
Challenges in Software Metrics Adoption: Insights from Cluj-Napoca’s
Development Community

Laura Diana Cernău a, Laura Dios, an b and Camelia S, erban c

Babes, -Bolyai University, Faculty of Mathematics and Computer Science, 1, Mihail Kogălniceanu, Cluj-Napoca, Romania
{laura.cernau, laura.diosan, camelia.serban}@ubbcluj.ro

Keywords: Software Development, Software Metrics, Questionnaire Survey.

Abstract: Established research directions yield concrete outcomes on the benefits of using software metrics in software
development processes, such as notable correlations between software metric values and various quality at-
tributes of software systems or defect prediction. A discrepancy exists between academic proposals and actual
practices used in software development, influenced by factors like budget constraints, prioritisation, and mis-
conceptions regarding software metrics’ purpose and potential applications. Consequently, this study seeks to
document current practices concerning the usage of software metrics, as well as the advantages and challenges
associated with their integration into the software development process. This questionnaire is based on a sur-
vey of 40 participants occupying various roles in software systems development teams based in Cluj-Napoca,
Romania. Most subjects mentioned that improving confidence in metric usage involves better prioritisation
and understanding of metric interpretation. On the other hand, the main reasons for participants not using soft-
ware metrics are lack of awareness and proper prioritisation. Although this study has revealed the existence of
various software metrics-related concepts within industry software development processes, it is apparent that
their capabilities are not fully understood.

1 INTRODUCTION

The quality of software products plays an increasingly
important role in the software development indus-
try. The rapid pace of innovation and changes in this
field require developing robust and scalable systems
to keep up with the rapid changes. In (Pargaonkar,
2023), the author describes software quality’s crucial
role, not for following a set of coding standards but
for building a robust and adaptable foundation. More-
over, some of the advantages of code quality men-
tioned by the author are reducing the number of de-
fects, improving code maintainability and facilitat-
ing collaboration among the developers of the same
project.

The correlation between software metrics and spe-
cific quality attributes is not novel in academic re-
search. Numerous studies have attempted to demon-
strate these correlations. For instance, in (Medeiros
et al., 2020), the authors conducted an experiment
where software metrics were used as features in ma-

a https://orcid.org/0000-0002-6876-9065
b https://orcid.org/0000-0002-6339-1622
c https://orcid.org/0000-0002-5741-2597

chine learning algorithms to differentiate between
vulnerable and non-vulnerable code segments.

The primary objective of this research paper is
to gather relevant empirical data concerning cur-
rent practices in the software development industry,
specifically focusing on the measurement, analysis,
and utilisation of software metrics. A similar empir-
ical study was conducted by Eisty et al. (Eisty et al.,
2018), which investigated the utilisation of software
metrics in software development. In our research,
we aim to build upon this work by emphasising the
tools employed, examining not only what metrics are
used but also why and how they are implemented in
practice. Additionally, we seek to explore the respon-
dents’ perceptions of these tools, particularly regard-
ing their utility and complexity. This approach allows
for a more comprehensive understanding of the prac-
tical challenges and attitudes surrounding using soft-
ware metrics.

This research arises from the need to bridge the
mismatch between academic research and industry
practices, shedding light on the underutilisation of
software metrics in the software development pro-
cesses. In their work, Ferreira et al. (Ferreira et al.,
2021) examine the gap between research and practi-

Cernǎu, L. D., Dioşan, L. and Şerban, C.
Challenges in Software Metrics Adoption: Insights from Cluj-Napoca’s Development Community.
DOI: 10.5220/0013239200003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 425-432
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

425



tioners in the context of software maintenance. De-
spite extensive research in this domain, there is a gap
between theoretical advancements and practical ap-
plications. The authors suggest that this mismatch
may stem from insufficient knowledge of software
metrics among practitioners and the lack of appropri-
ate tools to use these metrics in real-world projects
effectively.

The lack of standardised project verification
through software metrics is a notable shortcoming in
today’s software development landscape. To address
this, we undertook a survey focusing on the following
research questions:

• RQ1. Which aspects do developers focus on when
integrating software metrics into the development
process of software systems?

• RQ2. To what extent do the existing tools that
measure software metrics fulfil the requirements
in the software industry?

