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Abstract: Adversarial attacks compromise the integrity of machine learning models, posing significant risks in critical
fields like autonomous driving, healthcare, and finance, where accuracy and security are paramount. Existing
defenses against these attacks primarily involve adversarial training or architectural modifications to the mod-
els. However, many of these approaches are model-specific, limiting their applicability to other models and
potentially degrading overall performance, including accuracy and generalization. Thus, there is a pressing
need to explore model-agnostic defense strategies that do not rely on adversarial training, offering more adapt-
able and reliable solutions across various models. This study aims to evaluate the effectiveness of HybridMTD.
This novel defense strategy integrates Moving Target Defense (MTD) with ensemble neural network models
to enhance robustness against adversarial attacks without requiring adversarial training or internal changes to
model architectures. By dynamically selecting a subset of models from a diverse pool for each evaluation and
utilizing majority voting, HybridMTD increases unpredictability and strengthens the resilience of the defense
mechanism. We conducted extensive experiments across four datasets—MNIST (image), Twitter Sentiment
(text), KDD (tabular), and MIT-BIH (signals)—and assessed HybridMTD against seven advanced attacks, in-
cluding evasion and poisoning attacks. The results consistently show that HybridMTD outperforms traditional
MTD strategies and single-model methods, maintaining high accuracy and robustness across diverse attack
types and datasets. This research underscores the potential of HybridMTD as an effective defense strategy,
significantly improving model security and laying the foundation for further exploration of advanced defense
mechanisms.

1 INTRODUCTION

Adversarial attacks pose significant threats to the se-
curity and reliability of machine learning (ML) mod-
els, particularly in critical applications such as au-
tonomous driving (Stilgoe, 2018), healthcare (An
et al., 2023), and cybersecurity (Zhou et al., 2022).
These attacks manipulate input data to deceive mod-
els into making incorrect predictions (Ren et al.,
2020), jeopardizing system safety and causing poten-
tial financial losses (Wu et al., 2023; Liu et al., 2018).
Ensuring model robustness against such perturbations
is crucial for safe deployment in real-world scenarios.

Adversarial attacks are broadly classified into eva-
sion attacks, which occur during the test phase (Liu
et al., 2018), and poisoning attacks, which compro-
mise the training phase by introducing malicious data
(Biggio et al., 2013; Biggio et al., 2011). Address-
ing these challenges requires effective and adaptable

defense strategies.
Traditional defenses, such as adversarial training

(Dong et al., 2020; Liu et al., 2022) and model mod-
ifications (Madry et al., 2018; Gao et al., 2019), im-
prove robustness but often lack generalizability across
attack scenarios. In contrast, Moving Target Defense
(MTD) offers a dynamic strategy by continuously al-
tering system configurations to disrupt attackers’ abil-
ity to exploit model weaknesses (Lei et al., 2018).
MTD can be implemented via shuffling, diversity, re-
dundancy, or hybrid approaches (Sun et al., 2023).
This study adopts a hybrid MTD strategy, combining
shuffling and diversity by randomly selecting models
for each input evaluation, enhancing system resilience
through increased unpredictability.

Ensemble models complement MTD by aggregat-
ing predictions from multiple models, reducing vari-
ance and bias while improving robustness (Diet-
terich, 2000). Even if some models are vulnerable
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to specific attacks, others can compensate, mitigating
adversarial impacts. Our approach employs majority
voting to determine final predictions, leveraging the
strengths of both MTD and ensemble methods.

This study introduces a novel hybrid defense
framework integrating MTD and ensemble models.
Unlike prior works (Sengupta et al., 2019; Roy et al.,
2019; Amich and Eshete, 2021), which apply MTD
with a single model, our approach randomly selects
subsets of models for each input, combining dynamic
adaptation with ensemble robustness. Extensive ex-
periments were conducted on four datasets—MNIST
(LeCun et al., 1998a), Twitter Sentiment, KDD, and
MIT-BIH—and seven attack types, including FGSM
(Goodfellow et al., 2015), BIM (Kurakin et al.,
2017), and poisoning attacks like label flipping (Big-
gio et al., 2013).

