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Abstract: This work deals with the challenge of surface extraction using a combination of Teager-Kaiser operators and B-
splines in the context of coherence scanning (or white light scanning i.e, WLSI) interferometry. Our approach
defines a B-spline regularization model along surface profiles extracting their features by means of parameters
locally describing fringe signals along the optical axis, while most studies are limited to a one-dimensional
signal extraction. In doing so, we take into account four characteristic parameters under Gaussian hypothesis.
The interest of the proposed strategy consists in processing the layers present in a material, in a context of soft
roughness surfaces. The efficiency of our unsupervised method is illustrated on synthetic as well on real data.

1 INTRODUCTION

1.1 Context

White light scanning interferometry (WLSI) is a tech-
nique for analyzing material surfaces, particularly to
estimate their roughness or shape. It can supplement
the manufacturing control of new materials, micro-
electronic devices and microelectromechanical sys-
tems (MEMS) (O’Mahony et al., 2003). In addition,
methods based on the AM-FM model of the inter-
ference signal along the optical axis allow an accu-
rate precision. Thus, the information about the depth
of the material can be extracted simultaneously from
the envelope and the phase of the AM-FM signal.
Plenty of algorithms, whether based on envelope de-
tection (Larkin, 1996; Sandoz, 1997), frequency do-
main analysis (de Groot and Deck, 1993; de Groot
et al., 2002), correlation with a reference fringe (Chim
and Kino, 1990), Hilbert transformation (Pavliček
and Michalek, 2012), TK algorithm (Gianto et al.,
2016), extraction of the phase information (Guo et al.,
2011), Kalman approach (Gurov et al., 2004), have
been proposed, proceeding along the optical axis i.e,
thus corresponding to 1D approach. Additionally 2D
techniques have been presented (Gurov and Volynsky,
2012; Zhu and Wang, 2012). Due to its simplicity of

implementation, adapted to the AM-FM signal model,
the nonlinear Teager-Kaiser energy operator (TK or
TKEO) (Vakman D., 1996; Maragos P. et al., 1993)
seems to be effective (Larkin, 1996; Salzenstein et al.,
2014) as well in its bi-dimensional (Boudraa et al.,
2005) or multidimensional version (Salzenstein and
Boudraa, 2009). In particular, most of these meth-
ods undertake to measure the roughness of surfaces,
namely the evolution of their depth according to the
lateral directions. We believe that approaches, which
may take into account both lateral and height informa-
tion, namely 2D or even 3D processing over the en-
tire data cube, are potentially more suitable than one-
dimensional approaches, in order to track surfaces, es-
pecially when they own low roughness. Our study fo-
cuses on a new 2D method, adapted for such surfaces.

1.2 Objectives

In order to ensure a good surface tracking, taking into
account the neighborhood information along the lat-
eral axis, by a regularization approach, we propose
to describe four characteristic parameters of AM-FM
signals under the hypothesis of a Gaussian envelope,
by introducing a B-spline modeling, combined with
the TK operator. A study based on spectral tracking
has been carried out in the field of astronomy, pro-
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viding solutions to close problems (considering spec-
tral data) although signals do not contain any carrier
term (Mortada et al., 2018). B-splines have proven
their effectiveness in many areas of signal processing.
One of their common applications consists in interpo-
lation (Reinsch, 1967; Unser, 1999), which is helpful
to find pixel values at continuous positions after some
geometric transformations, for image resizing and re-
sampling. They have also found other application in
image registration (Rueckert et al., 2006), edge de-
tection (Mallat and Zhong, 1992), signal compression
(Medioni and Yasumoto, 1987), 3D modeling (Hoch
et al., 1994). In the field of coherence scanning in-
terferometry, this approach has been helpful to im-
prove the interference signal (Duan et al., 2023) on
the optical axis (depth) in the context of least squares
phase shift methods (as well for continuous phase es-
timation related to the noisy fringe patterns in digi-
tal speckle interferometry (Wielgus et al., 2014)) or
to approximate local detected envelope (Montgomery
et al., 2013). B-spline technique has been proposed to
fit surfaces, without taking into account the physical
local model of the interference signal (Bruno, 2007).
To the best of our knowledge, no global approach has
been proposed modeling four characteristic parame-
ters (surface position, amplitude, variance, carrier fre-
quency) by B-splines, under the assumption of locally
Gaussian envelopes: this deals with the main contri-
butions of our study, in combination with a TK tech-
nique. The remainder of the paper is organized as
follows: after the presentation of the context of the
interferometric data in section 2 we recall TK algo-
rithm and B-spline approach, respectively in section
3 and 4. An unsupervised model adapted to our data
has been detailed in section 5. Finally, results on both
synthetic and real images are presented in section 6.