• RQ3. What factors need to be addressed for soft-
ware metrics to be recognised as indicators of
software quality and project success?

Our study involved a diverse group of 40 partic-
ipants, all actively contributing to various aspects of
software development, therefore bringing their unique
perspectives and experiences to the table. This group
included software developers with different techni-
cal expertise (backend developers, frontend develop-
ers, software engineers, machine learning engineers,
and QA engineers), as well as individuals in leader-
ship roles (team leaders and community managers)
and product management (business analysts and prod-
uct managers). This diverse representation ensures
a comprehensive understanding of the industry’s per-
spective on software metrics.

By analysing the responses to these research ques-
tions, we aimed to focus on the discrepancies between
scientific articles that demonstrate that software met-
rics can be employed to verify and guarantee certain
qualities of software systems and the actual practices
within the software development industry. This mis-
match is not just a theoretical concern but a pressing
issue that needs to be addressed for the industry to
progress. This paper could provide some novelty by
examining the current state of practice in using soft-
ware metrics in the software development industry.

The remainder of this paper is organised as fol-
lows. Section 2 provides information on related stud-
ies relevant to the topics explored in this study. Sec-
tion 3 elaborates on the case study design and the dis-
semination of the survey, while Section 4 analyses the
results obtained through this study. Section 5 presents
some possible threats to validity and how they were

mitigated. Finally, Section 6 concludes the work that
was done in this study and provides directions for fu-
ture work.

2 RELATED WORK

A considerable number of articles in the field of soft-
ware engineering research discuss software metrics.
The primary studies conducted on software metrics
examine their applicability in detecting software de-
fects and explore the relationship between software
metrics and various quality attributes of a software
system.

An example is the study by (Sultana et al., 2021),
in which the authors used software metrics as features
in a machine learning algorithm to predict vulnerabil-
ities in four open-source Java projects. Similarly, in
(Alqadi and Maletic, 2020), the authors ran experi-
ments on defect prediction using cognitive complex-
ity slice-based metrics. Their analysis of ten datasets
concluded that 94% of the metrics under investigation
demonstrate statistical significance concerning their
relation to defects.

Similarly, software metrics can be used to assess
the level of quality in a system. More precisely, in
(Apel et al., 2019), the authors stress the need to es-
tablish methods to evaluate the quality of microser-
vice architectures. Their proposal involves a solution
designed to compute a set of system metrics and to
investigate its potential to assess software quality ac-
cording to the ISO 25010 standard.

Regarding industry surveys related to software
quality and metrics, a notable example is represented
by article (Sas and Avgeriou, 2020). The authors ad-
dressed the topic of trade-offs between run-time and
design-time quality attributes from the perspective of
embedded software system engineers. The article is
based on an exploratory case study comprising inter-
views and a focus group, during which participants
expressed their preferences for various qualities and
discussed the potential features of a tool for manag-
ing these trade-offs. One important finding this study
provided is that practitioners may overlook the impli-
cations of the trade-offs due to the need for more tools
for monitoring run-time qualities.

Another relevant example for this context is
(Haindl and Plösch, 2022), where the authors con-
ducted an online survey on 61 value-oriented metrics
and their relevance to practitioners. One of the goals
of this article was to assess the practical relevance of a
set of software metrics for practitioners and possible
ways to measure them. The study contains answers
from 40 participants holding diverse roles within soft-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

426



ware development teams, and one of the main contri-
butions of this study is a list of metrics validated by
industry practitioners.

3 METHODOLOGY OVERVIEW

3.1 Survey Design

The present study is based on a three-part question-
naire, all formulated in English. The first part was
mandatory for all participants and consisted of the fol-
lowing questions:

• Q1. What is your main role in the development
process?

• Q2. How many years of experience do you have
in software development?

• Q3. Have you utilised software metrics in any of
your software development projects?

Questions Q1 and Q2 are open-ended questions,
whereas Q3 is a closed-ended question. All three
questions had predefined answers, and for Q1 the par-
ticipants could provide answers outside of the prede-
fined options.

The second part was dedicated to those partici-
pants who responded with ’Yes’ to question Q3, more
exactly to those who used software metrics in the
projects they worked on in the industry. The follow-
ing questions were part of this section:

• Q4. What type of project did you use software
metrics for?