This study addresses the question: ’Can inte-
grating MTD and ensemble models enhance ML ro-
bustness against adversarial attacks?’ Our objectives
are to evaluate the framework’s effectiveness across
datasets and attack types, and to identify conditions
where it performs best.

The remainder of the paper is organized as fol-
lows: Section 2 reviews related work, Section 3 de-
tails the methodology, Section 4 presents results, Sec-
tion 5 discusses findings, and Section 6 concludes
with future research directions.

2 RELATED WORK

To provide context for our study, we review several
strategies that have been proposed to enhance the re-
silience of machine learning models against adversar-
ial attacks. Based on the survey paper by Q. Liu et
al. (Liu et al., 2018), several strategies are proposed
to enhance the resilience of machine learning models
against adversarial attacks. In the training phase, data
sanitization methods are utilized to remove adversar-
ial samples from training data, ensuring dataset purity.
Robust algorithms enhance the robustness of learn-
ing algorithms. Additionally, secure algorithms are
developed to distribute feature weights more evenly,
further fortifying the models against attacks.

During the testing and inferring phases, various
techniques are employed to improve model resilience
and security. Robustness improvements use game the-
ory and adversarial retraining to boost model perfor-
mance when faced with adversarial attacks. Tech-
niques such as defensive distillation smooth model
outputs, making them less susceptible to adversar-
ial samples. Dimension reduction strategies reduce
feature dimensions to enhance resilience. Statistical

tests are used to detect adversarial samples. Ensemble
methods provide a robust defense by improving over-
all security. Our approach will be categorized under
ensemble methods, leveraging the combined strength
of multiple models to enhance security and resilience
against adversarial attacks.

The first notable work is by Sengupta et al. (Sen-
gupta et al., 2019), who propose MTDeep, a defense
mechanism that integrates MTD with deep neural
networks (DNNs) to enhance robustness against ad-
versarial attacks. Their approach involves randomly
selecting from an ensemble of just three DNNs to
classify each input image, increasing unpredictabil-
ity for attackers. Evaluated exclusively on image
datasets such as MNIST, Fashion-MNIST, and Ima-
geNet, MTDeep focuses on evasion attacks and dy-
namically alters the attack surface at test time. While
this method improved model performance, the results
were not highly significant, and their pool of models
was quite limited. In contrast, our work explores a
broader range of models and data types beyond just
images, aiming for more flexibility and stronger de-
fense across diverse attack scenarios.

A similar work by Roy et al. (Roy et al.,
2019) presents an MTD approach modeled as a Stack-
elberg game, where the defender selects an algo-
rithm from a limited set, increasing unpredictability.
Like Sengupta et al., their method focuses on image
datasets (e.g., MNIST) and is tested against rational
and boundedly rational attackers. Although it main-
tains reasonable accuracy under severe conditions, it
faces the same limitations, such as an exclusive focus
on evasion attacks. In contrast, our work expands to a
broader range of data types, addressing both evasion
and poisoning attacks.

A. Amich and B. Eshete’s work (Amich and Es-
hete, 2021) introduces Morphence, which uses a dy-
namic pool of slightly perturbed CNN models to de-
fend against adversarial attacks on image classifica-
tion datasets. Morphence counters white-box and
black-box attacks by selecting the most confident
model for each prediction, with the model pool expir-
ing after a set query budget. While this expands the
pool compared to MTDeep, it still relies on a single
model type and focuses solely on image data and eva-
sion attacks. In contrast, our approach selects from a
diverse set of models to make decisions for each input
and covers both evasion and poisoning attacks across
multiple data types.

R. Colbaugh and K. Glass (Colbaugh and Glass,
2013) propose an MTD strategy that dynamically
switches between classifiers trained on different fea-
ture subsets, guided by a Markov Chain model. Their
focus is primarily on denial-of-service (DoS) attacks
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rather than adversarial attacks, and their approach
shows significant improvements over static defenses.
In contrast, our work targets adversarial attacks, ad-
dressing both evasion and poisoning.

