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Abstract: The quality of the pseudo-labels employed in training is paramount for many Weakly Supervised Semantic
Segmentation techniques, which are often limited by their associated uncertainty. A common strategy found in
the literature is to employ confidence thresholds to filter unreliable pixel labels, improving the overall quality of
label information, but discarding a considerable amount of data. In this paper, we investigate the effectiveness
of cross-supervision and contrastive learning of pixel-level pseudo-annotations in weakly supervised tasks,
where only image-level annotations are available. We propose CSRM: a multi-branch deep convolutional
network that leverages reliable pseudo-labels to learn to classify and segment a task in a mutual promotion
scheme, while employing both reliable and unreliable pixel-level pseudo-labels to learn representations in a
contrastive learning scheme. Our solution achieves 75.0% mIoU in Pascal VOC 2012 testing and 50.4% MS
COCO 2014 validation datasets, respectively. Code available at github.com/lucasdavid/wsss-csrm.

1 INTRODUCTION

Semantic segmentation is a prominent task in Com-
puter Vision, considering its multiple real-world ap-
plications (Mo et al., 2022). Nowadays, Deep Convo-
lutional Networks have become the standard approach
to semantic segmentation, yielding great effectiveness
across different problems and domains (Chen et al.,
2020). However, this success comes at the expense of
large amounts of annotated data, resulting in labori-
ous and extensive annotation work from human spe-
cialists to produce Fully Supervised Semantic Seg-
mentation (FSSS) datasets.

In recent years, researchers have development
strategies to mitigate this prominent annotation de-
pendency, such as Semi-Supervised Semantic Seg-
mentation (SSSS) (Zhang et al., 2020b) and Weakly
Supervised Semantic Segmentation (WSSS) (Shen
et al., 2023). In the former, a small subset of samples
is (fully) annotated at a pixel-level, while the remain-
ing samples are kept unlabeled. In the latter, all sam-
ples are (weakly) annotated with a degenerated form
of the supervised information, such as image-level la-
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bels, bounding boxes, scribes, or points.
Approaches to SSSS problems often leverage the

(otherwise wasted) unlabeled sample set in the train-
ing process by adopting pixel-level pseudo-labels, de-
vised from visual patterns and similarity with the ex-
isting supervised set. Approaches to WSSS prob-
lems, on the other hand, create pixel-level pseudo-
labels from any supervised information available,
such as localization cues extracted with explaining
methods (Samek et al., 2021).

The lack of quality in the pixel-level pseudo-labels
is detrimental to the effectiveness in SSSS and WSSS
tasks, and it is often mitigated by filtering pixels in
the pseudo-label masks according to a confidence hy-
perparameter δfg ∈ [0,1]. Pixels whose confidence is
high (according to δfg) are used in training, while the
remaining unreliable pixels are discarded.

While promising strategies for utilizing unreli-
able pixel-level pseudo-labels, through the contrastive
learning of pixel representations, have been devised
to improve the effectiveness of fully-supervised (Liu
et al., 2022b) and semi-supervised (Wang et al., 2022)
solutions, they still require (at least) a few fully
human-annotated samples, implying in laborious hu-
man intervention. To the best of our knowledge, no
work proposed thus far has studied the employment
of unreliable pixel-level labels in WSSS tasks.
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In this work, we investigate the effect of using un-
reliable pixel-level pseudo-labels for the learning of
weakly supervised semantic segmentation problems.
Our solution, namely Cross-Supervision and Rela-
tional Model (CSRM), comprises three branches: (i)
the classification branch, responsible for learning the
associated classification task, and produce CAMs that
can be refined into coarse segmentation priors; (ii)
the segmentation branch, responsible for learning the
segmentation task from reliable pixel-level pseudo-
labels, while regularizing the classification branch to
produce better CAMs; and (iii) the representation
branch, responsible for contrasting pixel-level feature
representations of both reliable and unreliable regions
in a metric space. We define reliability of regions
based on their prediction confidence, entropy, and the
image-level label information available, and extract
hard queries that are compared with positive and neg-
ative anchors in a contrastive learning scheme, where
unreliable regions (associated with high entropy) are
pushed close together from their likely class proto-
type and farther away from negative (visually similar)
anchors.

Our approach is inspired by recent advances in
both FSSS and SSSS, but differs in key aspects from
the works previously proposed (He et al., 2020; Liu
et al., 2022b; Wang et al., 2022): (i) it does not rely
on (however small) human-made annotation sets for
building reliable class-specific representations, and
(ii) it relies solely on image-level annotation informa-
tion to extract pixel-level, class-specific anchors used
in the contrastive learning task.