• Q5. What industry sector did the project operate
in?

• Q6. Which programming languages were primar-
ily used in the project?

• Q7. What development methodologies were pre-
dominantly used in the project?

• Q8. What specific software metrics did you em-
ploy in your project? (select all that apply)

• Q9. How did you collect and analyse the software
metrics data?

• Q10. What were the main objectives or goals be-
hind using software metrics in your project?

• Q11. Did you encounter any challenges or dif-
ficulties when using software metrics in your
project? If so, please elaborate.

• Q12. How did the use of software metrics impact
the project outcomes?

• Q13. How did the use of software metrics impact
the decision-making processes?

• Q14. Do you think there is any correlation be-
tween bugs and software metrics?

• Q15. Do you think there are any misconceptions
about software metrics that contribute to their un-
derutilisation?

• Q16. Do you have any additional comments or
feedback you would like to share?

All the questions in this section are open-ended.
Questions Q4, Q5, Q6, Q7 and Q8 come with prede-
fined answers, though participants are free to provide
responses beyond those options. Questions Q9, Q10,
Q11, Q12, Q13, Q14, Q15 and Q16 are designed to
allow free-text response.

Finally, the third part was completed by those par-
ticipants who responded with ’No’ to question Q3,
which had the following list of questions:

• Q17. What were the primary reasons for not using
software metrics in your projects?

• Q18. What resources do you think are needed to
support metrics evaluation in projects?

• Q19. What resources or support would you need
to feel more confident in using software metrics in
your projects?

• Q20. Do you have any additional comments or
feedback you would like to share?

All the questions in this section are open-ended.
Question Q17 offers predefined answers, but partici-
pants may also provide responses outside of these op-
tions. Questions Q18, Q19 and Q20 are intended for
free-text responses.

3.2 Survey Dissemination

The target population for this survey includes profes-
sors, PhD students, and professionals from the tech-
nology sector based in Cluj-Napoca, Romania. Cluj-
Napoca was selected as the focus area due to its status
as a prominent hub for the technology industry in Ro-
mania. This distinction arises from the city’s strong
academic presence, which contributes to a high con-
centration of students, a thriving startup culture, and
a rapidly expanding IT&C market (Lesniak, 2024),
(Council, 2024).

Regarding the distribution of this survey, we used
a public link so that anyone with the link could com-
plete it. We recruited participants by personally invit-
ing professionals knowledgeable in the software met-
rics domain and distributing it in our networks of ac-
quaintances and colleagues.

The participants in this study comprise individuals
associated with distinct companies, including some
who are concurrently pursuing doctoral studies at the

Challenges in Software Metrics Adoption: Insights from Cluj-Napoca’s Development Community

427



university while also working as software develop-
ers. In designing our study, we opted not to collect
information regarding the companies where respon-
dents are employed. This decision was made to avoid
introducing biases that could arise from variations in
company type, which might skew the results and lead
to conclusions that are influenced by organisational
context rather than reflecting the broader trends in the
use of software metrics. By excluding this variable,
we aim to ensure that our findings remain more gener-
alisable and focused on the respondents’ personal ex-
periences with software metrics, independent of their
corporate environments.

4 RESULTS AND ANALYSIS

4.1 Background Information of
Subjects

All participants in this survey are from the same geo-
graphical area, the city of Cluj-Napoca, Romania, and
their responses were provided in English.

The participants in this study are members of soft-
ware product development teams, each with different
roles. As can be seen, the roles of the participants
are diverse, including those focused on technical de-
velopment, management, and leadership. The vast
majority is represented by roles primarily involved in
technical implementation (Software Engineer, Back-
end Engineer, QA Engineer, Fullstack Developer, AI
Engineer, ML Engineer, Frontend Engineer), collec-
tively constitute 77.5% of the distribution. On the
other hand, Technical Leaders, accounting for 15%
of the total, shoulder responsibilities that span both
the technical and leadership domains. Additionally,
there are roles dedicated to leadership and manage-
ment, containing 7.5% of the distribution.

Figure 1 illustrates the range of experience among
the participants, showcasing a diverse spectrum that
includes both novice developers and individuals hold-
ing senior positions. Moreover, some of these partici-
pants, in addition to holding positions as software de-
velopers, are also doctoral students at the university.