Peter Martin et al. (Martin et al., 2021) ex-
plore using MTD strategies to protect deep learning
models from adversarial attacks by training diverse
models, applying random affine transformations to
inputs, and randomizing outputs. Their approach,
tested on image datasets and focused on evasion at-
tacks, showed improved robustness against white-box
attacks when combined with Stochastic Affine Trans-
formations (SAT) and Adaptive Diversity-Promoting
(ADP) regularization. However, sophisticated adver-
saries using surrogate models can still bypass these
defenses, and the success against black-box attacks
depends on low transferability between sub-models.

3 METHODOLOGY

3.1 Dataset Description

We utilized four different datasets, each represent-
ing a unique data type and application area, to evalu-
ate the effectiveness of our proposed defense strategy.
The MNIST (Modified National Institute of Standards
and Technology) dataset (LeCun et al., 1998b) is a
widely used benchmark in machine learning. It con-
sists of 60,000 training samples and 10,000 test sam-
ples of grayscale images of handwritten digits (0-9),
each 28x28 pixels.

The KDD Cup 1999 Data (Liu, 1999) originates
from the 1998 DARPA Intrusion Detection Evalua-
tion Program and is extensively used for evaluating
anomaly and intrusion detection algorithms. It com-
prises nearly 5 million connection records, 23 classes,
and 41 features, providing a rich dataset for research.

The MIT-BIH Arrhythmia Database (Moody and
Mark, 2001), hosted on PhysioNet, is widely used in
biomedical research to study cardiac arrhythmias. It
includes 48 half-hour extracts of two-channel ambula-
tory ECG recordings from 47 subjects, with expert an-
notations providing ground-truth labels. This dataset
is crucial for evaluating adversarial perturbations in
biomedical signals and includes 23 classes of arrhyth-
mias.

The Twitter Sentiment Analysis Dataset (Sha-
hane, 2021) categorizes Twitter sentiments into posi-
tive, negative, and neutral. Twitter data is inherently
challenging due to its brevity, slang, and non-standard
grammatical structures.

All datasets were standardized to ensure compat-
ibility with various models. MNIST images were

normalized and reshaped, the KDD dataset was en-
coded to handle multiple features and class imbal-
ances, MIT-BIH ECG signals were filtered and seg-
mented, and Twitter sentiment data was cleaned and
transformed into embeddings.

These datasets were chosen to evaluate the gen-
eralizability of our defense strategy across diverse
domains, each with unique security implications.
MNIST serves as a foundational benchmark for ad-
versarial defenses in vision systems. KDD, despite
its age, remains a standard for intrusion detection, en-
abling comparisons with prior methods. MIT-BIH is
critical for testing robustness in biomedical systems,
where adversarial attacks could compromise patient
care. The Twitter Sentiment Analysis dataset repre-
sents the challenges of securing text-based systems,
such as misinformation detection, against adversarial
manipulation.

3.2 Model Selection

We employed 10 neural network models for each
dataset, selecting and modifying them according to
the specific data type. These models included CNNs,
MLPs, LeNet5, LSTMs, MobileNetV2, RNNs, and
GRUs. We created various versions for each
model—such as deeper, wider, and fully connected
configurations—to ensure diversity and robustness in
our model pool.

CNNs (Convolutional Neural Networks) are gen-
erally used for tasks that involve capturing spatial
hierarchies. We utilized different configurations of
CNNs, including deeper and fully connected versions,
as part of our exploration. LeNet5, a classic CNN
model, and MobileNetV2, known for its computa-
tional efficiency, were also included as part of this
model pool.

For tasks involving sequential data, models
like LSTMs (Long Short-Term Memory Networks),
GRUs (Gated Recurrent Units), and RNNs (Recur-
rent Neural Networks) are generally used. We incor-
porated different variations, such as deeper configu-
rations, to enhance their ability to model long-term
dependencies. MLPs (Multilayer Perceptrons) were
also widely used due to their flexibility in learning
complex input-output mappings, with both deeper and
wider versions included for increased performance.

3.3 Adversarial Attack Methods

We incorporated several adversarial attack methods
into our evaluation:

Fast Gradient Sign Method (FGSM) (Goodfel-
low et al., 2015) and Basic Iterative Method (BIM)
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(Kurakin et al., 2017) were both implemented using
the Adversarial Robustness Toolbox (ART) (Nicolae
et al., 2019). FGSM generates adversarial examples
by applying noise in a one-step process, manipulating
test set data based on the gradient of the loss with re-
spect to the input data. BIM, an iterative extension of
FGSM, applies perturbations multiple times, allowing
for a more granular exploration of adversarial vulner-
abilities. Each iteration applies small perturbations to
the input, cumulatively leading to a significant adver-
sarial effect.