The remaining of this work is organized as fol-
lows. Section 2 introduces important concepts used
in this work, as well as pertinent literature. Section 3
describes our approach in detail, while Section 4 de-
tails the training procedure, and hyperparameters em-
ployed. We present the main results in Section 5, and
conclude the paper in Section 6.

2 RELATED WORK

In this section, we introduce concepts and strategies
in the literature that important for the understanding
of our work.

2.1 Weakly Supervised Semantic
Segmentation (WSSS)

Various approaches to semantic segmentation using
only image-level labels were proposed in the last
decade. These are subdivided into two categories:
single-stage, in which an end-to-end model capable

of segmenting samples by itself is trained (Bircanoglu
and Arica, 2022; Zhu et al., 2023), and multi-stage
strategies (Kweon et al., 2021; Jo and Yu, 2021;
David et al., 2024), involving multiple steps to train
the segmentation model, often by deriving pseudo se-
mantic segmentation labels from localization cues ad-
vent from AI explaining methods (such as CAM (Si-
monyan et al., 2013) and Grad-CAM (Selvaraju et al.,
2017)) applied over models trained with complex reg-
ularization strategies that promote the emergence of
useful properties for the segmentation task.

Mutual promotion is an example of such regular-
ization method, and it has become an important aspect
for single-stage WSSS approaches (Bircanoglu and
Arica, 2022; Zhu et al., 2023). It consists of a WSSS
model that has multiple branches responsible for per-
forming concomitant tasks, leveraging the mutual in-
formation between tasks to improve the effectiveness
of the associated processes. For example, a classifica-
tion and a segmentation branches, in which the former
provides localization cues to the latter, which, in turn,
is used to regularize the first.

Though such strategies are successful, to some ex-
tent, most are strongly affected by the quality of local-
ization cues. To alleviate this problem, WSSS strate-
gies commonly adopt confidence thresholds δfg, re-
taining regions associated with “high” confidence and
“low” noise, at the cost of discarding the remaining
(potentially useful) data.

2.2 Self-Supervised Learning

Self-supervised learning techniques have shown great
promise in modern machine learning. By learning to
contrast the visual patterns of unsupervised samples,
they explore consistency regularization and entropy
minimization to mitigate prediction noise, thus im-
proving model effectiveness. In semantic segmenta-
tion, various techniques have been proposed to lever-
age the unsupervised set in a contrastive learning
setup, such as Pixel-Level Contrastive Learning (Liu
et al., 2022b), Adaptive-Equalization Learning (Hu
et al., 2021) and Contrastive Learning of Unreliable
Pseudo Labels (Wang et al., 2022).

While our approach is similar to the aforemen-
tioned solutions, it differs by relying solely on the
weakly supervised information available (image-level
labels) to create pixel-level feature representations
from image regions associated with both reliable and
unreliable pseudo-labels, allowing for the application
of self-supervised learning over WSSS tasks, in which
no human-made pixel-level annotations are available.
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Figure 1: Overview of our CSRM approach: a single model that employs cross-supervision of the classification and semantic
segmentation tasks to mutually promote their effectiveness, while learning pixel-level representations for both reliable and
unreliable pixels in an unsupervised contrastive learning setup.

3 CROSS-SUPERVISION AND
RELATIONAL MODEL

We propose Cross-Supervision and Relational Model
(CSRM): the employment of Cross-Supervision be-
tween classification, segmentation and Contrastive
Representation tasks to approach WSSS problems.
Our strategy, illustrated in Figure 1, is inspired by
recent success of contrastive learning approaches
applied to learning better concept representations
for Fully-Supervised and Semi-Supervised Semantic
Segmentation problems (He et al., 2020; Liu et al.,
2022b; Wang et al., 2022).

3.1 Architecture

Let D = {(xi,yi)}N
i=1 be a training dataset, where xi

is the i-th sample image in the set, yi = [y1
i , . . . ,y

|C|
i ] is

the one-hot class label vector indicating which classes
are present in image xi, and C is the set of all classes.

Our approach consists of a single-stage network,
comprising a feature extractor F : RHW×3 → Rhwk,
where (h,w) ≪ (H,W ); a classification branch C :
Rhwk → Rhw×|C|; a segmentation branch S : Rhwk →
RHW×|C|; and a representation branch R : Rhwk →
RHW×256.

The classification branch consists of a 1×1 con-
volution layer with |C| output channels, followed by
a Global Average Pooling layer (GAP), and the sig-

moid activation function. That is, the classification
prediction for an image xi is defined as:

Ai ∈ Rhw×|C| | Aic = Cc(F(xi))

pi ∈ [0,1]|C| | pic = σ(GAP(Aic))
(1)

The Class-specific Activation Map (CAM) (Sel-
varaju et al., 2017) of a class c ∈ C, represented by
Aic, can be obtained by simply forwarding sample xi
onto the classification branch, and collecting the po-
sitional signal before the GAP layer.

