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Abstract: Federated learning (FL) enables machine learning on data held across multiple clients without exchanging
private data. However, exchanging information for model training can compromise data privacy. Further,
participants may be untrustworthy and can attempt to sabotage model performance. Also, data that is not in-
dependently and identically distributed (IID) impede the convergence of FL techniques. We present a general
framework for federated learning via aggregating multivariate estimated densities (FLAMED). FLAMED ag-
gregates density estimations of clients’ data, from which it simulates training datasets to perform centralized
learning, bypassing problems arising from non-IID data and contributing to addressing privacy and security
concerns. FLAMED does not require a copy of the global model to be distributed to each participant during
training, meaning the aggregating server can retain sole proprietorship of the global model without the use of
resource-intensive homomorphic encryption. We compared its performance to standard FL approaches using
synthetic and real datasets and evaluated its resilience to model poisoning attacks. Our results indicate that
FLAMED effectively handles non-IID data in many settings while also being more secure.

1 INTRODUCTION

Federated learning (FL) is used to train a machine
learning (ML) model from data held by multiple
owners, without compromising the privacy of each
owner’s data. In the standard FL approach, each data
owner or client trains a local ML model starting from
a shared initial global model. The result of local train-
ing is sent in the form of weight or gradient updates
to an aggregating server, which then combines the lo-
cal models to obtain the new global model. This pro-
cess repeats for several rounds, each starting from the
previous round’s global model, until convergence is
reached. However, (Zhu and Han, 2020) has shown
that it is possible to leak training samples from the
gradient updates alone. To protect against this, other
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approaches in the literature rely on techniques such as
homomorphic encryption (HE) and secure multi-party
computation (SMPC). But, as discussed in Section 4,
these solutions work against securing FL against at-
tacks that target the performance of the global model,
posing a trade-off between model security and data
privacy.

In FL, during local training, each batch is sampled
only from the data available at a given client. How-
ever, data in FL settings is non-independent and iden-
tically distributed (non-IID), meaning clients have
different dataset distributions. This causes local mod-
els to be biased away from the global optimum, ham-
pering or preventing convergence. Many approaches
have been proposed to overcome this hurdle but they
often ignore privacy and security considerations.

We propose an alternative general FL framework
using density estimation to simultaneously address
non-IID data (see Section 3.1), and privacy and se-
curity (see Section 4) concerns. Clients model their
local data distributions and share this with the server,
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allowing the aggregating server to simulate central-
ized global training. This is a general framework and
the methods used for modeling distributions and cre-
ating the global model can be decided upon by the
practitioner.

The present work makes the following contribu-
tions. (1) FLAMED is a general framework for sim-
ulated centralized learning that serves as a concep-
tual basis for alternative FL methods and allows non-
IIDness, privacy, and model security to be addressed
simultaneously. (2) FLAMED enables the aggre-
gating server to obtain a global model not known
to any other participants. Restricting knowledge of
the global model to a single participant secures the
model’s intellectual property and guards against a ma-
licious participant using shared model weights to at-
tack training data privacy. (3) We evaluated our ap-
proach against baseline and state-of-the-art FL ap-
proaches on a variety of synthetic datasets and a
real-world healthcare dataset from a federated setting
with 132 participants. The latter, with 3,069 fea-
tures, demonstrates FLAMED’s potential with high-
dimensionality data. (4) We performed a security
analysis of the proposed framework and evaluated its
resilience against backdoor attacks as defined in (Bag-
dasaryan et al., 2020) using the real dataset. (5) We
present a technique specific to FLAMED for detect-
ing model backdoor attacks via data poisoning.

The next section provides a brief review of the FL
literature. Section 3 presents the general formulation
of our approach and a discussion of its strengths rela-
tive to standard FL. We also present the proof of con-
cept implementation used for FLAMED in the cur-
rent paper. In Section 5, we present all the config-
urations of the FL and model backdoor experiments.
1Section 6 presents an analysis of the results and high-
lights the strengths and weaknesses of the proposed
approach. Section 7 summarizes our findings and dis-
cusses future work.

2 RELATED WORK

FedAvg (McMahan et al., 2017) is the basic FL algo-
rithm in which an initial global model is distributed
from an aggregation server to clients participating in
the FL scheme. Each client trains the model on their
local data. The trained local models are sent back to
the server, which obtains the updated global model as
a weighted average of the local models. This process
repeats until convergence.

1This research was enabled in part by the Digital Re-
search Alliance of Canada.

The privacy of training data and the integrity of the
global model is a principal concern in FL. Although
data are never exchanged between clients, (Zhu and
Han, 2020) showed it is possible to reproduce training
samples using the gradient updates alone, a problem
known as gradient leakage. In (Bagdasaryan et al.,
2020), the authors demonstrate that one or multiple
clients can collaborate to cause misclassifications for
specific feature values, without significantly impact-
ing the global model’s overall performance.