Jacobian-based Saliency Map Attack (JSMA)
(Papernot et al., 2015) focuses on changing the most
important features of the input data to mislead the
model. We used the ART to configure the Salien-
cyMapMethod with predefined parameters: ’theta’
controls how much each feature is changed, and
’gamma’ determines how many features are altered.
Carlini & Wagner (C&W) Attack (Carlini and Wag-
ner, 2017) solves an optimization problem to find the
smallest changes needed to mislead the model while
ensuring high confidence in misclassification. The
C&W attack iteratively adjusts input images to find
minimal perturbations, testing the model’s sensitivity
to small changes and the robustness of its defenses.

The Transferability Attack (Papernot and Mc-
Daniel, 2016) involves creating a surrogate model to
generate adversarial examples, which are then used
to attack the main model. The assumption is that
the attacker does not have direct access to the target
model’s parameters or training data. We trained a sep-
arate surrogate model to mimic the main model’s task,
exploiting the phenomenon that adversarial vulnera-
bilities often transfer across models. The generated
adversarial examples were introduced to the main
model to assess its robustness in a realistic black-box
scenario.

The Label-Flipping Attack (Biggio et al., 2013)
is a straightforward poisoning attack in which 50%
of the training data labels are flipped to degrade the
model’s performance. The Feature Collision Attack
(Shafahi et al., 2018) introduces adversarial samples
designed to overlap in feature space with specific tar-
get instances, causing the model to misclassify these
targets during training. We generated poisoned sam-
ples by adding calculated perturbations to base class
samples, pushing them toward the feature space of
selected target instances. These adversarial samples
were mixed with the original training data.

3.4 Comprehensive Defense Strategy
Implementation

We carefully selected 10 neural network models for
each dataset to implement our defense strategy based
on the specific data type. This selection ensured
that the models in our pool were diverse and ro-
bust, including deeper versions, wider versions, and
fully connected versions of various neural network ar-
chitectures. For example, for datasets like MNIST
and MIT-BIH, which require strong pattern recogni-
tion capabilities, we mostly utilized different types of
CNNs.

In our HybridMTD strategy, all 10 models are first
trained on the datasets. During the test phase, the
MTD mechanism dynamically selects 4 models from
the pool to form an ensemble for each data input. This
dynamic selection ensures that the attack surface con-
tinuously changes, making it significantly more chal-
lenging for adversaries to exploit vulnerabilities con-
sistently. The core idea is to enhance the defense’s
unpredictability and robustness by altering the mod-
els being targeted with each evaluation.

The decision to select 4 models out of 10 in our
HybridMTD strategy is carefully balanced. Choos-
ing more models would reduce the number of unique
sets, making the defense less unpredictable and eas-
ier for attackers to anticipate. Conversely, selecting
fewer models could weaken the effectiveness of ma-
jority voting, which relies on combining the decisions
of several models to improve accuracy. By selecting
4 models, we strike a balance between diversity and
unpredictability while maintaining manageable com-
putational costs. This setup also provides redundancy,
ensuring the overall prediction remains reliable even
if one or two models underperform or are compro-
mised.

With 10 models in the pool, there are 210 unique
combinations of 4-model ensembles, enhancing un-
predictability and resilience. This variety of combi-
nations ensures a broad range of defenses, making it
harder for adversaries to anticipate the specific mod-
els being used.

In each evaluation, the selected four models
formed an ensemble, with the final prediction for each
data point determined by majority voting among these
models. This approach means that the class receiving
the most votes among the predictions of the four se-
lected models is chosen as the predicted class for that
data point. For instance, if two of the models predict
class 2, one model predicts class 1, and another model
predicts class 3, the majority voting mechanism will
select class 2 as the final result, as it received the high-
est number of votes. In cases where a tie occurs, for
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example, if two models predict class 1 and the other
two models predict class 4, the final output is cho-
sen randomly between these two classes. The major-
ity voting process improves robustness, reduces the
impact of individual model errors, and enhances the
overall accuracy and reliability of the ensemble pre-
dictions.

