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Key Information Extraction (KIE) is a critical and often final step in the comprehensive process of document
analysis. Various graph-based solutions, including SDMG-R, have been proposed to address the challenges
posed by the relationships between document components. In this paper, we propose a spatial structure-guided
framework to integrate known structures of the data and tasks, which are represented as ground-truth graphs.
This integration is enforce by minimizing a (dis-)similarity loss defined on graph edges. To optimize graph
similarity, different loss functions are explored for the edge loss. In addition, we enhance the text feature
extraction component in SDMG-R from character-level Bi-LSTM to word-level embeddings using a fine-
tuned BERT, thereby integrating deeper language knowledge into the text labeling procedure. Experiments on
the FUNSD and WildReceipt datasets demonstrate the effectiveness of our proposed model in extracting key

information from document images with unseen templates, significantly outperforming baseline models.

1 INTRODUCTION

Extracting and understanding meaningful information
from structured or unstructured documents plays a
crucial role in various applications, including legal
document review, archiving and digitization, senti-
ment and content analysis, and document classifica-
tion. Key Information Extraction (KIE) from Visually
Rich Documents (VRD) is a critical, and often the fi-
nal, step in document understanding.

While significant strides have been made over the
past decade, largely due to the application of deep
learning techniques, challenges remain in document
analysis and KIE. The necessary features for under-
standing documents, which include textual, visual,
and spatial elements, often exhibit great variation
even within the same document type. In addition, the
relationships between document components, which
can span different visual, semantic, and spatial dimen-
sions, are often difficult to fully comprehend.

To address these two challenges, various graph-
based solutions have been proposed (Yu et al., 2021;
Liu et al., 2019; Wang et al., 2023; Hong et al., 2022;
Qian et al., 2018; Sun et al., 2021; Hwang et al.,
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2020; Chen et al., 2023; Shi et al., 2023; Gbada et al.,
2024b; Lee et al., 2021), achieving state-of-the-art
performance. PICK (Yu et al., 2021) incorporates all
features from the document—textual, visual, and spa-
tial—where an encoder generates visual embeddings
using Convolutional Neural Networks (CNN) and text
embeddings using Transformers. These features are
fed into a graph module to capture the latent relation-
ships between nodes. For KIE, sequence tagging is
performed at the character level using a Bidirectional
LSTM-Conditional Random Field layer. Inspired by
SPADE (Hwang et al., 2020), Hong et al. (Hong et al.,
2022) introduced a graph-based method called BROS,
which encodes the relative positions of text blocks in
a document’s 2D space to capture their relationships.
BROS has a similar structure to LayoutLM (Xu et al.,
2020) but includes two major improvements.

Spatial Dual-Modality Graph Reasoning (SDMG-
R) (Sun et al., 2021) attempts to address both chal-
lenges. It models document images as dual-modality
graphs, with nodes encoding both the visual and tex-
tual features of detected text regions, and edges rep-
resenting the spatial relations between neighboring
text regions. However, for data with well-defined
structures, such as driver’s licenses, passports, and
transcripts, their structures have not been fully uti-
lized in the key classification procedure. In addition,
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features extracted from visual and textual modalities
have been processed through U-Net and Bi-LSTM,
respectively, before being fused and fed into the graph
network. The textual feature extraction, however, is
conducted at the character level, lacking an under-
standing of the word content.

In this paper, we propose two novel components
to improve the graph-based feature extraction and
structure learning procedure. Built on SDMG-R, our
framework replaces the character-level network with
word-embedding networks, allowing the system to
recognize words for text labeling. For structure learn-
ing, we integrate the available ground-truth text lay-
out and connections into the graph learning process.
Our contributions can be summarized as follows:

* First, we enhance the text feature extraction com-
ponent in SDMG-R by replacing the character-
level Bi-LSTM with a word-level embedding so-
lution based on a fine-tuned BERT model. This
improvement incorporates language knowledge
directly into the text labeling process.

» Second, we propose the use of a ground-truth
graph as both an input and a guiding mechanism.
This novel approach sets our method apart and en-
hances the performance of the baseline SDMG-R.
The guidance is enforced through a loss function
designed to minimize graph dissimilarity.

* For the graph dissimilarity setup, we experi-
mented with various loss functions, including
Mean Squared Error (MSE), Cross-Entropy (CE),
and Focal Loss, to evaluate their effectiveness in
graph-based learning tasks.