Reference (Bonawitz et al., 2017) employed
SMPC to provide a private vector summation frame-
work for FL weight aggregation. Their framework is
also resilient to clients dropping out of the FL net-
work, ensuring results are still correct even if clients
leave part way through the secure summation proce-
dure.

Several approaches improve convergence with
non-IID data. FedProx was introduced in (Li et al.,
2020), and it improved on FedAvg by penalizing large
updates with the addition of a “proximal term” to
the clients’ local objective function. The proximal
term prevents local updates from pulling the global
model away from the global optimum. Researchers
in (Karimireddy et al., 2020) introduced SCAFFOLD
to account for “client drift,” when a client’s local op-
timum is not aligned with the average local optimum
across all clients, by approximating the ideal unbiased
local update, which is the average gradient of the lo-
cal model across all clients’ data. FedDC, proposed
in (Gao et al., 2022), improved on SCAFFOLD by
adding a loss term that allows clients to learn their
client drift and correct it before submitting updates.

Existing FL approaches have difficulty simulta-
neously addressing non-IIDness while maintaining
clients’ data privacy and global model integrity. In
FLAMED, we provide an FL framework that address
all these challenges at once.

3 METHOD

In this section, we introduce the general FLAMED
framework and discuss its benefits before detailing
the specific FLAMED implementation used in the ex-
periments presented in this paper. Table 1 provides the
notation used throughout.

3.1 FLAMED: The General Framework

Non-IID data pose a significant challenge when ap-
plying FL in real-world scenarios by causing local
models to be biased towards the local solution con-
ditioned only on the locally held data, slowing con-
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Table 1: Notation frequently used in this paper.

Symbol Meaning
K Number of clients
Ci The ith client
P Global data distribution
Pi Client i’s data distribution
P̂ Estimation of P

M Global Model
X Data from all clients
Xi Data belonging to Ci
X ′ Low-dimensional transformation of X

X̃ Data simulated from the estimated distri-
bution of X

U:r
r-dimensional transformation from SVD
or FedSVD

n Total number of samples
ni Number of samples at Ci
m Number of features
c Number of classes

ρ
Experimental parameter specifying the
ratio of ni to m

α = β
Experimental parameter specifying the
level of non-IIDness

vergence towards the global solution. For any obser-
vation x in the IID setting, we have x∼ P, where P is
the global data distribution, while in the non-IID set-
ting, we have x ∼ Pi for each client Ci, where Pi may
not equal Pj ∀i ̸= j and i, j ∈ [1,K]. To bypass non-
IIDness, we estimate the maximum likelihood estima-
tor (MLE) P̂MLE of P. In FLAMED, each Pi is mod-
eled using a density estimation technique to obtain
P̂i; then one of two approaches is possible. (1) Each
client simulates a dataset X̃i ∼ P̂i, which the server
aggregates into a global dataset. (2) The server aggre-
gates the estimated P̂i, or its summary statistics, from
each client, which the server uses to simulate a global
dataset. The first approach is the default in FLAMED
and what we adopt in the present article’s proof of
concept implementation, which can be seen as just
one of many possible implementations of the first gen-
eral approach. In both approaches, a global model
is constructed at the server from the global dataset,
which then follows a mixture distribution

P̂ = ∑
i

αiP̂i, ∑
i

αi = 1, (1)

where the weight of the convex combination, αi, con-
trols the importance of each client, and the distribu-
tions P̂i, i = 1, · · · ,K are the empirical distributions
P̂MLE

i of the data simulated at the client side (approach
1) or the estimated distributions themselves (approach
2). Figure 1 illustrates the general FLAMED frame-
work.

FLAMED:

FL Clients:
1 2 K

Aggregating Server
③ Simulated Centralized Training on

X = [X1, X2, ..., XK] or X ⁓       Pi

② Xi ⁓ Pi  or  Pi

⁓ ⁓ ⁓ ⁓ ⁓

⁓

i=0

K∑

① Pi = DensityEstimation(Xi)

④ Global Model:

Figure 1: The general FLAMED framework with red indi-
cating approach 1 and blue indicating approach 2.

Theorem 3.1. FLAMED bypasses non-IIDness by
approximating the global MLE P̂MLE of the global
data distribution P.

Proof : It is obvious that P̂MLE
i ̸= P̂MLE

j , where
P̂MLE

i is the MLE, called the empirical nonparamet-
ric distribution, that simply puts a mass of 1

ni
on each

observation, and where ni is the number of observa-
tions at Ci. In both approaches, a global model is con-
structed at the server from the mixture distribution P̂
defined in Eq. (1) Therefore, the aggregating server
obtains P̂, an estimation of P̂MLE . ■

In this way, FLAMED simulates a centralized
learning task, thus bypassing non-IIDness resulting
from varying data distributions Pi ̸= Pj. Further, in
contrast to standard FL, there is only a single round
of communication. This means each client can con-
tribute once they are available, and the aggregating
server can wait to train the global model only when
all clients have contributed, without holding up other
participants. Therefore, in addition to bypassing non-
IIDness resulting from differing Pi, FLAMED also
addresses non-IIDness resulting from client selection
bias due to nonuniform client availability.