The signal is upscaled to match the original sizes
of the input, and a normalization function ψ : R →
[0,1] is further adopted to transform the CAM into a
probability map:

ψ(Aic) =
ReLU(upscale(Aic))

maxab∈HW ReLU(upscale(Aiabc))
(2)

We employ the DeepLabV3+ (Chen et al., 2018)
decoder as the segmentation branch, considering
its well-established organization and extensively as-
serted effectiveness over multiple fully-supervised se-
mantic segmentation tasks. This branch predicts seg-
mentation maps for |C|+ 1 classes (the original C
classes and the background), which is missing in the
classification task.

We define the segmentation prediction for a sam-
ples xi as:

Si ∈ RHW×|C|+1 | Si = S(F(xi))

si ∈ [0,1]HW×|C|+1 | sic = softmaxc(Si)
(3)
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Finally, the representation branch is similar to
the segmentation one, except for the last convolution
layer, which maps each pixel to a vector representa-
tion in a 256-dimensional feature space:

Ri ∈ RHW×256 | Ri = R(F(xi)) (4)

3.2 Training and Objective Functions

The objective functions employed when training each
component of CSRM are detailed as follows.

3.2.1 Classification Loss

The classification branch is refined (at a lower learn-
ing rate) to perform a multi-label classification task
with the multi-label soft-margin loss:

Lc(ps
i ,yi) =− 1

C ∑
c

yic log((1+ e−ps
ic)−1)

+(1− yic) log(e−ps
ic/(1+ e−ps

ic))

(5)

3.2.2 Segmentation Loss

Pseudo semantic segmentation labels lti are de-
vised from CAMs (extracted from the classifica-
tion branch of the teacher model), and refined with
dCRF (Krähenbühl and Koltun, 2011). Confident
foreground and background regions are extracted con-
sidering thresholds δfg and δbg, respectively. The re-
maining pixels, whose intensity fall between δbg and
δfg, are marked as “uncertain” and ignored:

lti = dCRF(ψ(At
i))

Mp(lti) = 1

[
max
c∈C

ltci ̸∈ (δbg,δfg]

]
(6)

where (δbg,δfg] is the interval of “uncertainty”, and
Mp(lti) is the binary mask matrix with dimensions
(H,W ), indicating the reliability of every pixel in the
pseudo-labels map lti .

The categorical cross-entropy loss function is
used to train the student network to match its segmen-
tation output signal to the pseudo-masks:

Ls(ss
i , l

t
i) =− 1

|Mp(lti)|

HW

∑
hw

Mp
hw(l

t
i)

C

∑
c

ltihwc logss
ihwc

(7)

3.2.3 Activation Consistency Loss

To complete the mutual promotion scheme, we reg-
ularize predictions from the classification branch of
the student with supervision from the segmentation
branch St of the teacher, which guides the model to

produce more organized activation signals, ultimately
culminating in better CAMs.

Firstly, we define a threshold hyperparameter σs2c
to create a binary mask Ms(st

i), indicating which pix-
els in the teacher’s segmentation map were predicted
with high confidence (and low entropy):

Ms(st
i) = 1

[
max
c∈C

st
ic > σs2c

]
(8)

We align the activation signal As
i with st

i by re-
sizing it to the original input size, and concatenating
it to the segmentation prediction for the background
class (Ss

i,bg), as this class is not regarded in the clas-
sification task, nor is it represented within Ai. Ss

i,bg
is treated as a constant in this step, not affecting the
gradient propagation process.

The classification branch is then regularized to
predict better organized activation maps, associated
with lower entropy, through the employment of the
sparse categorical cross-entropy loss function.

Qs
i = softmax

(
[Ss

i,bg | upscale(As
i )]

)
Ls2c(As

i ,s
t
i) =− 1

|Ms(st
i)|

HW

∑
hw

Ms
hw(s

t
i) logQs

ihwc⋆i

(9)

where c⋆i = argmaxc st
ihwc.

3.2.4 Segmentation Consistency Loss

To reinforce prediction consistency in the segmen-
tation branch, we employ an unsupervised weak-
to-strong consistency (Yang et al., 2023) optimiza-
tion objective Lu, which reinforces the student
model to output segmentation proposals similar to
the teacher’s, when the former is presented with a
strongly augmented version of sample xi, and an un-
augmented version is shown to the latter.