2 INTERFEROMETRIC SIGNAL

Figure 1 shows the typical layout of WLSI device us-
ing the z-scan technique. By means of a single ver-
tical scan of the sample, over the whole depth of the
surface by modifying the distance between the objec-
tive and the sample, a stack of xyz images is pro-
duced. The resulting signal corresponds to the sum
of the interferences at each wavelength. From such
a signal, the objective is to extract depth information
related to the analyzed surfaces. For surface rough-
ness measurement, a classic signal processing tech-
nique generally aims to provide position at the max-
imum of the single fringe envelope along the depth
handled by the optical axis z for each lateral coordi-
nate (x,y), which represents the horizontal extent of

a material sample. Therefore, the (relatively) greater
the variation in surface height between neighboring
lateral sites, the rougher it will be considered.

Figure 1: Schematic layout of WLSI system. The right hand
pattern represents an interference signal along the depth
axis z for two layers of surfaces, at a given (x,y) position.

Figure 2: Recovery and process of a 2D xz image from a 3D
xyz block generated by the WLSI interferometric system.

A typical intensity signal obtained from a digital
camera when the OPD (optical path difference) varies
in the interferometer at a given point (x,y) on the ma-
terial surface, can be approximated along the optical
z axis by a such modulated sinusoid (Larkin, 1996):

s(x,y,z)=a(x,y,z)+b(x,y)exp

[
−
(

z−h(x,y)
lc

)2
]

︸ ︷︷ ︸
C(x,y,z)

×cos
[

4π

λ0
(z−h(x,y))+α(x,y)

]
where z is a vertical scanning position along the op-
tical axis, h(x,y) represents the height of the sur-
face, a(x,y,z) is an offset intensity containing low fre-
quency components, b(x,y) is a factor proportional to
the reflected beam intensity, and α(x,y) is an addi-
tional phase offset and C(x,y,z) is the envelope. The
parameter lc represents the coherence length and λ0,
the average wavelength of the light source. Generally
the phase offset varies slowly from one point (x,y)
to the next, and can be neglected, since only rela-
tive heights of the surface matter. The main chal-
lenge consists in determining the height at each point
of the surface by exploiting the information provided
by both the envelope or the phase simultaneously.
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3 TEAGER-KAISER ENERGY
OPERATORS

TKEOs algorithms (Boudraa and Salzenstein, 2018)
are non-linear methods for envelope detection and
phase retrieval from AM-FM signals such as those
given by Eq. (1). For a such given signal s(t), the
output of the continuous TKEO, denoted by Ψ, yields
the following expression (Maragos P. et al., 1993):

Ψ [s(t)] = [ṡ(t)]2 − s(t)s̈(t) (1)

where ṡ(t) and s̈(t) denote the first and the second
time derivatives of s(t) respectively. Under realistic
conditions (Maragos et al., 1993), when applied to
AM-FM signal s(t) = a(t)cos(φ(t)), the 1D TKEO
yields as output Ψ[s(t)] ≈ [a(t)φ̇(t)]2. Thus the local
envelope a(t) and the instantaneous frequency φ̇(t)
can be estimated using the energy separation algo-
rithm (ESA) (Maragos et al., 1993):

|φ̇(t)| ≈

√
Ψ[ṡ(t)]
Ψ[s(t)]

; |a(t)| ≈ Ψ[s(t)]√
Ψ[ṡ(t)]

(2)

A discrete TKEO, applied to a differentiated sig-
nal, called FSA, has been used in WSLI (Larkin,
1996). This operator, as well useful for n-D de-
modulation, has been extended to multidimensional
signals (Maragos and Bovik, 1995; Boudraa et al.,
2005; Larkin, 2005), also using directional deriva-
tives (Salzenstein et al., 2013). It can be effective to
improve the fineness of the information, by combin-
ing other approaches, such as a correlation technique
(Salzenstein et al., 2014). In this study, we exploit
TKEO, in order to initialize our B-spline estimation
algorithm.