The general framework of FLAMED proceeds as
follows (A specific implementation is given in Sec-
tion 3.3):

1. (Optional for low-dimensionality datasets) The
clients use a privacy-preserving distributed
dimensionality reduction technique to enable
tractable density estimation, distribution model-
ing, etc., depending on the method used to derive
the global model.

2. Clients perform the statistical analysis sufficient
for the learning task on their (optionally) trans-
formed data, and the resulting information (X̃i or
P̂i for approach 1 or 2, respectively) is sent to the
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aggregating server.

3. The server simulates centralized training to con-
struct the global model M .

The default for FLAMED is to follow approach
1 because clients can always simulate the data them-
selves and send only the simulated data to the server.
Here, we are outlining a general approach, so, practi-
tioners themselves must ensure clients do not expose
sensitive information in step 2. For example, sum-
mary statistics or a simple scaled histogram may be
shared with the server but, kernel density estimation
(KDE), which uses observations within its estimated
probability density function (PDF), would leak obser-
vations if its PDF was sent to the server.

3.2 FLAMED: Practical Benefits

FLAMED has several practical benefits that distin-
guish it from traditional FL. Many FL use cases
are resource-constrained but standard FL methods
(e.g. all methods cited in Section 2) require multiple
rounds of communication and computation on partic-
ipants’ devices. FLAMED offers an alternative that
requires only a single round of communication and
computation, with all model training taking place at
the aggregating server. The complexities shown in
Table 2 emphasize this point. FLAMED trades mul-
tiple rounds of local model training at the clients for
a single round of density estimation at the clients and
global model training at the server. FLAMED’s space
requirements are comparable at the client but larger at
the server. Communication is also reduced to a sin-
gle round. Altogether, FLAMED asks for less space,
computation, and availability from the clients in ex-
change for a heavier burden on the server. In gen-
eral, FLAMED’s redistribution of computational bur-
dens may make it more appropriate for settings with
low-resource clients, e.g. internet of things applica-
tions, provided the central server is able to handle the
extra workload. Further, any contribution can easily
be individually excluded from global model training
by imposing a zero weight on that client (Eq. (1)),
making detecting malicious contributions (see Sec-
tion 6.3) and performing contribution evaluation eas-
ier. Also, if a new client joins the FL network, the
global model can be updated without repeating the en-
tire FL process with all participants. FLAMED also
allows for the streamlined design of the global model
because grid search can be performed with little co-
ordination or communication overhead. In contrast,
standard FL methods require the entire procedure to
be repeated for each choice of hyperparameters or
model architecture.

3.3 FLAMED: Specific Implementation

Input: Data X = [X1, ...,XK ]
Output: Global model M
begin

FedSVD(X1, ...,XK); \\Clients get U:r
for i ∈ [1,K] do

\\At Client i
X ′i ←U:rXi

P̂i← KDE(X ′i )
X̃ ′i ∼ P̂i

SendToServer(X̃ ′i )
end
\\At Server

X̃ ′← [X̃ ′1, ..., X̃
′
K ]

M ← GlobalModel.Train(X̃ ′)
SendToClients(M )

end
Algorithm 1: FLAMED Using Simulation.

In our experiments, to reduce data dimensionality
and make simulation tractable, we consider singular
value decomposition (SVD) (Halko et al., 2011) for
dimensionality reduction. SVD decomposes matrix
X ∈ Rm×n as X = UΣV⊤, where Σ ∈ Rm×n is diago-
nal, U ∈ Rm×m, and V ∈ Rn×n. Using the r columns
of U corresponding to the r largest singular values
in Σ, denoted U:r, a low-dimensional transformation
X ′ ∈ Rr×n is obtained with X ′ =U:rX .

However, this approach cannot be directly applied
to our problem because each client would obtain a dif-
ferent Ui, each biased toward their local dataset. Thus,
we use FedSVD (Chai et al., 2021), which, with the
help of a trusted masking server, can compute U:r of
the combined data matrix X = [X1, ...,XK ], which is
composed of all K clients’ data matrices Xi, without
compromising the privacy of any of the clients’ data.
Once each client receives U:r, they compute the com-
mon r-dimensional transformation of their data.