Firstly, a batch Bi = {xi,xi+1, . . . ,xi+b−1} is ran-
domly drawn from the training set, and it is aug-
mented with a strong augmentation technique (e.g.,
ClassMix (Olsson et al., 2021)), resulting in the aug-
mented samples B̃i = {x̃i, x̃i+1, . . . , x̃i+b−1}.

The augmented and un-augmented samples are
forward onto the student and teacher models, and
the pseudo-labels produced by the teacher model are
mixed with the same combinations used to build B̃i.

Similarly to previous works (Liu et al., 2022a;
Wang et al., 2022; Yang et al., 2023), we also account
for unreliable predictions from the teacher (specially
in early stages) by first defining the expected propor-
tion of reliable predictions αt ∈ [0,1] at a train step t,
and by computing the entropy associated to the pos-
terior probability predicted by the teacher given the
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augmented samples:

Hhw(s̃t
i) =−

|C|

∑
c

s̃t
ihwc log s̃t

ihwc (10)

Pixels are sorted by their entropy, and those whose
associated entropy are lower than the αt -quantile are
considered “reliable”, while the highest (100%−αt)
portion of the labels, associated with the highest en-
tropy, is deemed “unreliable” and discarded:

γ
B̃i
t = quantile

(
H

([
s̃t

i | s̃t
i+1 | . . . | s̃t

i+b−1
])
,1−αt

)
Ms̃(s̃t

i) = 1
[
H(s̃t

i)≤ γ
B̃i
t

]
(11)

Finally, the sparse categorical cross-entropy loss
function is used to match the segmentation proposals
of the student model to the reliable labels:

Lu(ss
i ,s

t
i) =− 1

|Ms̃(s̃t
i)|

HW

∑
hw

Ms̃
hw(s̃

t
i) logss

ihwc⋆i
(12)

where c⋆i = argmaxc st
ihwc.

3.2.5 Contrastive Learning of Unreliable Pixel
Labels

Similar to previous fully-supervised and semi-
supervised semantic segmentation works (Liu et al.,
2022b; Wang et al., 2022), we employ the In-
foNCE (Oord et al., 2018) loss function to learn pixel-
level representations:

Lm =− 1
|C|×P

|C|

∑
c

P

∑
p

log

 e⟨rpc,r+pc⟩/τ

e⟨rpc,r+pc⟩/τ+∑
N
j e⟨rp jc,r−p jc⟩/τ

 (13)

where rpc contains the p-th representation vector (an-
chor) for class c, r+pc a positive anchor for c, and r−p jc
the j-th negative anchor for pixel p and class c. Pairs
are compared with the cosine similarity function ⟨·, ·⟩.

Representations are split based on their associated
segmentation prediction entropy: the first low entropy
group contains “reliable” representations, associated
with entropy lower than the αt -quantile, while the
second high entropy group contains “unreliable” rep-
resentations, associated with entropy higher than the
(100%−αt)-quantile.

We create the group of query candidates: for every
class c in the set, we sample pixel representations in
{Rk | xk ∈Bi} such that its label information is confi-
dently known. That is, it belongs to the low entropy
group, and it was inferred from the pseudo-labels de-
vised from CAMs with confidence higher than δfg and
segmented with confidence higher than 30%.

Positive class-specific anchors are formed from
averaging representation vectors (from the teacher)
with low entropy, confident predictions.

Finally, negative anchors are formed from repre-
sentations associated to pixels segmented into class c
with confidence lower than 1%, and belonging to the
high entropy group. These are pushed into a FIFO
memory bank of negative anchors for class c if: (a)
the segmentation prediction rank of class c is less or
equal than γl and class c does not occur in the label
set yi (the class does not appear in the image-level an-
notation); or (b) the segmentation prediction rank of
class c is greater than γl and lower than γh.

The hyperparameters γl and γh are defined as small
values (e.g., 3 and 6, respectively), indicating our
preference for hard examples, associated to pixels
easily mistaken for class c.

During forward, P queries are randomly drawn
(with replacement) from the query candidates, for
each class c, and N negative anchors are drawn (with
replacement) for each query from the memory bank.
InfoNCE is employed to project queries and positive
anchors close together, while pushing negative an-
chors apart in the contrastive space. The model is
hence reinforced to refine its shared feature space to
account for these differences, hence providing addi-
tional regularization.

3.2.6 Pre-Training and Self-Supervision

We start with pretrained weights for the feature
extractor and classification branch, recovered from
pre-existing classification or WSSS solution strate-
gies, such as Puzzle-CAM (Jo and Yu, 2021) or P-
NOC (David et al., 2024), allowing us to bootstrap
and accelerate training with “reasonable” segmenta-
tion pseudo-labels from the start. The parameters in
the segmentation and representation branches are ran-
domly drawn from a Kaiming normal distribution.