4.2 Findings and Discussions

Among those surveyed, 70% indicated they had used
software metrics in at least one project they had
worked on, while the remaining 30% reported they
had not utilised them up to this point.

Figure 1: The distribution of the seniority of the partici-
pants.

4.2.1 Discussion on Software Metrics Adopters

In the context of question Q4 regarding project size,
the following dimensions were defined:

• Small-scale project (e.g., individual software
components, minor feature enhancements)

• Medium-scale project (e.g., standalone software
applications, moderate system integrations)

• Large-scale project (e.g., enterprise-level systems,
complex software development initiatives)
According to the answers to this question, soft-

ware metrics have been predominantly used in
medium-sized (42%) and large-sized (42%) projects
and less so in small-sized ones (16%). This distribu-
tion is also highlighted in Figure 2. It is important to
note that this question allowed multiple responses, so
participants selected all the types of projects in which
they had used software metrics.

Figure 2: The distribution of project types in which partici-
pants used software metrics.

Moreover, Table 1 shows the frequency of the
software metrics used, divided by project sizes. Given
that the inquiry regarding project size was structured
as a multiple-choice question, we calculated the us-
age of metrics by considering the selected project
sizes and tallying the metrics associated with each
size category. The first observation is related to the

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

428



size of the projects on which these metrics were used.
It can be seen that the greater preponderance is on
large-sized projects, but at a short distance, there
are also medium-sized ones. On the other hand, a
clear difference can be seen between these and small-
sized projects, where the frequency of using metrics
is much lower.

The scope of question Q9 was to gather insights
on how the software metrics are collected and anal-
ysed on the projects. According to the answers to
this question, the metrics are computed using auto-
mated tools, and they are analysed at the code re-
view phase (by implementing CI/CD pipelines based
on their values): ”All the ecosystems provide tooling
(free or commercial) for measuring these. Some re-
sults were aggregated periodically, some were aggre-
gated on each pull request. Some were more permis-
sive, some were restrictive enough, so that code that
violated the policy was not merged.”.

Questions Q10, Q12, and Q13 delve into the ra-
tionale behind using software metrics, their effects
on project outcomes, and their influence on decision-
making processes. Overall, they aim to assess the
value and effectiveness of employing software met-
rics in software development processes. Therefore,
the subjects stated they used software metrics mainly
to improve code quality, increase maintainability and
testability, detect bugs early in the development pro-
cess, and identify performance improvements. More
precisely, they stated that when monitoring test cov-
erage, they made sure the majority of the source code
was covered by tests, which resulted in fewer de-
fects and better overall product quality. Another as-
pect mentioned was that the continuous deployment
practice was enabled by having maintainable code:
”Decreasing accidental complexity and high testabil-
ity increased the maintainability of the project in such
a way that very complex requirements didn’t intro-
duce regressions in already delivered functionality.”.
Finally, one answer stated that by using software met-
rics, they were able to identify the problematic areas
in their code: ”After starting to use software metrics,
finding the problematic areas became a lot easier, you
could look into the tools and identify the part of code
or resource that was taking longer or had a high error
rate. Also reducing the amount of duplicate code and
keeping it at a high quality helped developers to code
faster and reuse a lot more code. Overall there was a
improvement in performance on average above 40%
but in some small parts the improvements in perfor-
mance were 10000% better because a lot of bugs and
bad code were impacting the performance although
the application was doing what it was supposed to.”.

4.2.2 Discussion on Non-Adopters of Software
Metrics

Among the 40 subjects, 12 answered that they have
not used software metrics in the development of soft-
ware projects so far. The main reasons why they said
they did not use them are represented in Figure 3.
”Lack of awareness or knowledge about software met-
rics” holds the highest percentage as the most voted
reason for not using software metrics with a percent-
age of 33,3%. The remaining reasons can be divided
into three distinctive sections as follows:

• when prioritising resources in software system de-
velopment, software metrics do not take prece-
dence (”Other priorities taking precedence over
software metrics implementation” and ”Time con-
straints or resource limitations”) - 33,3%

• challenges related to measuring and interpreting
software metrics (”Difficulty in implementing or
interpreting software metrics” and ”Unavailable
tools”) - 18,5%

• the discouragement and recommendations against
the use of software metrics (”Organisational cul-
ture or policies discouraging the use of software
metrics” and ”Perception that software metrics
are not valuable or relevant to projects”) - 14,8%

Figure 3: The reasons for not using software metrics in soft-
ware development.