The specific algorithm and implementation of
FLAMED used in this paper is depicted in Algo-
rithm 1. For simulation, we use KDE with the Gaus-
sian kernel. KDE maps points in the feature space to
estimates of the probability density using a weighted
sum of kernel distances from said point to each ob-
servation in the training set. Logistic regression and a
feed forward neural network (NN) were used for the
global model. The time, space, and communication
complexities for the general FLAMED framework
and the specific implementation in our experiments
along with the comparison approaches are shown in
Table 2.
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Table 2: Time and space complexities for all methods. D, A, and G are placeholders for density estimation, aggregation, and
building the global model, respectively. n, ni, and nI are the total number of observations across all clients, the number of
observations at client i, and the max number of observations at any given client, respectively. We assume a feed-forward NN
for the global model with l layers no larger than m trained for e epochs and R rounds of FL.

Method Time Space Communication
Client Server Size Rounds

FLAMED(General) O(D)+O(A)+O(G) O(D) max(O(A),O(G)) O(K(size(Ii)+ size(M ))) 1
FLAMED(KDE) O(n2

I )+O(lm2ne) O(ni) O(lm2) O(nm+Klm2) 1
FedAvg/Prox/DC O(lm2nIeR) O(lm2) O(lm2) O(RKlm2) R

4 SECURITY

4.1 Threat Model

In our threat model, we assume any subset of the K
participants, including the aggregating server, could
be malicious and use any means necessary to at-
tempt to learn something about a particular data sam-
ple x belonging to a benign participant. Although
in some settings, it may be inadmissible to allow
global properties of data distributions to be leaked, it
is not obvious that standard FL approaches can pre-
vent this (Wang et al., 2019; Zhu and Han, 2020).
Most data privacy approaches, ours included, focus
on the privacy of any particular sample. The Eu-
ropean Union’s General Data Protection Regulation
(GDPR), a major incentive for the development of FL
algorithms in the first place, only applies to “personal
data,” which is data relating to an identified or iden-
tifiable individual (see (Voigt and Von dem Bussche,
2017, Sec. 2.1.2)). Therefore, we allow knowledge
of empirical probability densities of private data to be
learned by adversaries.

Given this threat model, because FLAMED is a
general method, its security would have to be proved
for each individual implementation. Specifically, if
approach 1 is followed, it must be shown that sharing
X̃ conforms to a particular privacy requirement, which
is application-dependent. If approach 2 is followed,
sharing P̂i must be shown to conform to a particu-
lar privacy requirement (e.g. sharing an approxima-
tion of KDE’s PDF is proven secure in (Wagner et al.,
2023)). There are many varieties of privacy require-
ments. Differential privacy requires that any synthetic
datasets generated from neighbouring private datasets
(i.e. datasets that differ by one element) have a near
equal probability of occurring (Ding et al., 2011).
This can be accomplished by using methods like
PrivBayes for generating synthetic datasets (Zhang
et al., 2017). We leave investigation of this approach
to future work. Below, we prove the security of the
specific FLAMED implementation defined in 3.3 us-

ing a weaker privacy requirement. Specifically, we
require that FLAMED releases no certain information
about a particular sample.

Theorem 4.1. FLAMED is secure with respect to our
threat model. That is, FLAMED leaks no certain
information about a particular xi ∈ X = [X1, ...,XK ]

other than P̂.

Proof : In approach 1, where each client simulates
a dataset X̃i∼ P̂i, the server only receives X̃i from each
client, which cannot be used to accurately reconstruct
any particular xi with certainty. The server could only
use X̃ = [X̃1, ..., X̃K ] to construct an empirical PDF that
approximates the estimated density P̂ from Eq. (1).
Even if the server colludes with all but one participant
j, obtaining the private data belonging to clients i ̸= j,
the server will obtain at best a closer approximation to
P̂, which does not leak any certain information about
a particular xi at the non-colluding participant. Sim-
ilarly, in approach 2, the server only receives density
estimation information P̂i from each client. As dis-
cussed in Section 3.1, the practitioner should ensure
this information does not leak private data (e.g. sum-
mary statistics or histograms can be safely shared).
Here, we prove the security of our general approach
and assume the practitioner will ensure sharing P̂i is
secure in their specific implementation. By this as-
sumption, in approach 2, the server also cannot ac-
curately reconstruct any particular xi after receiving
P̂i. Therefore, in both approaches, so long as care
is taken in specifying P̂i when using approach 2, the
server does not learn any certain information about a
particular xi. Conversely, the clients may optionally
obtain, at most, the global model trained on X̃ . Even
if they were able to approximately reconstruct much
of its training data with model inversion attacks, they
would have less certain information than the server,
and, at best, would only be able to reconstruct P̂.
Thus, FLAMED leaks no certain information about a
particular xi other than its estimated probability den-
sity. ■
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4.2 Security Advantages