Following the typical self-supervised setup, we
employ the student-teacher training framework to ob-
tain more stable (and higher quality) pseudo-labels.
In this setup, the “teacher” model θt = {Ft ,Ct ,St ,Rt}
shares the architecture and initial parameters of the
student S = {Fs,Cs,Ss,Rs}, while having its parame-
ters θt updated with the exponential moving average
(EMA) of the student’s weights θs.

Finally, the training of the student model is con-
ducted with the following optimization objectives:

L= Lc +Ls +λs2cLs2c +λuLu +λmLm (14)

where λs2c, λu, and λm are importance coefficients
useful for balancing the different tasks, when they
have noticeably different loss values. For simplicity,
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we set λu and λm to 1 in our studies over the Pascal
VOC 2012 and the MS COCO 2014 sets.

4 EXPERIMENTAL SETUP

In this section, we detail the training and evaluation
procedures employed in this work.

Following previous work (Ahn and Kwak, 2018;
Kweon et al., 2021; Jo and Yu, 2021), we train CSRM
over the Pascal VOC 2012 dataset (Everingham et al.,
2015) using Stochastic Gradient Descent (SGD) for
15 epochs with linearly decaying learning rates of
0.07 and 0.007 (for randomly initialized weights and
pretrained weights, respectively), 1e-4 weight decay,
and a batch size of 32. For the MS COCO 2014
dataset (Lin et al., 2014), we employ the learning rates
0.04 and 0.004 for randomly initialized weights and
pretrained weights, respectively.

For Pascal VOC 2012, image samples are resized
to a common resolution of 512 per 512 pixels² and
augmented with random flip. For the MS COCO
2014 dataset, models are trained with images of 640
per 640 pixels². We employ ClassMix (Olsson et al.,
2021) as strong augmentation technique, having 50%
probability of being applied to images before they are
fed to the student model.

We set δbg and δfg to the constants 0.05 and 0.35
throughout training, respectively. σs2c is initially set
to 10%, and increases linearly up to 100%. For sim-
plicity, we set the remaining coefficients in the L (λu
and λm) to 1. We also consider a warm-up period in
which the objectives Ls2c, Lu and Lm are ignored
(λs2c, λu, and λm are set to 0), in order to prevent
noisy predictions (from the randomly initialized seg-
mentation branch) to degenerate the activation signal
of the classification and representation branches dur-
ing early stages. We find these values to be reasonable
assumptions, commonly adopted by many studies in
the literature, and leave the quantitative analysis of
their effect as future work.

Following (Wang et al., 2022), we use the fol-
lowing hyperparameters for the contrastive objective:
P = 50, N = 256 and τ = 0.5. Moreover, αt is set to
20%, and linearly decreases to 0% as training pro-
gresses. The memory bank consists of |C| class-
specific lists, each of which containing N negative
“hard” anchors for its respective class. New anchors
are inserted into the bank in a FIFO order.

We employ Test-Time Augmentation (TTA) dur-
ing inference to improve prediction stability, forward-
ing the images in multiple scales and combining the
segmentation proposals. The results are then refined
with Densely Connected Conditional Random Fields

(dCRF) (Krähenbühl and Koltun, 2011) and/or SAM
Enhanced Pseudo-Labels (SEPL) (Chen et al., 2023).

Pseudo-labels are evaluated with respect to their
fidelity to human-annotated semantic segmentation
masks, measured through the mean Intersection over
Union (mIoU) metric. We report scores over both
training and validation sets — a common practice in
WSSS, as all ground-truth segmentation maps from
both sets were unused during training.

To provide a fair comparison with literature, we
execute a verification step, in which the pseudo-labels
are used to train a fully-supervised semantic segmen-
tation model. DeepLabV2 (Chen et al., 2017) and
DeepLabV3+ (Chen et al., 2018) architectures are
employed as semantic segmentation networks, and
keep their original training procedures unchanged.

For DeepLabV2, we employ the RN-101 archi-
tecture as backbone, with weights pretrained over the
ImageNet dataset. We set a batch size of 10 and crop
each training image to the size of 321 per 321 pix-
els². We train the model for 10,000 iterations over
the Pascal VOC 2012 dataset, using an initial learn-
ing rate of 2.5e-4. When training the segmentation
model over the MS COCO 2014 dataset, we employ
20,000 training iterations over patches of 481 per 481
pixels², using an initial learning rate of 2e-4.

For DeepLabV3+, we employ the RS-269 as back-
bone, and train the model for 50 epochs. The batch
size is set to 32, and the initial learning rates of 0.007
and 0.004 are used for Pascal VOC 2012 and MS
COCO 2014, respectively.