4 SUMMARY OF THE B-SPLINE
MODEL

We propose to model the surface parameters by B-
splines. This piecewise polynomial approach was in-
troduced in (Schoenberg, 1946). The linear combina-
tion of these functions allows to express a continuous
function with a countable set of variables, called con-
trol points. Defining the set of B-spline basis func-
tions require two elements:

• a degree d (or order d+1), that specifies the max-
imal degree of the polynomial functions;

• a knot vector k that is a sequence of increas-
ing real numbers, i.e., k = {k0,k1,kK}, with k0 ≤
k1...≤ kK .

Considering K + 1 nodes, a polynomial function
of degree d is defined between two consecutive nodes.
A B-spline basis function of degree d comprises d+2
consecutive nodes from the vector k. The number of
B-spline basis functions of degree d is thus equal to
M = K − d. Let bd

m(x), where m ∈ {1, ...,M}, be the
mth B-spline basis function of degree d defined on
km, ...,km+d+1 for a given variable x. The Cox de Boor
algorithm (De Boor, 1972), generates B-spline basis
by recurrence formula:

b0
m(x) =

{
1 if km ≤ x < km+1

0 otherwise

bd
m(x) =

x− km

km+d − km
bd−1

m (x)+
km+d+1 − x

km+d+1 − km+1
bd−1

m+1(x)

An alternative method consist in applying d convolu-
tion, such that:

bd
m(x) = b0

m ∗b0
m ∗ ...∗b0

m︸ ︷︷ ︸
d times

(x)

Among the remarkable properties of B-splines, let
us highlight i) locality of their support i.e, bd

m(x) =
0 ∀ x /∈ [km,km+d+1]; ii) nullity of the values at extrem-
ities of their interval i.e, bd

m(km) = bd
m(km+d+1) = 0;

iii) non negativity i.e, ∀x bd
m(x) ≥ 0; iv) normalized

sum for non-zero functions on a knot interval i.e.,
∑

M
m=1 bd

m(x)= 1 ∀ x∈ [km,km+1]; v) B-spline functions
are related to C d class of continuity, on a knot in-
terval [km,km+d+1]. A uniform knot vector, formed
by equally spaced knots, helps to provide B-spline
basis functions as shifted versions of each others:
∀ m ∈ {1,2, ...,M} ,bd

m(x) = bd
0(x−km). It is possible

to construct B-spline functions M = K − d of degree
d, defined on a vector of knots containing K + 1 ele-
ments, taking into account the knots coinciding at the
extremities.

5 B-SPLINE MODEL OF
INTERFEROMETRIC SIGNAL
CHARACTERISTICS

An interpolation or approximation problem yields to
a B-spline curve f (x) expressed in the following way:

f (x) =
M

∑
m=1

umbd
m(x), (3)

where um ∈R is a control point (called also ’weights’)
of the mth B-spline basis function bd

m(x). Given
b [x] =

[
bd

1(x) bd
2(x) ... bd

M(x)
]T and u = [u1...uM] Eq.

(3) yields to a vector characterization:

f (x) = b [x]T u (4)
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We process the volume of data, described in sec-
tion 2 by proceeding slice by slice, corresponding to
2D signals s(z, i), denoted by si(z), say of size N × I
where N is the length of the optical axis (commonly
called z-axis) and I is the maximum size of the lat-
eral axis i (commonly called x-axis). For a given set
of J surfaces or layers of material, an interferometric
model may be expressed in a following way by con-
sidering an additive noise ni(z)

si(z) =
J

∑
j=1

ai j exp

[
−
(z− ci j)

2

2σ2
i j

]
×cos(2πνi j (z− ci j))+ni(z)

which could be condensed using a parametric func-
tion φ, including Gaussian and carrier, as follows:

si(z) =
J

∑
j=1

ai jφ(z− ci j;σi j;νi j)+ni(z) (5)

Hence, each surface of the material, labeled
by j could be estimated by a set of centers
{c1 j,c2 j, ...,cI j}. In other words, for each lateral po-
sition i the peak related to a class j is parameterized
along the optical axis z, by its center ci j, amplitude
ai j and standard deviation σi j, at a given carrier fre-
quency νi j. This is summed up in a vectorized form:

si =
J

∑
j=1

ai jΦ(ci j;σi j;νi j)+ni (6)

In our model, extended (Mortada et al., 2018), un-
der an assumption of locally smooth surfaces, we as-
sume that all characteristic parameters ci j, ai j, σi j,
νi j parameters are modeled by B-splines defined on
the same knot vector k, with unknown control points.
Considering knot positions on discrete values, yields:

∀ j, ai j = a j(i) =
M

∑
m=1

A j
mbd

m(i) = b[i]T A j (7)

∀ j, ci j = c j(i) =
M

∑
m=1

C j
mbd

m(i) = b[i]T C j (8)

∀ j, σi j = σ j(i) =
M

∑
m=1

Σ
j
mbd

m(i) = b[i]TΣ j (9)

∀ j, νi j = ν j(i) =
M

∑
m=1

V j
mbd

m(i) = b[i]T V j (10)

where A=
[
A j

1,A
j
2, ...,A

j
M

]T
, C, Σ, V respectively de-

fine the control points related to the amplitude, sur-
face position, gaussian shape and carrier frequency,
whereas b [i]T =

[
bd

1(i) bd
2(i) ...

]
being a vector gath-

ering the B-splines evaluated at the mixture index i.
Finally, the proposed model approximating the inter-
ferometric signal si by means of B-splines becomes:

∀i,si =
J

∑
j=1

b[i]T A jΦ
[
b[i]T ;C j;Σ j;V j

]
+ni (11)

Under Gaussian noisy assumption, the maximum
likelihood estimation of the control points parameters,
leads to the minimization of the following function:

L (Θ) = ∑
i

∥∥∥∥∥si −
J

∑
j=1

b[i]T A jΦ
[
b[i]T ;C j;Σ j;V j

]∥∥∥∥∥
2

where Θ = (A,C,Σ,V). In order to solve the non-
linear least square minimization problem minΘ L (Θ),
as in (Mortada et al., 2018), a Sequential Quadratic
Programming (SQP) algorithm (Nocedal and Wright,
1999) could be helpful. However, to enhance robust-
ness in certain situations we have tested (synthetic
and real data), a classic simulated annealing algo-
rithm, moving the control points, proves its effective-
ness. We have implemented it, in combination with
the Teager-Kaiser to enhance parameter initialization.

6 RESULTS

6.1 Synthetic Data and Images

We illustrate the proposed model and its robustness on
synthetic data, synthetic and real interferometric im-
ages. Fig. 3-4 show initial and estimated data related
to the four parameters of interest, for a signal-to-noise
ratio of 20 dB, respectively in the context of one class
and two classes, by the method SQP. The number of
control points respectively equals 7,6,7,6 concern-
ing the surfaces, amplitudes, variances, and frequen-
cies. These examples make relevant the possibility of
exploiting B-splines by means of our interferometric
model. Fig. 5,6,7,8,9,10 deal with synthetic interfero-
metric images and their estimates, for which the initial
data were simulated by smoothing randomly initial
data (produced by stochastic process). In a context
of relatively low SNR (5 dB), the quantitative perfor-
mances of the Teager-Kaiser method and B-Splines
are reported in tables 1 and 2. We have processed
Teager-Kaiser technique to initialize our method, fol-
lowed by a simulated annealing approach. The com-
bination of both techniques allows a better conver-
gence of the algorithm, while improving the estima-
tion for all characteristic parameters. The number of
control points is respectively 41 for estimating the
surfaces, and 21 for the other parameters. In partic-
ular, the algorithm based on B-splines significantly
reduces the error rate of variances and frequencies,
which shows, in this context, that regularization tak-
ing into account neighboring information over all the
parameters, contributes to a better estimation of the
surface.