As discussed in Section 2, training samples can be
reconstructed from weight updates exchanged in the
standard FL approach (Zhu and Han, 2020). Thus,
privacy can be compromised if no measures are
taken to hide weight updates from the server. In
FLAMED, no gradients are exchanged, so this type
of attack is not feasible. Further, (Bagdasaryan
et al., 2020) showed that directly manipulating gra-
dient updates (model poisoning) is more effective
than manipulating training data (data poisoning).
This makes FLAMED inherently more robust against
model backdoor attacks, as demonstrated in Sec-
tion 6.3. FLAMED addresses non-IIDness, gradi-
ent leakage, and gradient poisoning simultaneously.
Other approaches require observing raw gradients or
client state information to correct biases or detect poi-
soned gradients. This makes securing such meth-
ods against gradient leakage attacks more difficult.
Conversely, addressing gradient leakage by obscuring
raw gradient information makes correcting bias and
detecting data poisoning more difficult. FLAMED
presents no such trade-off by allowing careful anal-
ysis of all client contributions while not exchanging
gradient information and maintaining privacy.

FLAMED allows the aggregating server to obtain
a global model that is not known to other participants.
To share this property with FLAMED, most standard
FL methods would require intensive redesign with
costly HE or other privacy-preserving methods. It is
easy to see the use cases for such an FL method. For
example, consider an FL scenario with untrusted par-
ticipants, such as cell phone users. The participants
may want to isolate the trained model at the aggregat-
ing server to maintain the aggregating server’s sole
proprietorship of the global model or to strengthen
privacy guarantees because sharing the global model
with participants may allow them to perform model
inversion attacks, exposing participants’ private data
to one another.

5 EXPERIMENTS

5.1 Comparison Approaches

We compare FLAMED with FedAvg, FedProx, and
FedDC. All approaches come with a strong theoreti-
cal foundation. FedAvg, has over 20,000 citations and
is included as a baseline FL approach. A survey of
the FL literature showed FedProx reported the largest
accuracy increase over FedAvg (Liu et al., 2020, Ta-
ble 11). FedDC is more recent and outperformed Fe-

dAvg, FedProx, and other approaches from the liter-
ature. We thus include FedProx and FedDC to repre-
sent the state-of-the-art.

5.2 Performance Comparison: Setup
and Configurations

Synthetic Datasets. To evaluate FLAMED against
the comparison FL techniques under a variety of sce-
narios, we used synthetic datasets generated follow-
ing the approach used by the authors of FedProx. In
their approach, parameters α = β control how non-
IID different client datasets are. Where we depart
from FedProx is in the configurations of the syn-
thetic datasets used. The mean number of observa-
tions held across all clients is determined in propor-
tion to the number of features m as ρm, where ρ is
an experimental hyperparameter. In the following, ni
is the number of observations held at client Ci. The
distribution of the number of observations across all
clients is either uniform (i.e. ni = ρm∀i) denoted U,
or a modified log-normal distribution L = n∗i +

ρm
2

where n∗i ∼ lognormal(µ,2) and µ and 2 are the mean
and standard deviation, respectively, of the underlying
normal distribution; µ is chosen such that E[n∗i ] =

ρm
2 ,

and thus, the mean number of observations at each
client Ci is E[L ] = E[n∗i ]+

ρm
2 = ρm.

In our initial experiments we applied FLAMED
and the comparison methods to 1,536 synthetic
distributed dataset configurations defined by the
cross product: K ∈ {2,4,8,16}× c ∈ {2,4,8,16}×
m ∈ {8,32,128,512} × ρ ∈ {5,10,20} × α = β ∈
{IID,0,0.5,1}×D ∈ {U,L} where c is the number
of classes and α = β = IID denotes IID data across
all clients. After our results from these initial exper-
iments (discussed in Section 6.1), we explored how
FLAMED handled higher levels of non-IIDness and
repeated our initial experiments, but with α = β ∈
{1.5,2}, adding 768 configurations. We also repeated
our initial experiments but with a higher number of
clients K ∈ {32,64,128} and ρ ∈ {5,10}. Configura-
tions with K = 128∧m = 512∧ρ = 10 were excluded
due to time constraints. This added another 736 con-
figurations, for 3,040 configurations in total.
Real Dataset. To evaluate FLAMED in a real-world
federated setting, we used the eICU Collaborative Re-
search Database (Pollard et al., 2018). This dataset
contains real-world medical data from over 200,000
ICU admissions to more than 200 medical centres
across the United States. Unlike other commonly
used datasets, the eICU dataset represents a real-
world federated setting instead of a contrived one ob-
tained by separating a centralized dataset. We use the
data contained in the drug infusions table. Each row
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in our feature matrix X corresponds to a patient, while
each column corresponds to a drug. If a patient i re-
ceives any dose of a certain drug j across any of their
ICU admissions, then Xi j is set to 1. Otherwise, it is
set to 0. A patient is assigned label 0 if their discharge
status in the patient table is “alive”, and 1 otherwise.
After removing any hospital with less than 10 obser-
vations, we are left with 3,069 features and 72,959
patients held across 132 hospitals. In addition to us-
ing all 132 clients, we test 22 different configurations
defined in the set K ∈ {2,4,8,16,32,64,128}× S ∈
{smallest,middle, largest}. Here, K is the number of
hospitals used and S denotes the strata of hospitals we
select from. That is, if S = middle, then we select the
K hospitals with the nearest to the median number of
patients, while if S = smallest or S = largest, then we
select the K hospitals with the least or most number
of patients, respectively.
Model Parameters. For FedAvg, FedProx, and
FedDC, we performed 200 rounds of standard FL to
train a feed-forward NN. In all experiments, this was
more than enough rounds for the global model to con-
verge. Intermediate layers have ⌊m