5 RESULTS

We provide an ablation study over the impact (mea-
sured in mIoU) of each objective function used by
CSRM in Table 1. The regularization of the classifi-
cation signal with segmentation predictions (Ls2c) in-
advertently deteriorates the efficacy, indicating that an
unregularized segmentation signal can be detrimental
to mutual promotion. On the other hand, we observe
a noticeable improvement in scores when considering

Table 1: Ablation study for each objective function in
CSRM, measured in mIoU (%) over Pascal VOC 2012 train
and val sets.

# Ls Ls2c Lu Lm VOC12
Train Val

1 ✓ 69.9 (baseline) 67.7 (baseline)
2 ✓ ✓ 68.3 (↓ 02.3%) 66.6 (↓ 01.6%)
3 ✓ ✓ ✓ 70.8 (↑ 03.7%) 68.7 (↑ 03.2%)
4 ✓ ✓ ✓ ✓ 71.8 (↑ 01.4%) 69.8 (↑ 01.6%)
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Figure 2: Score (mIoU) measured over Pascal VOC 2012
training set, for different choices of δfg.

prediction conformity (Lu), suggesting that a strongly
regularized segmentation branch is essential for mu-
tual promotion. Lastly, learning contrasting represen-
tations (Lm) produces the best results.

Segmentation proposals by CSRM can be further
improved by its combination with other refinement
methods (a strategy commonly employed by multi-
stage WSSS solutions to refine its segmentation pri-
ors). Table 2 describes the effect of each refinement
step on the quality of the pseudo-labels produced. The
first row contains the score of the pretrained baseline
model, ResNeSt-101 Puzzle-CAM. Training CSRM
improves mIoU measured over the training and vali-
dation sets by 19.9% and 16.7%, respectively, while
refining priors with dCRF results in a more mod-
est improvement (9.0%). In turn, SEPL also pro-
duces a considerable improvement in mIoU (19.5%
and 20.1% over training and validation sets, respec-
tively). Finally, combining the three methods results
in the highest mIoU scores observed, demonstrating
that these techniques are complementary.

Figure 2 displays the segmentation score (mea-
sured in mIoU) of the semantic segmentation pseudo-
labels devised by CSRM, considering different
choices of δfg. While other WSSS techniques produce
semantic segmentation pseudo-labels that are strongly

Table 2: Impact of each refinement procedure on mIoU (%),
measured over Pascal VOC 2012 train and val sets.

# CSRM dCRF SEPL VOC12
(ours) Train Val

1 59.9 (baseline) 59.8 (baseline)
2 ✓ 71.8 (↑ 19.9%) 69.8 (↑ 16.7%)
3 ✓ 65.3 (↑ 09.0%) 65.2 (↑ 09.0%)
4 ✓ 71.6 (↑ 19.5%) 71.8 (↑ 20.1%)
4 ✓ ✓ 72.6 (↑ 21.2%) 70.2 (↑ 17.4%)
5 ✓ ✓ ✓ 77.6 (↑ 29.5%) 76.2 (↑ 27.4%)

Table 3: Comparison with SOTA methods on Pascal VOC
2012, measured in mIoU (%)1. F: fully-supervised; I:
image-level; S: saliency. †Imagenet-21k pretrained; ‡MS
COCO pretrained.
Method Sup. B.bone Seg. Val Test

DeepLabV1 (Chen et al., 2017) F RN-38 V1 78.1 78.2
AffinityNet (Ahn and Kwak, 2018) I RN-38 V1 61.7 63.7
SEAM (Wang et al., 2020) I RN-38 V1 64.5 65.7
CONTA (Zhang et al., 2020a) I RN-38 V1 66.1 66.7
OC-CSE (Kweon et al., 2021) I RN-38 V1 68.4 68.2
ADELE (Liu et al., 2022a) I RN-38 V1 69.3 68.8
MCT-Former (Xu et al., 2022) I RN-38 V1 71.9 71.6
ACR (Kweon et al., 2023) I RN-38 V1 72.4 72.4
ICD (Fan et al., 2020) I RN-101 V1 64.1 64.3
ICD (Fan et al., 2020) I+S RN-101 V1 67.8 68.0
EPS (Lee et al., 2021c) I+S RN-101 V1 71.0 71.8
ToCo (Ru et al., 2023) I ViT-B - 69.8 70.5
ToCo† (Ru et al., 2023) I ViT-B - 71.1 72.2
BECO (Rong et al., 2023) I MiT-B2 - 73.7 73.5
SeCo (Yang et al., 2024) I ViT-B - 74.0 73.8