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

684



6.2 Real Interferometric Images

Finally, as illustrated in Fig.11, Fig.12 we have ap-
plied the previous algorithm to real interferometric
images. Fig.11 shows a silicon surface that both al-
gorithms process in a relatively similar manner, the
B-spline method estimating the frequencies better (in
the real image, these are much more continuous than
the TK algorithm suggests) and, as expected, slightly
smoothing the data produced by TKEO. Each param-
eter is estimated using P = 36 control points. Let us
note the relatively high noise level by observing the
profile Fig.11(b). Fig.12 shows the effectiveness of
the method applied to the detection of a oil drop, for
which certain areas of the image, very noisy, make the
Teager-Kaiser algorithm almost inoperative. The re-
sulting surface of the B-spline approach corrects this
drawback, and perfectly matches the shape of the oil-
drop. Under a relevant assumption, the carrier fre-
quency fluctuating quite little, the order of the B-
spline regarding frequencies was set to 3 (second or-
der polynomial). This allows us to obtain a more sta-
ble estimate than the TKEO. On the other hand, both
approaches determine a decreasing amplitude (the ap-
pearance of the oil-drop interference signal being em-
pirically attenuated in the right part of the image),
which makes it compatible, at constant frequency,
with an increasing variance (spreading out Gaussian
envelope). Finally, the relative small number of con-
trol points (8 for surface, amplitude and variance, 6
for frequency) seems appropriate for this very smooth
surface. Finally, let us note that the average calcula-
tion time for an 256x256 image corresponds to 15 sec-
onds (Matlab2022, cpu Intel Core i5-7300U 2.6 GHz,
Ram 16Go).
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Figure 3: (a): One class data (in blue) and their
estimation (in red) by cubic B-spline (variance, sur-
face, frequency, amplitude) with knot vector k =
[1,1,1,1,1.7,20.5,30.2,50,50,50,50]; the number of con-
trol points being respectively 7,6,7,6.
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Figure 4: (a): Two classes data (resp. in purple and
brown) and their estimation (resp. in green and red) by cu-
bic B-spline (variance, surface, frequency, amplitude) with
knot vector k = [1,1,1,1,10.7,20.5,30.2,50,50,50,50]; the
number of control points being respectively 7,6,7,6.
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Figure 5: (a): Synthetic interferometric signal; (b) profile
signal along the optical axis;
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Figure 6: original (in blue) and estimated parameters (in
red) of Fig. 5(a) with Teager-Kaiser (from top left to bottom
right: variance, surface, frequency, amplitude).
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Figure 7: original (in blue) and estimated parameters (in
red) of Fig. 5(a) with B-Spline technique (from top left to
bottom right: variance, surface, frequency, amplitude).
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Table 1: Fig. 6, 7 : error rates estimation (%) for each char-
acteristic, for TK alone and then combined with B-Spline.

surface amplitude variance frequency
Teager-Kaiser 0.37 2.63 6.77 6.78
TK + B-Spline 0.27 1.98 2.82 4.37
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Figure 8: (a): Synthetic interferometric signal; (b) profile
signal along the optical axis; .
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Figure 9: original (in blue) and estimated parameters (in
red) of Fig. 8(a) with Teager-Kaiser (from top left to bottom
right: variance, surface, frequency, amplitude).
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Figure 10: original (in blue) and estimated parameters (in
red) of Fig. 8(a) with B-Spline technique (from top left to
bottom right: variance, surface, frequency, amplitude).

Table 2: Fig. 9, 10 : error rates estimation (%) for each char-
acteristic, for TK alone and then combined with B-Spline.

surface amplitude variance frequency
Teager-Kaiser 0.53 3.31 8.27 7.68
TK + B-Spline 0.33 2.76 3.77 4.92
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Figure 11: (a): Real interferometric image and its profile
(b) along the optical axis; (c): estimated parameters with B-
Splines (in blue) and Teager-Kaiser (in red): from top left
to bottom right: variance, surface, frequency, amplitude.
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Figure 12: (a): oil-drop interferometric image; (b): es-
timated parameters with B-Splines (in blue) and Teager-
Kaiser (in red): from top left to bottom right: variance, sur-
face, frequency, amplitude.

7 CONCLUSION

In this paper, we have introduced a new method for
tracking material surfaces, combining two types of
approaches: a nonlinear Teager-Kaiser operator, and
a model based on B-splines, allowing a regulariza-
tion taking into account the neighboring points of
the surface according to four parameters capable of
characterizing a fringe signal. After initialization us-
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ing TKEO, we estimate the control points by a sim-
ulated annealing procedure. Although our assump-
tion is suitable for relatively smooth surfaces, we have
provided promising quantitative and also qualitative
results. We have illustrated the performance of our
method on synthetic and real images, showing its abil-
ity to match the roughness of the surfaces. A possible
extension of our algorithm could concern, on the one
hand, an initialization step (by TKEO or another op-
erator) more adapted to noisy data. On the other hand,
the consideration of other image slices within the 3D
data cube (neighboring xz sections) to help initializa-
tion, and also enrichment of the model by using more
complex splines choosing locally different orders for
each parameter or, for example, using P-spline model.
The relatively fast processing, which can be paral-
lelized (more efficient simulated annealing etc), an
interactive procedure would make it possible to opti-
mize the suitable number of splines. For an automatic
procedure, this number depending on each parameter,
could be based on machine learning adapted to data
similar to those being processed.
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