2 ⌋ neurons, unless
m = 2, in which case they have 2 neurons. Other
parameters are determined through grid search using
balanced accuracy for evaluation to account for class
imbalances. For FLAMED, FedSVD is used to trans-
form the dataset into r ∈ {2,4,8} dimensions. Grid
search is used to determine the optimal KDE simu-
lation parameters which minimize the log-likelihood
score of a held-out local test set. After simulation and
the training of a global model, the optimal values for
r and the hyperparameters of the global model are de-
termined using balanced accuracy on a validation set
that consists of ∼ 10% of each local dataset. For the
global model, logistic regression (LR) and NNs were
compared.

5.3 Security Analysis: Setup and
Configurations

We recreated the attacks in (Bagdasaryan et al., 2020)
which used poisoning to cause the global model to
only misclassify observations with certain feature val-
ues, called the backdoor, while not affecting the over-
all accuracy of the global model. We used the full
eICU dataset after preprocessing as described in Sec-
tion 5.2. For all methods, we varied the number of
attacking clients, using the clients with the nearest to
median number of observations. The backdoor was
set when column 377 is 1 with target label 1. Only
one observation in the benign data had this column
set to 1, and it had the label 0. Thus, the poison-
ing objective was contradictory to the benign data but

should not have caused overall degradation in model
performance. The poisoned training data consisted of
the backdoor and some noise in the form of random
columns set to 1 to help the model to generalize the
learned backdoor.

For attacking FedAvg, FedProx, and FedDC, we
followed the model poisoning approach presented
in (Bagdasaryan et al., 2020). We also performed
the backdoor attack via data poisoning as a baseline
comparison with the data poisoning attack against
FLAMED. At the server, we tested two different de-
fences that were also presented in (Bagdasaryan et al.,
2020), computing the cosine distance and the L2 dis-
tance between each client’s weight update and the
global model. It is assumed that updates with higher
L2 or cosine distances are anomalous and represent
poisoning attempts. In practice, these defences cannot
be deployed in conjunction with secure aggregation;
however, we report their effectiveness here as a best
case scenario. Further, also following (Bagdasaryan
et al., 2020), in order to evade detection, the attacker
modifies their loss function to include an “anomalous
loss” term, weighted with 1−α. This term penalizes
weight updates with large L2 or cosine distances, de-
pending on the defence deployed (see (Bagdasaryan
et al., 2020, Eq. (4))). The strength of the attack-
ers’ poisoned update and the weight of the anoma-
lous loss term are controlled using the hyperparam-
eters denoted γ and α in the original paper. In our
experiment, γ and α were varied across {50,75,90}
and {0.4,0.5,0.7,1}, respectively. Attackers were se-
lected in every round of federated training.

For FLAMED, as discussed in Section 4.2,
we are confined to data poisoning because no
gradients are exchanged. We injected poi-
soned training data before FedSVD dimension-
ality reduction and varied the number of poi-
soned training observations as a multiple p ∈
{0.01,0.05,0.1,0.2,0.3,0.5,0.8,1,2,4,8,16,32,64}
of the amount of training data at the attacking
client(s). We assume that the backdoor, being
inserted by only a few clients and by definition not
present in the original data, will be rare. Therefore,
any observations containing the backdoor will be an
outlier; so, we used anomaly detection to find poi-
soned observations. We tested six defense methods
using two anomaly detection algorithms, local outlier
factor (LOF) (Breunig et al., 2000) and isolation
forest (IF) (Liu et al., 2008), on the simulated data,
the centroid of each client’s simulated data, and the
centroid of each class’s simulated observations at
each client.

To evaluate the poisoning attacks, we used the
backdoor success rate (BSR) which is the percent-
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age of observations in the poisoned test data that fool
the global model into predicting the target label. The
poisoned test data contain the backdoor and some
noise, which tests how well the backdoor general-
ized. We also record the area under curve (AUC) of
the defences by assigning positive labels to poisoned
updates or data and using the L2/cosine distance or
LOF/IF outlier scores as the predictions. The attacker
aims to insert an effective model backdoor with a high
BSR while also going undetected, meaning the de-
fence method scores a low AUC. Any other result is
good for the defender because then the attack is either
detected, ineffective, or both.

