8  

F1-score 92,1 74,9 77,9 
 
Once the best model has been determined, it will 

be used for validation with the 3 randomly selected 
subject data. The confusion matrix, shown in Figure 
4, will be used for this purpose. 

 
Figure 4: Normalized Confusion Matrix for the 3-axis 
validation dataset. 

It can be observed that the differentiation between 
walking with loads and without loads can be done 
relatively easily. Moreover, the algorithm is more 
wrong predicting that it is loaded when it is free 
(34%) than in interpreting that it is free when it is 
loaded (3%). However, distinguishing between label 
1 (2 kg load) and label 2 (4 kg load) is a challenging 
task. The model misclassifies label 1 as 2 38% of the 
windows and label 2 as 1 in 41% of cases.  

 

4.2 Results of the Training Models 
Using the Combined Signal 
Database 

In this section we will present the study proposed in 
the previous section using a different database, the 
one composed of the triaxial accelerometer and 
gyroscope signals combined using the Euclidean 
standard. In comparison with the previous case, it will 
be moved from dealing with a signal of 6 different 
channels to one with only 2. 

Figure 5 shows the metrics obtained with the test 
dataset associated to the trained models. It can be 
noticed that the values obtained are higher than those 
obtained in the previous section. While in section 4.1 
the results were between 65% and 90%, those 
calculated with the database of the combined signals 
have obtained values between 72% and 98%.  
 

 
Figure 5: Metrics comparison for the proposed algorithm 
using combined accelerometer and gyroscope test data. 

Again, the best performing model is the KNN 
algorithm. The worst performer, meanwhile, is the 
ADAB algorithm. Table 1 shows in detail the metrics 
obtained for the best model with the test dataset.  

Table 2: Metrics obtained for KNN algorithm for the 
combined signal test dataset. 

[%] No Load 2 kg 4 kg 

Accuracy 94,30 

Precision 99,63 91,50 92,28 

Recall 99,83 95,34 96,15 

Specificity 99,26 92,72 91,32 

F1-score 99,44 92,11 91,79 
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The trend continues to be that label 1 is the one 
with the best metrics, i.e. the one that is most 
accurately identified. Accuracy, recall, specificity 
and F1 score all have values around 99%. These 
metrics for labels 2 and 3, corresponding to loaded 
gait, are around 92%. The accuracy is around 94%, 
higher than in the previous case. 

With the best model identified, it will be validated 
using data from the 3 randomly selected subjects. The 
confusion matrix, shown in Figure 5, will be utilized. 

 

 
Figure 6: Normalized Confusion Matrix for the combined 
signal validation dataset. 

In this case, the trend mentioned in the previous 
analysis becomes more pronounced as it is very 
accurate in identifying the unloaded gait with a 98% 
accuracy rate. On the other hand, when dealing with 
the loaded gait data, the predictions are not at all 
accurate, as it is only 50% correct to differentiate 
between 2 and 4 kg.  In fact, it predicts as 4 kg when 
it is really 2 kg in 51% of the cases and the same 
happens in the opposite case, interpreting that it is 2 
kg when it is really 4 kg. 

5 CONCLUSIONS 

This study developed and evaluated machine learning 
models for detecting arm swing constraints in 
simulated gait conditions, trying to be like the gait 
patterns of PD patients.  

By utilizing accelerometer and gyroscope data 
from smartwatches, the machine learning models 
were able to classify participants walking under three 
conditions: no load, 2 kg load, and 4 kg load.  

KNN model demonstrated the highest accuracy in 
both the 3-axis and Euclidean norm-based datasets, 
proving effective in distinguishing between loaded 
and unloaded gait patterns. However, while the 

models performed well in detecting the presence of a 
load, they encountered difficulties differentiating 
between the 2 kg and 4 kg weights, indicating that 
further refinement is needed for more nuanced 
classification.  One possible explanation is that 
walking without a load, as opposed to carrying any 
load, induces significant changes in body posture, 
stride, and movement dynamics that can be 
effectively captured by the signals employed. 
However, when differentiating between loads, these 
differences may not be as pronounced.  

Using the 3-axis dataset with the validation data 
set, it manages to differentiate the no load cases 67% 
of the time, the 2kg load cases 60% of the time and 
the 4kg load cases 58% of the time. For the combined 
signal dataset, on the other hand, this distribution 
changes, as the no load cases are matched 98% of the 
time while the 2 and 4 kg load cases are matched 
around 50% of the time.  

This evaluation highlights the potential utility of 
each dataset employed in the analysis. The combined 
signal could be used to distinguish load and no-load 
cases while the 3-axial signal could be used to 
distinguish between different load situations. 

It is important to acknowledge that this study has 
certain limitations that should be addressed in future 
research studies. The database consists of 
measurements from 24 healthy patients with no 
known gait pathology. In addition, no real PD patients 
have been involved, which would be interesting 
especially for the validation of the models. 

Future work should focus on exploring the 
applicability of this type of test in PD patients to 
evaluate its practical utility, expanding the database 
by increasing the number of participants and 
incorporating diverse settings, such as varying 
loading conditions or extended durations, to study 
variability. Furthermore, it would be valuable to 
investigate additional machine learning algorithms, 
including traditional and recent advancements, such 
as deep learning, to enhance performance. 

In practical implementation, several 
considerations must be addressed to transition this 
approach to real-world applications effectively. 
Smartwatches offer a non-intrusive platform for long-
term monitoring; however, ensuring usability and 
fostering patient compliance remain crucial 
challenges. Validation of the system with PD patients 
across diverse daily living scenarios is necessary to 
establish model robustness and reliability under real-
world conditions. Additionally, implementing secure 
and efficient data transmission mechanisms is 
essential to safeguard patient privacy and ensure 
reliability in remote monitoring applications. 
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Addressing these factors will significantly enhance 
the practical utility and scalability of this approach. 

The findings of this study suggest that wearable 
sensor data combined with machine learning 
techniques offer valuable potential for gait analysis, 
with applications in the early diagnosis and 
monitoring of movement disorders such as PD.  
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