Our comprehensive defense strategy was evalu-
ated through several steps. Initially, the models were
evaluated individually to establish a baseline perfor-
mance before applying any adversarial attacks. This
initial evaluation provided a reference point for as-
sessing the impact of the defense mechanisms.

3.4.1 Adversarial Example Crafting and
Evaluation

Adversarial examples were crafted by having the at-
tacker select 4 models from the pool and create adver-
sarial examples designed to target all 4 models simul-
taneously. Since we form an ensemble by selecting
4 models out of a pool of 10, we also assume that
the attacker will target 4 models, aligning with the
ensemble structure. Although in real-world scenar-
ios attackers may have limited knowledge, for this
study, we assume that the attacker is aware that 4
models determine the final output and therefore tar-
gets 4 models accordingly. For FGSM, BIM, JSMA,
and C&W attacks, which are white-box attacks, we
further assumed that the attacker has full knowledge
of the models in the pool. This approach allowed us to
test the models’ robustness against well-informed at-
tackers by challenging the defense mechanisms with
adversarial examples designed to compromise the se-
lected models.

In the transferability attack scenario, a black-box
approach was assumed where the attacker only knew
the types of models used in the pool (e.g., CNNs,
RNNs) but not their specific architectures. We also
assumed that the attacker is aware that 4 models deter-
mine the final output, so they focused their efforts on
targeting 4 models. The attacker selected four models
of their own, with different architectures from those in
our pool, and crafted adversarial examples designed
to target all four models simultaneously. This ap-
proach mimicked real-world conditions where attack-
ers, despite lacking complete information about the
target system, still attempted to create adversarial ex-
amples that could transfer and succeed against the
models in the target pool.

For poisoning attacks, it was assumed that the at-
tacker had poisoned four of the models during train-
ing, meaning that our pool already contained poi-
soned models. This implies that when 4 models are
selected during the testing phase to form an ensemble,

there is a possibility that some of the selected models
could be among the poisoned ones, potentially com-
promising the integrity of the ensemble. While we
assume that the attacker had full access to poison 4
models, this level of access is often unrealistic in real-
world scenarios, as even gaining access to 4 models is
a challenging feat.

By dynamically selecting random models for each
data input and employing majority voting, our Hy-
bridMTD strategy leverages the strengths of both
MTD and ensemble methods. This approach ensures
that the attack surface is continuously changing, mak-
ing it difficult for adversaries to adapt, while the en-
semble method enhances overall robustness through
collective decision-making.

Figure 1 illustrates the process where the attacker
generates adversarial examples to challenge our sys-
tem. Four random models from our pool are dynam-
ically selected for each adversarial example to evalu-
ate it. This random selection makes it extremely dif-
ficult for the attacker to predict which models will be
used at any given time, thereby enhancing the unpre-
dictability and robustness of our defense strategy. Af-
ter applying the adversarial attacks, the models were
re-evaluated to assess the impact and effectiveness of
the defense mechanisms.

3.5 Evaluation Metrics

To comprehensively evaluate the performance and ro-
bustness of our models, we recorded a range of met-
rics during both the training and testing phases, be-
fore and after the application of adversarial attacks.
During the training phase, we tracked the number
of epochs, training loss, validation loss, and valida-
tion accuracy to monitor the learning process and de-
tect any overfitting or underfitting. We measured ac-
curacy, precision, recall, and F1-score for the test-
ing phase to assess the models’ classification perfor-
mance. Additionally, we used the confusion matrix to
visualize the distribution of true positives, false posi-
tives, true negatives, and false negatives.

To understand the error margins, we computed
the Mean Absolute Error (MAE), Mean Squared Er-
ror (MSE), and Root Mean Squared Error (RMSE).
These metrics provided insights into the average and
squared differences between predicted and actual val-
ues. We recorded these metrics for each model in-
dividually before and after the application of adver-
sarial attacks. Additionally, we evaluated the overall
performance of our defense strategy by applying the
MTD and majority voting on the ensemble models,
both before and after the attacks. To assess the ef-
fectiveness of the combined approach, we also eval-
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Figure 1: Dynamic model selection process in HybridMTD. Adversarial examples are processed by random ensembles of
four models from a pool of ten, enhancing robustness and security.

uated our strategy by applying MTD without the en-
semble model selection, relying instead on the output
of a single model. This comparison allowed us to see
how much more effective the combined version with
ensemble models is versus the one relying on just a
single model.