2 TECHNICAL BACKGROUND

Optical Character Recognition (OCR) based docu-
ment analysis is a powerful approach to extracting
and processing textual information from images and
documents. This technology combines computer vi-
sion and machine learning techniques to transform
physical or digital documents into machine-readable
text, enabling automated information retrieval and
analysis (Subramani et al., 2020). The process typ-
ically involves three main stages: text detection, text
recognition, and key information extraction, each em-
ploying networks to handle various challenges such
as diverse document layouts, different fonts and text
styles, and complex backgrounds.

The first stage, text detection, identifies and local-
izes text regions within an image or document and the
major solutions include (Liao et al., 2020; Wang et al.,
2019b; Wang et al., 2019a; Zhang et al., 2020; Zhu

et al., 2021; Long et al., 2018). Text recognition then
converts these detected regions into actual text, in-
terpreting the visual patterns of characters and words
(Fang et al., 2021; Shi et al., 2018; Li et al., 2019; Shi
et al., 2016; Sheng et al., 2019; Du et al., 2022). Fi-
nally, key information extraction aims to identify and
extract specific, relevant data from the recognized text
(Yu et al., 2021; Sun et al., 2021). This three-stage
pipeline to end-to-end document analysis has wide-
ranging applications across industries, from digitizing
historical archives to automating data entry in busi-
ness processes.

KIE faces many challenges due to the variations
in document types, feature diversity, and the com-
plex relationships between different document com-
ponents (Gbada et al., 2024a). To address these chal-
lenges, two primary strategies have been employed:
graph-based and end-to-end approaches. Graph-
based solutions (Yu et al., 2021; Liu et al., 2019;
Krieger et al., 2021; Wang et al., 2023) model the
relationships between document components, using
nodes and edges to represent different features or re-
lationships. End-to-end approaches (Xu et al., 2020;
Katti et al., 2018; Shehzadi et al., 2024), on the other
hand, integrate the entire extraction process into a sin-
gle, cohesive framework. Graph-based methods, in
particular, have proven to be effective in capturing
dependencies among document entities (Qian et al.,
2018; Sun et al., 2021; Hwang et al., 2020; Xu et al.,
2020; Hong et al., 2022).

3 METHOD

The baseline model in this work is SDMG-R, as
shown in Fig. 1. SDMG-R begins with the identifi-
cation of bounding boxes within the document, which
serve as the primary units for classification. A multi-
modal framework is employed, leveraging both visual
and textual information from these bounding boxes
to capture essential features. After fusing this mul-
timodal data, a graph is constructed where each node
represents a fused feature. The edges, representing in-
trinsic relationships such as item-price pairs, encapsu-
late critical information for classification. Both node
and edge information are integrated to achieve accu-
rate results.

A two-pronged strategy is employed for feature
extraction, leveraging advanced techniques in both
visual and textual domains. Visual features are ex-
tracted using a pretrained U-Net (Ronneberger et al.,
2015), known for its strong performance in im-
age segmentation. Bounding boxes are processed,
followed by Region of Interest (ROI) pooling to
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Figure 1: Baseline SDMG-R model and our proposed components. The proposed components are highlighted with red color,
which include 1) relacing Bi-LSTM with BERT; and 2) a new loss to enforce the similarity between the learned graph and

ground-truth graph.

standardize varying sizes. For textual features, a
character-based Bi-LSTM network is trained in con-
junction with the entire model to effectively capture
textual context.

Despite the careful design and performance im-
provements in KIE achieved through feature extrac-
tion and graph reasoning steps, both approaches have
significant limitations. The feature extraction net-
work, trained on local data at the character level,
fails to leverage pre-trained word embeddings from
large text datasets, potentially missing out on deeper
semantic understanding of words. Additionally, the
key classification procedure does not fully exploit
the well-defined structures inherent in documents like
driver’s licenses, passports, and transcripts. These
standardized formats could provide valuable cues for
more accurate information extraction, yet remain un-
derutilized in current methodologies.

To address these limitations, we propose two key
components, highlighted in red in Fig. 1: (1) replac-
ing Bi-LSTM with a fine-tuned BERT to enhance
text feature extraction, and (2) introducing a new loss
function to enforce similarity between the learned
graph and the ground-truth graph. In addition, we
explore different choices for the loss function to en-
force graph similarity. Detailed explanations of these
components will be presented in the following sub-
sections.