Through questions ”Q18. What resources do you
think are needed to support metrics evaluation in
projects?” and ”Q19. What resources or support
would you need to feel more confident in using soft-
ware metrics in your projects?” we intended to iden-
tify possible solutions for increasing the usage of soft-
ware metrics. The necessary resources and solutions
varied. However, the common themes mentioned are
related to having more time to invest in this endeav-
our (time which results from better prioritisation), a
better understanding of software metrics and proper
tools for measuring software metrics. Some empha-
sised the importance of team leaders encouraging the
use of software metrics, while others emphasised the
need for comprehensive training programs or hands-

Challenges in Software Metrics Adoption: Insights from Cluj-Napoca’s Development Community

429



Table 1: Frequency distribution of software metrics used in various projects.

Software Metric Small-scale project Medium-scale project Large-scale project Total usage
Code coverage 7 19 19 45
Performance metrics 8 17 19 44
Code duplication 6 14 15 35
Technical debt 4 14 13 31
Cyclomatic complexity 4 11 13 28
Lines of Code (LOC) 4 8 10 22
Usability metrics 4 5 8 17
Coupling metrics 4 7 5 16
Maintainability index 2 5 6 13
Bug density 1 4 5 10
Cohesion metrics 3 4 3 10
Defect removal efficiency 1 2 3 6
Code churn 1 1 2 4

on tutorials. Additionally, an answer mentioned better
development and support for effective metrics inter-
pretation, along with suggestions for dedicated teams
to analyse metrics and propose solutions.

4.2.3 RQ1. Which Aspects Do Developers Focus
on when Integrating Software Metrics into
the Development Process of Software
Systems?

Our initial assumption that software metrics are not
widely used in the software development industry is
not supported by the results of this survey, where
70% of the participants use software metrics to some
extent in their projects. However, what can be ob-
served from the responses to question Q9 is that pre-
dominantly more general tools are used, which do
not solely aim at measuring and interpreting metrics.
Further research should focus on the software devel-
opment process to identify the most commonly em-
ployed software metrics and the specific contexts in
which they are applied. Furthermore, according to the
responses to Q13, the interpretation of these metrics
is mainly used to identify parts of the source code that
need improvement: ”Some of the architectural deci-
sions were based on software metrics. Performance
metrics revealed issues in which data was accessed,
therefore it informed us about data access patterns
that helped us shape the design of the internal models
and our API. The continuous attempt to improve testa-
bility informed us about how we should structure our
tests and how we should design our domain bound-
aries to keep coupling to a minimum.”. Another com-
prehensive answer worth mentioning was: ”The use
of software metrics provided valuable data-driven in-
sights that facilitated informed decision-making pro-
cesses, leading to more effective resource allocation,
risk management, and project planning.”. This re-
search question let us to observe that software metrics

are predominantly utilised for source code improve-
ments and increasing code coverage by tests.

4.2.4 RQ2. To What Extent Do the Existing
Tools that Measure Software Metrics Fulfil
the Requirements in the Software
Industry?

In their answers to Q11, related to the challenges en-
countered when setting up the environment for soft-
ware metrics usage, a high number of subjects an-
swered that the initial setup of the tools might be an
elaborate process. One particular answer to this ques-
tion caught our attention because it summarised the
challenges and shortcomings of using software met-
rics in industry projects: ”All these metrics are in-
formative at best, so their contribution to software
quality should be taken as such. Testability - high
coverage does not equal actual coverage of business
requirements and various negative paths. So lack of
code coverage needs to be interpreted as an indica-
tor that some things need closer attention and need
to be fleshed out as actual requirements. Complexity
- this is a highly debatable topic because there is a
subjective element that drives the perception of com-
plexity. At the moment, I am not aware of metrics that
can actually evaluate complexity in a way that it can
measure business impact, so this is always a difficult
subject. Maintainability and deliverability - this is a
subject that is very dependent on the skill level and ex-
perience of the team that delivers the software. Often
times lack of experience can influence certain archi-
tectural and complexity metrics and the no amount
of technical magic or tooling can change that, ex-
cept training.”. Therefore, due to the comprehensive
responses to this question, we observe that existing
tools do not provide all the functionalities developers
require.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

430



4.2.5 RQ3 What Factors Need to Be Addressed
for Software Metrics to Be Recognised as
Indicators of Software Quality and Project
Success?