DeepLabV2 (Chen et al., 2017) F RN-101 V2 76.8 76.2
IRNet (Ahn et al., 2019) I RN-50 V2 63.5 64.8
AdvCAM (Lee et al., 2021b) I RN-101 V2 68.1 68.0
RIB (Lee et al., 2021a) I RN-101 V2 68.3 68.6
AMR (Qin et al., 2022) I RN-101 V2 68.8 69.1
AMN (Lee et al., 2022) I RN-101 V2 69.5 69.6
SIPE (Chen et al., 2022) I RN-101 V2 68.8 69.7
URN (Li et al., 2022) I RN-101 V2 69.5 69.7
RIB (Lee et al., 2021a) I+S RN-101 V2 70.2 70.0
SGWS (Yi et al., 2022) I RN-101 V2 70.5 70.5
AMN‡ (Lee et al., 2022) I RN-101 V2 70.7 70.6
EPS (Lee et al., 2021c) I+S RN-101 V2 70.9 70.8
ViT-PCM (Rossetti et al., 2022) I RN-101 V2 70.3 70.9
P-NOC (David et al., 2024) I RN-101 V2 70.3 70.9
CSRM (ours)a I RN-101 V2 69.8 70.4

DeepLabV3+ F RS-269 V3+ 80.6 81.0
Puzzle-CAM (Jo and Yu, 2021) I RS-269 V3+ 71.9 72.2
P-NOC (David et al., 2024) I RS-269 V3+ 73.8 73.6
CSRM (ours)b I RS-269 V3+ 74.5 75.0

Official evaluations: a BKRNCI and b TANYYC.

affected by the choice of the threshold, the segmenta-
tion proposals obtained from CSRM are more robust
against it, achieving a higher and less varying score
for almost all choices of the threshold.

Table 3 shows the effectiveness of fully-
supervised semantic segmentation models trained
with pseudo-labels generated by CSRM, while com-
paring it with current state-of-the-art over the Pascal
VOC 2012 dataset. A DeepLabV2 model trained with
CSRM pseudo-labels achieves the competitive result
of 70.4% test mIoU; while a DeepLabV3+ model
trained over the same set of pseudo-labels achieve a
mIoU score of 75.0%.

Table 4 illustrates the effectiveness of our ap-
proach over the MS COCO 2014 dataset. Once again,
DeepLabV2 and DeepLabV3+ achieve competitive
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Figure 3: Qualitative comparison of pseudo-labels obtained from images in Pascal VOC 2012 val dataset. From left to right:
(a) input image, (b) ground-truth; (c) P-NOC (David et al., 2024), and (d) CSRM (ours).

Table 4: Comparison with SOTA methods on MS COCO
2014 dataset, measured in mIoU (%). F: fully-supervised;
I: image-level; S: saliency. †Imagenet-21k pretrained.
Method Sup. B.bone Seg. Val

OC-CSE (Kweon et al., 2021) I RN-38 V1 36.4
MCT-Former (Xu et al., 2022) I RN-38 V1 42.0
ACR (Kweon et al., 2023) I RN-38 V1 45.3
ToCo (Ru et al., 2023) I ViT-B - 41.3
ToCo† (Ru et al., 2023) I ViT-B - 42.3
SeCo (Yang et al., 2024) I ViT-B - 46.7

IRNet (Ahn et al., 2019) I RN-50 V2 32.6
IRN+CONTA (Zhang et al., 2020a) I RN-50 V2 33.4
EPS (Lee et al., 2021c) I+S VGG16 V2 35.7
PPM (Li et al., 2021) I ScaleNet V2 40.2
SIPE (Chen et al., 2022) I RN-101 V2 40.6
URN (Li et al., 2022) I RN-101 V2 40.7
P-NOC (David et al., 2024) I RN-101 V2 42.9
RIB (Lee et al., 2021a) I RN-101 V2 43.8
AMN (Lee et al., 2022) I RN-101 V2 44.7
CSRM (ours) I RN-101 V2 46.2

P-NOC (David et al., 2024) I RS-269 V3+ 44.6
CSRM (ours) I RS-269 V3+ 50.5

scores, compared to the current state-of-the-art, when
trained over pseudo-labels devised by CSRM.

Table 5 displays the effectiveness (measured in
IoU) of our approach for each individual class. CSRM

achieves the best IoU scores for most classes.
A qualitative comparison between pseudo-labels

devised by CSRM and similar WSSS techniques is
provided in Figure 3, while Figures 4 and 5 show
examples of proposals made by semantic segmenta-
tion models (from the verification step) trained with
pseudo-labels devised by CSRM over Pascal VOC
2012 and MS COCO 2014 datasets, respectively.