3.1 Textual Feature Extraction

The textual feature extraction component in SDMG-
R processes text using a Bi-LSTM at the character
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level. This component is trained with local data to
predict next characters, without grasping the semantic
meaning of the words. This approach is akin to rec-
ognizing patterns in a foreign language based solely
on their occurrence in training data, without compre-
hending their meaning. As shown in Fig. 2, the BI-
LSTM might be able to identify “grill” in a document
as a five-character sequence, “g”, “r”, “i”, “1”, and “1”,
but fail to associate it with a restaurant name. This
character-level processing limits the system’s ability
to leverage contextual clues that could enhance infor-
mation extraction.

: In baseline SDMG-R, “Grill”
- ; and “Avenue” are both !
W;g;{ gés;;ﬁgﬂ ‘ pyE =" ! processed by Bi-LSTM as H
Avenue 1§ character sequences. !
404-249-9054 S Labataats i SO '
CTR-315 ‘\\\ 1 Using a fine-tuned BERT, the

S : meanings of “Grill” and

1

1

Cashier 04/11/2019  *~ “Avenue” can be integrated in |
2:12 PM 1 label classification, leading to .

10215 ! improved accuracy. 1

Figure 2: Illustration of how character-level Bi-LSTM and
a fine-tuned BERT would process words on a receipts dif-
ferently.

To overcome the limitations of the baseline model,
we propose integrating pre-trained word embeddings
like word2vec (Mikolov, 2013), GloVe (Pennington
et al., 2014), and BERT (Devlin, 2018). These ad-
vanced language models capture word meanings and
relationships, offering a powerful tool to improve se-
mantic comprehension. By incorporating these pre-
trained embeddings, we can significantly boost the
system’s ability to accurately classify documents and
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extract key information, especially when dealing with
domain-specific terminology or contextual subtleties.
This is illustrated in Fig. 2, where a word embedding
model recognizes the meanings of “Grill” and “Av-
enue” increasing the likelihood of correct classifica-
tion into their labels as restaurant name and address.

In this paper, we fine-tune a pre-trained BERT
model on a token classification task with a dataset la-
beled with Begin-Inside-Outside tagged (BIO-tagged)
tokens. The fine-tuning process employs tokenized
inputs generated by BERT’s tokenizer and utilizes its
pre-trained contextual embeddings to capture the con-
text of each token. Through this task-specific training,
BERT learns to accurately assign BIO labels, making
it highly effective for token classification tasks. The
resulting fine-tuned model is then used in this work to
generate refined word embeddings.

Another benefit of using BERT is its robustness
against errors from the previous text recognition step.
For instance, if the OCR step incorrectly recognizes
“Grill” in Fig. 2 as “Griil”, BERT can potentially cor-
rect this error, still achieving accurate recognition.
This provides a significant advantage over the base-
line Bi-LSTM for inputs with poor image quality.

3.2 Enforcing Structure with
Ground-Truth Graphs

In the baseline SDMG-R’s graph reasoning module,
as shown in Fig. 1, the model uses a graph net-
work to implicitly learn the connectivity among docu-
ment items (graph nodes). The graphs are formulated
as fully connected graphs, and the weights between
nodes, which reflect relationships, are learned to help
label the nodes correctly. However, ground-truth con-
nectivities are not explicitly enforced. In other words,
the model neither rewards correct or relevant connec-
tions nor penalizes incorrect or irrelevant connections
learned within its graph network.

This poses a significant limitation, as many well-
structured documents have clearly defined connec-
tions among their items. For instance, Fig. 3 illus-
trates an example using a section of a U.S. passport.
The spatial relationships and connectivity between the
“Nationality” field and the text blocks “UNITED”,
“STATES”, “OF”, and “AMERICA” are consistent
across all U.S. passports. Such ground-truth connec-
tivity is often available in the training data. Failing
to take use of these connections would be a waste of
valuable information.

To address this limitation, we propose a graph
(dis)similarity loss that enforces the similarity be-
tween the learned graphs and the ground-truth struc-
tures. These ground-truth graphs are constructed
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Figure 3: Illustration of our proposed graph similarity com-
ponent. Top: An example from U.S. passports, where the
“Nationality” node is connected to the four items below.
Bottom: This ground-truth structure can be enforced in
SDMG-R by incorporating a graph (dis-)similarity loss.

Full graph
in SDMG-R

based on key-value pairs within the documents, with
each edge indicating whether two nodes are truly con-
nected (true) or not (false). The graph similarity task
is framed as an edge classification problem, where
the predicted edge weights are driven to align closely
with the ground-truth values. Minimizing this loss en-
courages the graph reasoning module in SDMG-R to
generate connections that accurately reflect the docu-
ment structure, thereby improving node classification
accuracy and aligning it with the actual relationships
present in the document layout.