The responses to question Q14 were favourable, with
participants stating that they perceive a correlation
between the occurrence of defects and the values of
software metrics. In addition to correlations, partic-
ipants also mentioned aspects related to code com-
plexity and duplication, as well as test coverage and
effective testing. A response that best summarises
these aspects is: ”In some cases. High cyclomatic
complexity and low test coverage can give very good
hints about volatility and lack of robustness, which
are major source of bugs, when the complexity is on
the business side. But when the complexity is in UI
/ UX, or when the bugs are mostly on the UI, then
some of these traditional metrics might not apply (e.g
CSS maintainability should probably be measured in
a different way)”. However, the answers to question
Q15 revealed a complex landscape of misconceptions
about software metrics. Many answers pointed out
that the root cause of these misconceptions is the lack
of awareness of software metrics, and because of this,
many think that they are challenging to set up or are
time-consuming. Contrary to these answers, there
was a particular one that differed from the rest: ”I
think it’s the other way around. Some of these metrics
do not paint an accurate picture about the reality and
many teams try to reduce complexity just to satisfy
the numbers. Sometimes the business requirements
are complex, so complexity is high and that’s just the
reality and trying to reduce complexity metrics tends
to increase accidental complexity and decrease main-
tainability.”. This answer highlights the intricate na-
ture of the problem, where the business logic is so
complex that adding software metrics on top might re-
sult in added complexity. Furthermore, questions Q18
and Q19 (dedicated to those subjects who did not use
software metrics) showed that the lack of awareness
about the software metrics and their capabilities, was
the main reason for their underutilisation, alongside
better prioritisation. Moreover, they pointed out that
leadership should encourage the usage of metrics, and
there should be more hands-on programs on software
metrics and their utilisation in software development.

5 THREATS TO VALIDITY

5.1 Internal Validity

The validity of this study may be internally threatened
due to the varying levels of knowledge among the par-
ticipants; therefore, they may have different under-
standings of the questions. To mitigate this threat, we
took great care in formulating the questions as clearly
as possible, and when necessary, the question options
were accompanied by relevant annotations. Our sur-
vey had two possible paths: for participants who used
software metrics and those who did not. Another
problem might be related to the fact that we attempted
to make the questions more general to encourage par-
ticipants to complete this survey. Some more specific
questions could have provided more in-depth insights
in this case. However, the clarity of our questions and
the two-path survey design have significantly reduced
this potential threat to internal validity.

This study is subject to response and non-response
bias. In the first case, factors like the wording of ques-
tions could have influenced the responses, especially
in self-reported metrics use or project details. To mit-
igate this, the questions were designed to be neutral,
and we assured the participants that the answers were
anonymous. Secondly, to minimise the non-response
bias, we distributed the survey widely, and follow-up
reminders were sent to encourage more participation.

5.2 External Validity

External validity concerns allude to the extent to
which this study’s findings can be extended and ap-
plied to comparable contexts. In this case, there are
two generalisation perspectives, one for the partici-
pants and the second for the projects mentioned in
the study. Concerning the subjects, the data gath-
ered for this study comes from a broad spectrum of
software developers with different specialisations and
backgrounds working at various companies. The se-
niority of the participants ranges from early-stage de-
velopers (less than one year) to senior engineers with
more than twenty years of experience. One possible
concern is that most participants have more than seven
years of experience (65%). However, looking at this
from a different angle is advantageous because we
have data from subjects with more experience. On the
other hand, one concern related to the generalisation
based on the types of projects the participants applied
software metrics for is that most participants selected
medium-sized and large-sized projects as their target.
Nevertheless, this is understandable, as on smaller-
scale projects, there is a higher likelihood that soft-

Challenges in Software Metrics Adoption: Insights from Cluj-Napoca’s Development Community

431



ware metrics may not be employed due to budget or
time constraints.