We further remark that many strategies in litera-
ture achieve SOTA by relying on other forms of fully
supervised information (such as pretrained saliency
detectors (Fan et al., 2020; Lee et al., 2021a; Lee
et al., 2021c)), or multiple training stages (such as
semantic segmentation pseudo-label refinement with
pixel-level affinity (Ahn and Kwak, 2018; Ahn et al.,
2019; Jo and Yu, 2021; David et al., 2024)). Con-
versely, CSRM comprises a single training stage, en-
tailing lower training time and a simpler inference.

Training CSRM over VOC12 with 4 NVIDIA
P100 GPUs took approximately 15.7 minutes per
epoch and 3.9 hours in total, achieving 99% of the
best mIoU score observed in the fist 1.6 hours. Sim-
ilarly, training over COCO14 took approximately 4.4
hours/epoch, achieving 99% of the best mIoU score
observed after only the first epoch, which can be ex-

Learning Weakly Supervised Semantic Segmentation Through Cross-Supervision and Contrasting of Pixel-Level Pseudo-Labels

161



Table 5: Comparison of Intersection over Union (IoU %) scored by various WSSS techniques, measured over Pascal VOC
2012 test set. Evaluated classes are, from left to right: background, airplane, bicycle, bird, boat, bottle, bus, car, cat, chair,
cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, and tv monitor.

Method bg air bik bir boa bot bus car cat cha cow din dog hor mot per pot she sof tra tvm mIoU

AffinityNet 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7
OC-CSE 90.2 82.9 35.1 86.8 59.4 70.6 82.5 78.1 87.4 30.1 79.4 45.9 83.1 83.4 75.7 73.4 48.1 89.3 42.7 60.4 52.3 68.4
MCT-Former 92.3 84.4 37.2 82.8 60.0 72.8 78.0 79.0 89.4 31.7 84.5 59.1 85.3 83.8 79.2 81.0 53.9 85.3 60.5 65.7 57.7 71.6
EPS 91.9 89.0 39.3 88.2 58.9 69.6 86.3 83.1 85.8 35.0 83.6 44.1 82.4 86.5 81.2 80.8 56.8 85.2 50.5 81.2 48.4 71.8
AMN 90.7 82.8 32.4 84.8 59.4 70.0 86.7 83.0 86.9 30.1 79.2 56.6 83.0 81.9 78.3 72.7 52.9 81.4 59.8 53.1 56.4 69.6
ViT-PCM 91.1 88.9 39.0 87.0 58.8 69.4 89.4 85.4 89.9 30.7 82.6 62.2 85.7 83.6 79.7 81.6 52.1 82.0 26.5 80.3 42.4 70.9
Puzzle-CAM 91.1 87.2 37.4 86.8 61.5 71.3 92.2 86.3 91.8 28.6 85.1 64.2 91.9 82.1 82.6 70.7 69.4 87.7 45.5 67.0 37.8 72.3
P-NOC 91.7 89.1 38.3 80.9 65.4 70.1 93.8 85.5 93.4 37.3 83.6 61.3 92.8 84.1 83.8 80.7 63.6 82.0 53.3 76.7 36.8 73.6
CSRM (ours) 92.3 92.0 43.9 90.1 66.4 75.0 93.3 87.1 86.8 41.4 89.7 49.6 88.7 87.9 85.1 77.9 72.2 91.5 46.5 70.1 47.8 75.0

Figure 4: Segmentation proposals made by models trained over pseudo-labels devised from WSSS strategies, when fed from
images in Pascal VOC 2012 val dataset. From left to right: (a) ground-truth; (b) Fully-Supervised; (c) P-NOC (David et al.,
2024), and (d) CSRM (ours).

plained by the large number of iterations required to
perform one pass over each sample in its training set.

6 CONCLUSIONS

In this work, we proposed an approach to determine
and utilize (the otherwise wasted) “unreliable” re-
gions in the pseudo-labels devised from CAMs in
a weakly supervised semantic segmentation scheme,
where only image-level annotations are available.

Empirical results suggest our approach can pro-
vide substantial improvement in segmentation ef-
fectiveness of weakly supervised models, achieving
competitive mIoU in both Pascal VOC 2012 and MS
COCO 2014 datasets, while requiring fewer train-
ing stages and lower computation footprint than other

(multi-stage) techniques in the literature.
For future work, we will investigate the ef-

fect of our approach in functional segmentation and
biological-related tasks, in which visual patterns are
convoluted or unclear, and well as attempt to further
reduce computational footprint.
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Figure 5: Segmentation proposals made by models trained
over pseudo-labels of MS COCO 2014 val dataset. From
left to right: (a) ground-truth; (b) P-NOC (David et al.,
2024), and (c) CSRM (ours).
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