In Fig. 3, this means that we encourage SDMG-
R to predict that the “Nationality” node is connected
to the other four nodes while ensuring that there are
no connections between the four nodes themselves.
Achieving this would be beneficial for accurately la-
beling all five nodes.

3.2.1 Different Setups for Graph (dis-)Similarity
Loss

As our graph similarity component is formulated as
a binary edge classification task, the choice of loss
function is crucial and can be set up in various ways.
The following options have been explored in this
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work.

Cross entropy (CE) loss or log loss is commonly
used to measure the performance of a model. It quan-
tifies the difference between the predicted probabili-
ties and the actual binary labels (0 or 1). The cross-
entropy loss function is defined as:

Loss = —(ylog(p) + (1 —y)log(1—p))

Here, y is the actual label (0 or 1), and p is the pre-
dicted probability that the label is 1.

Focal loss adds a modulating term (1 — p;) to
cross-entropy loss to account for class imbalance dur-
ing training tasks like object detection. The formula
is given in (Lin, 2017) as:

FL(p:) = —(1—p,)"log(p:)

Setting y > 0 can reduce focus on well-classified ex-
amples and put more emphasis on misclassified ex-
amples.

MSE loss measures the average squared differ-
ence between the predicted values and actual values.
The formula is given as:

L o
MSE = — ¥ () —59)?
m;3

Here, m is the number of samples, y(i) denotes the
ground truth label for the i-th sample, and $) denotes
the predicted label for the i-th sample.

4 EXPERIMENTS AND RESULTS

In this section, we present and evaluate the ex-
perimental results of the proposed models. The
competing model were tested on two different
datasets: 1) the public Form Understanding in
Noisy Scanned Documents (FUNSD) dataset (Jaume
et al,, 2019), and 2) the WildReceipt dataset, in-
troduced in (Sun et al., 2021). To enhance tex-
tual feature extraction, a uncased BERT based
model downloaded from https://huggingface.
co/google-bert/bert-base-uncased was fine-
tuned on both the FUNSD and WildReceipt datasets
for the token classification task using BIO tagging.

4.1 Results from FUNSD Dataset

The FUNSD dataset consists of 199 fully annotated
scanned form images, specifically designed for text
detection, OCR, and document understanding tasks
(Jaume et al., 2019). However, the forms are noisy
and vary significantly in appearance, making it a diffi-
cult dataset for document understanding (Jaume et al.,
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2019). The dataset includes 149 training images and
50 testing images, with each form image accompa-
nied by a JSON file containing its annotations. Each
form includes a list of interlinked semantic entities,
where a semantic entity represents a group of words,
each assigned a unique ID, label, bounding box co-
ordinates, and relationships with other words. These
relationships define the key-value pairs using ID num-
bers. The nodes in FUNSD have four labels: header,
question, answer, and other. For our performance
comparison, we exclude the other class. The ground-
truth graphs for FUNSD samples are generated using
the relationships defined in the dataset.

Table 1 presents the results of the baseline model
and our proposed models on the FUNSD dataset, us-
ing various edge losses and textual feature extrac-
tors. All our models outperform the baseline SDGM-
R, which does not have the edge-loss component.
Among our models, those using fine-tuned BERT out-
perform their counterparts using Bi-LSTM, highlight-
ing BERT’s superiority as a feature extractor. Fo-
cal loss also consistently outperforms MSE and CE
across both BERT and Bi-LSTM feature extractors.
The final combination, fine-tuned BERT with focal
loss, achieves the highest macro F1-score of 83.41%.

Table 1: Results from the segmentation models with differ-
ent edge losses and textual feature extractors on the FUNSD
dataset. “FT BERT” stands for fine-tuned BERT.

Textual Feature Edge Loss Macro F-1 Score
Baseline (SDMG-R) 75.66
MSE 77.45
Bi-LSTM Cross Entropy 77.82
Focal Loss 78.43
MSE 81.22
Fine-tuned BERT Cross Entropy 81.55
Focal Loss 83.41

Fig. 4 illustrates an example of a FUNSD form
where the baseline model misclassifies certain text,
while our approach delivers accurate classification.
In this figure, header classes are represented by blue
rectangles, questions by red rectangles, answers by
green rectangles, and other classes by orange rect-
angles. From Fig. 4(a) and 4(b), we observe that
two other classes are incorrectly classified as header
classes by the original SDMG-R model. In addition,
one header class is misclassified as a question class.
However, in Fig. 4, all these misclassifications are
corrected.