6 CONCLUSIONS AND FUTURE
WORK

In contrast to one of our initial assumptions, findings
from this survey revealed that 70% of respondents
have either utilised or are currently employing soft-
ware metrics within software development projects.
However, respondents also acknowledged that there
are still misconceptions due to the lack of awareness,
and even if they used them, they still indicate reser-
vations about their utility. Furthermore, insights from
the participants who did not employ software metrics
revealed a need for better knowledge and training on
software metrics, not only for software engineers but
also for other stakeholders involved in the software
development processes. The underutilisation of soft-
ware metrics usage in projects is primarily attributed
to the lack of prioritisation and resources. The causes
can be traced back to the management and leadership
roles needing more insight into leveraging software
metrics for evaluating software product quality.

In terms of future work, our research aims to delve
deeper into the usage of software metrics in the soft-
ware development process. As highlighted in the dis-
cussions regarding the survey results, there needs to
be more clarity on the specific reasons for using cer-
tain tools, as they tend to be general-purpose. Mov-
ing forward, one of our objectives is to understand
better the software metrics being utilised and the spe-
cific use cases in which they are applied. We plan
to conduct comprehensive interviews with both soft-
ware engineers who have and have not used software
metrics, as well as representatives from non-technical
roles within software development teams. This ap-
proach will provide a more nuanced understanding of
the current landscape and help identify areas for im-
provement and further investigation.

7 DECLARATION OF
GENERATIVE AI AND
AI-ASSISTED TECHNOLOGIES
IN THE WRITING PROCESS

During the preparation of this work, the authors used
Grammarly in order to check and correct the written
text in terms of grammar and expression. After using
this tool, the authors reviewed and edited the content

as needed and took full responsibility for the content
of the publication.

REFERENCES

Alqadi, B. S. and Maletic, J. I. (2020). Slice-based cog-
nitive complexity metrics for defect prediction. In
2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER),
pages 411–422.

Apel, S., Hertrampf, F., and Späthe, S. (2019). Towards a
metrics-based software quality rating for a microser-
vice architecture. In Lüke, K.-H., Eichler, G., Erfurth,
C., and Fahrnberger, G., editors, Innovations for Com-
munity Services, pages 205–220, Cham. Springer In-
ternational Publishing.

Council, S. C. (2024). Cluj-Napoca: the “Silicon Valley” of
Eastern Europe. https://www.smartcitiescouncil.com/
article/cluj-napoca-silicon-valley-eastern-europe?\ \
im-qxHGakUl=17128991389544781572. Accessed:

October 23, 2024.
Eisty, N. U., Thiruvathukal, G. K., and Carver, J. C. (2018).

A survey of software metric use in research software
development. In 2018 IEEE 14th International Con-
ference on e-Science (e-Science), pages 212–222.

Ferreira, M., Bigonha, M., and Ferreira, K. A. M. (2021).
On The Gap Between Software Maintenance Theory
and Practitioners’ Approaches . In 2021 IEEE/ACM
8th International Workshop on Software Engineering
Research and Industrial Practice (SER&IP), pages
41–48, Los Alamitos, CA, USA. IEEE Computer So-
ciety.

Haindl, P. and Plösch, R. (2022). Value-oriented quality
metrics in software development: Practical relevance
from a software engineering perspective. IET Soft-
ware, 16(2):167–184.

Lesniak, O. (2024). Software development in romania:
a market overview. https://https://www.n-ix.com/
software-development-romania-market-overview/.
Accessed: October 23, 2024.

Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2020).
Vulnerable code detection using software metrics and
machine learning. IEEE Access, 8:219174–219198.

Pargaonkar, S. (2023). Cultivating software excellence: The
intersection of code quality and dynamic analysis in
contemporary software development within the field
of software quality engineering. International Journal
of Science and Research (IJSR), 12(9):10–13.

Sas, D. and Avgeriou, P. (2020). Quality attribute trade-
offs in the embedded systems industry: an exploratory
case study. Software Quality Journal, 28.

Sultana, K. Z., Anu, V., and Chong, T.-Y. (2021). Us-
ing software metrics for predicting vulnerable classes
and methods in java projects: A machine learning ap-
proach. Journal of Software: Evolution and Process,
33(3):e2303. e2303 smr.2303.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

432