6 RESULTS

6.1 Synthetic Data

Table 3: Balanced accuracy for each method averaged over
the initial synthetic dataset configurations including and ex-
cluding the entirely IID configurations.

Method
Balanced Accuracy

Configs. Excluding
α = β = IID All Configs.

FedAvg 0.7962 0.8092
FedProx 0.8009 0.8125
FedDC 0.8023 0.7952

FLAMED 0.7741 0.7226

In real-world FL settings, entirely IID datasets are
exceedingly rare. We also gain more from non-
IID datasets because each client’s contribution holds
different information about the global learning task.
Therefore, we are more interested in the non-IID con-
figurations and provide the average balanced accu-
racy scores both including and excluding the config-
urations with entirely IID data. The averaged bal-
anced accuracy scores for each method across all
dataset configurations in our initial experiments are
shown in Table 3. FedAvg, FedProx, and FedDC
were the overall winners, performing mostly at par,
but FLAMED remained competitive in the non-IID
experiments. This can already be considered a suc-
cess because, in addition to FLAMED’s performance
(which was within 3% balanced accuracy of the best-
performing method across all non-IID settings), it of-
fers the security advantages discussed in Section 4
and the practical benefits mentioned in Section 3.2.

It was not expected that any one approach would
perform best across all scenarios, and as we will
see, the results in Table 3 represent only a superfi-
cial glance at the true utility of each method. We
break down our results with respect to configuration

parameters found to heavily affect the relative perfor-
mance of the compared methods. The average bal-
anced accuracy across all configurations with respect
to the level of non-IIDness for our initial experiments
and extended experiments with greater levels of non-
IIDness are shown in Fig. 2. We can see that the intro-
duction of even slight non-IIDness resulted in a very
large improvement in the performance of FLAMED.
This trend continued as non-IIDness increased, with
diminishing returns, until FLAMED scored just 0.007
average balanced accuracy below the best-performing
comparison approach, FedDC. The fact that the dif-
ference between the entirely IID configurations and
configurations where α= β= 0 alone is so great illus-
trates the importance of considering the non-IID con-
figurations separately. FLAMED performed worse
on IID data, and because the comparison methods
do not behave in the same way, we cannot con-
sider this an artifact of the synthetic dataset genera-
tion. Rather, this may result from FedSVD failing to
preserve classification-relevant information or inter-
ference from overlapping estimations across similar
client distributions.

Increasing the number of clients also increases
non-IIDness. Fig. 3 shows, for each method, the bal-
anced accuracy with respect to different numbers of
clients averaged across all configurations in our initial
experiments and in our extended experiments with a
greater number of clients. The plot shows that as the
number of clients increased, the relative performance
of FLAMED improved. When not considering en-
tirely IID configurations, FLAMED performed better
than FedAvg and FedProx, and was competitive with
FedDC, if the number of clients K ≥ 16.

A principal characteristic of any ML problem is
the number of features being used for prediction. In
our case, it is especially important because transfor-
mation to a low-dimensionality feature space is re-
quired for tractable simulation. Fig. 4 shows the av-
erage balanced accuracy for each method with re-
spect to different dataset dimensionalities for the ini-
tial experiments, the experiments with a greater num-
ber of clients, and the experiments with high non-
IIDness. From the figure, we can see that in the ini-
tial experiments, when the dimensionality was lowest,
FLAMED performed best. Further, the results show
that when non-IIDness is increased by increasing the
number of clients or by increasing α = β, FLAMED
is performant, even at higher dimensionalities, where
simulation is not tractable without first using dimen-
sionality reduction. This outcome is corroborated by
our results on the real dataset.

Overall, our results show there are several sce-
narios where FLAMED performs well. Specifically,
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Figure 2: Avg. balanced accuracy for each method across
initial (unshaded) and extended configurations with high
non-IIDness (shaded) for different levels of non-IIDness.
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Figure 3: Avg. balanced accuracy versus the number of
clients across the initial (unshaded) and extended configu-
rations with a greater number of clients (shaded).
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Figure 4: Avg. balanced accuracy versus the number of
features for each method across all configurations in the
initial experiments (top-left) the extra configurations with
more clients (top-right) and higher non-IIDness (bottom).

when the number of features is low, so as to keep
simulation tractable (of course this is dependent on
the number of informative features, which determines
SVD’s ability to successfully preserve all meaning-
ful information) and where non-IIDness is high be-
cause of highly heterogenous client distributions or a
large number of slightly heterogenous client distribu-
tions. It is important to note that FLAMED’s rela-
tive performance improves as the number of clients

increases because this amplifies the non-IIDness of
the data, which impacts FLAMED’s performance less
adversely compared to other methods. However, in
scenarios where the data is IID, this advantage may
diminish. Regardless of the data distribution, each
client must possess sufficient data to achieve reliable
local data density estimation.