In the end, we compared our proposed model with
recent studies (Lee et al., 2021; Hwang et al., 2020;
Gbada et al., 2024b; Chen et al., 2023; Shi et al.,
2023; Hong et al., 2022) that reported results on
the FUNSD dataset for the KIE task, summarized in
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Figure 4: Classification results on FUNSD forms. Colors indicate different classes: blue for header, red for questions, green
for answers, and orange for other classes. Left: Ground-truth classes of the text blocks. Middle: Predicted classes using
original SDMG-R. Right: Predicted classes using our proposed model.

(Gbada et al., 2024a). It is important to note that we
do not intend to make a direct quantitative compar-
ison among these methods, as the studies employed
different training setups and evaluation metrics. Nev-
ertheless, the classification accuracy achieved by our
model (fine-tuned BERT with focal loss) is compara-
ble to that of the best-performing reported model.

Table 2: Results from different models on FUNSD dataset
for the KIE task. The metric used in results is the F1-Score.

Related Work Results
ROPE (Lee et al., 2021) 57.22
SPADE (Hwang et al., 2020) 72

Gbada et al. (Gbada et al., 2024b) 80.4
DAMGCN (Chen et al., 2023) 80.63
LayoutGCN (Shi et al., 2023) 82.06

BROS (Hong et al., 2022) 84.52
Our Proposed Model 83.41

4.2 Results from WildReceipt Dataset

The WildReceipt dataset, introduced in (Sun et al.,
2021), is designed for OCR and KIE tasks. It in-
cludes a collection of 1,765 receipt images, divided
into 1,267 training images and 472 testing images.
Each image contains a list of OCR entries, with each
entry comprising a bounding box, text, and a class
label. The dataset defines 26 classes, which include
various key-value pairs such as Store_name_key vs
Store_name_value, Date_key vs Date_value, and To-
tal_key vs Total value.

The original WildReceipt dataset does not contain
relationships between nodes. In this work, we in-
troduced relationships between key-value pairs, i.e.,

connecting name_keys with name_values, and take the
graphs as the ground-truth in our models. Following
the same practice in the baseline model (Sun et al.,
2021), we excluded the scores for the Ignore and Oth-
ers classes from the performance evaluation.

Table 3 shows the KIE results from the baseline
SDMG-R model and our models. All of our models
outperform the baseline, which utilizes a Bi-LSTM
and lacks edge loss. Among our six models, a simi-
lar trend to the FUNSD experiments can be observed.
Regarding the text feature extractor, the three mod-
els with fine-tuned BERT consistently outperform the
corresponding models using Bi-LSTM. For edge loss,
focal loss enhances accuracy more effectively than
MSE or cross-entropy. This can be attributed to the
fact that the ground-truth graphs are typically quite
sparse in edges, making focal loss more suitable for
such label-imbalanced scenarios.

Table 3: Results from the segmentation models with differ-
ent edge losses and textual feature extractors on the Wil-
dReceipt dataset.

Textual Feature Edge Loss Macro F-1 Score
Baseline (SDMG-R) 88.35
MSE 88.91
Bi-LSTM Cross Entropy 88.40
Focal Loss 89.20
MSE 89.85
Fine-tuned BERT Cross Entropy 89.72
Focal Loss 90.26

To summarize, our two design compo-
nents—replacing Bi-LSTM with fine-tuned BERT
and enforcing graph structure using an edge
loss—successfully achieved the intended design
goals, as clearly demonstrated in both the FUNSD
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and WildReceipt experiments. Among the three
loss functions explored (MSE, cross-entropy, and
focal loss), focal loss consistently delivered the
best performance across datasets and experiments.
This can be largely attributed to the sparsity of the
ground-truth graphs, where focal loss is better suited
to handle label imbalance.

S CONCLUSIONS

In this paper, we present a spatial structure-guided
framework to address the challenges of KIE by lever-
aging ground-truth graphs and optimizing graph sim-
ilarity through various loss functions. Moreover, by
enhancing the text feature extraction process with
word-level embeddings using a fine-tuned BERT, our
models demonstrate superior performance compared
to the baseline SDMG-R model. Experimental results
on the FUNSD and WildReceipt datasets confirm the
robustness of our approach.
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