6.2 Real Data

The results of our experiments on the eICU dataset
are presented in Fig. 5. The plot shows the best bal-
anced accuracy achieved by each method with vary-
ing numbers of clients. The test set is taken from
each client that was used in training. Unsurprisingly,
when clients with a smaller number of observations
were used, the relative performance of FLAMED was
lowest because many observations are needed to re-
liably train a simulator versus a classifier. When
larger clients were used, the relative performance of
all methods became much closer. When we had
a high number of clients, FLAMED had good per-
formance, beating FedAvg and FedProx when using
more than 32 of the clients with the largest number
of samples, and remaining competitive with FedDC.
Notably, FLAMED performed best on the full eICU
dataset with all but the three smallest clients. When
using the full eICU dataset, these three excluded
clients likely contributed poorly simulated data, so
FLAMED performed second best.
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Figure 5: The balanced accuracy for each method evaluated
on the eICU dataset with varying number of clients using
the clients with the smallest (top-left), nearest to median
(top-right), and largest (bottom) number of samples.
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6.3 Security Analysis: Poisoning
Comparison

Here, we present the results of our experiments com-
paring the practicality of model backdoor attacks
against FedAvg, FedProx, FedDC, and FLAMED.
In Fig. 6, we show the resulting AUC and BSR of
the backdoor attacks via data and model poisoning
against FedAvg, FedProx, and FedDC, as described
in Section 5.3. Each point corresponds to different
attack techniques and parameters. For the data poi-
soning attacks, in which case no evasion can be per-
formed by the attacker, the maximum AUC from ei-
ther the L2 or cosine defence is presented. For the
model poisoning attacks, the AUC resulting from the
specified evasion technique’s corresponding defence
method is used. If no evasion technique is used, the
maximum AUC from either the L2 or cosine defence
is presented. The results indicate there are many in-
stances where the model poisoning attack is success-
ful, with over 90% BSR, while going undetected by
the defence methods used. However, the data poison-
ing attack was always detected with a high AUC, cor-
roborating the results from (Bagdasaryan et al., 2020).
Regardless of the FL method and the defence method
used, there were attack configurations where the BSR
was greater than 90% and the AUC lower than 60%,
meaning the attacks were undetected but potent. The
reader should also note that the AUCs presented here
represent a best-case scenario beacuse, in practice,
client updates are not visible to the aggregating server
due to privacy concerns.

It is important to note that in cases where the AUC
is below 50, the defender cannot simply flip the pre-
diction to achieve a better-than-random AUC. The
AUC is so low primarily because the attacker’s eva-
sion techniques minimize the L2 norm or cosine dis-
tances, and therefore the outlier score, of their poi-
soned updates. Intuitively, any outlier score exceed-
ing a given threshold should be considered anoma-
lous, and the corresponding update ignored. How-
ever, this approach would also eliminate many benign

updates because the attackers minimize their outlier
score, significantly compromising accuracy.

Data Poison No Evasion
L2 Evasion Cosine Evasion
FedAvg FedProx FedDC
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Figure 6: BSR obtained with the different poisoning attack
configurations and the AUC of the corresponding defence
method.

Fig. 7 shows the results of the backdoor attacks
via data poisoning against FLAMED. IF used on the
simulated data was very effective, scoring a high
average AUC regardless of the attack configuration.
This demonstrates that FLAMED, unlike standard FL
methods, enables effective attack detection without
exposing gradients to the aggregating server. Also,
many data poisoning attacks achieved poor results,
but there is no reliable method to determine good at-
tack parameters. Attackers must guess the best at-
tack parameter settings and risk an ineffective attack
or being detected. Therefore, a data poisoning attack
on FLAMED is impractical. In contrast, the authors
in (Bagdasaryan et al., 2020) present methods for ob-
taining good model poisoning attack parameters with
little prior knowledge of the FL network. However,
as stated, model poising attacks cannot be performed
against FLAMED beacuse it doesn’t exchange gradi-
ents.
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Figure 7: The BSR of data poisoning attacks against FLAMED versus the average AUC across all parameter settings for all
defence methods. Repeated marker shapes correspond to different attack configurations.
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7 CONCLUSION

In this work, we introduced the FLAMED frame-
work and compared it to FedAvg, FedProx, and
FedDC. FLAMED demonstrated strong performance
in handling non-IID data and detecting attacks against
model performance while resisting gradient-based
privacy attacks. FedSVD effectively reduced the di-
mensionality of large datasets (3,069 features) for ac-
curate simulation. While FLAMED’s performance
was competitive, it represents an early step in FL with
estimated densities, whereas comparison approaches
like FedDC represent the culmination of eight years of
research interest. Future research directions include
developing FedSVD approaches that eliminate the
need for a masking server and extending FLAMED
to settings such as categorical features, online learn-
ing, and vertical FL.
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