4 EXPERIMENTAL RESULTS

4.1 Baseline Performance

As the baseline performance, we first evaluated our
HybridMTD framework using only legitimate data,
with no adversarial attacks. We also conducted eval-
uations using a single model for each dataset, follow-
ing the conventional approach in machine learning.
Specifically, we used a CNN for MNIST and MIT-
BIH, an LSTM for the Twitter Sentiment dataset, and
an MLP for the KDD dataset. Additionally, we evalu-
ated the MTD approach without using ensemble mod-
els, relying on the output of just one model at a time.
The first set of bars in Figure 2 (base bars) repre-
sents these baseline performance metrics for all four
datasets.

4.2 Performance Under Adversarial
Attacks

4.2.1 Visual Performance Analysis Across
Datasets

We present the results of our experiments in Figure 2,
comparing the performance of a conventional single-
model approach, our HybridMTD strategy, and the
MTD approach without ensemble models under vari-
ous adversarial attacks. The blue bars show the final
accuracy of our HybridMTD method, where each data
point is evaluated by applying the MTD approach and
an ensemble of models selected randomly, leading to
a single output. The purple bars represent the per-
formance when MTD is applied but rely on just one
model from the pool, which is similar to traditional
methods. The orange bars show the results when nei-
ther MTD nor ensemble models are used, reflecting
the performance without any defense strategy.

In the MNIST dataset (Fig 2-a), the accuracies un-
der different attacks show significant improvements
with HybridMTD. For instance, under the JSMA at-
tack, the HybridMTD approach achieved an accuracy
of 94.93%, while the single-model approach had a
drastically lower accuracy of 0.26%, and the MTD
approach without ensemble models reached an ac-
curacy of 74.63%. For poisoning attacks, the Hy-
bridMTD approach also demonstrated substantial im-
provements. Under the label flipping attack, the Hy-
bridMTD achieved an accuracy of 97.54%, compared
to 73.00% for the single model, while the MTD ap-
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(a) MNIST Dataset (b) Twitter Sentiment Dataset

(c) KDD Dataset (d) MIT-BIH Dataset
Figure 2: Comparison of baseline and post-adversarial attack accuracies across different datasets for the HybridMTD ap-
proach, MTD without ensemble models, and single models. The first set of bars represents the baseline performance using
legitimate data, while the subsequent bars show the accuracies after applying various adversarial attacks.

proach without ensemble models reached 91.83%.
These findings emphasize HybridMTD’s effective-
ness in maintaining high accuracy for the MNIST
dataset.

Our HybridMTD approach consistently outper-
formed the conventional single-model method and
MTD without ensemble models across all attacks for
the Twitter Sentiment dataset (Fig 2-b). Notably,
under the JSMA attack, the HybridMTD approach
achieved an accuracy of 47.71%, significantly higher
than the 37.39% accuracy of the MTD approach
and 16.59% accuracy of the single-model approach.
Similarly, for the label flipping attack, HybridMTD
achieved an accuracy of 63.10%, compared to 33.87%
accuracy of the MTD approach and 35.96% for the
single model.

For the KDD dataset (Fig 2-c), the results show
that our HybridMTD approach consistently achieved
high accuracy, outperforming the MTD without en-
semble models and conventional single-model meth-
ods. The HybridMTD approach maintained an accu-
racy above 96% against most attacks. For instance,
against the transferability attack, which is a black-box
attack, the HybridMTD achieved an impressive accu-
racy of 99.84%, compared to only 43.14% with the
MTD and 19.55% with the single-model method.

The results of the MIT-BIH dataset (Fig 2-d) indi-

cate that our HybridMTD approach significantly out-
performed the MTD and single-model methods across
various attacks. Specifically, against the label flipping
attack, HybridMTD achieved an accuracy of 93.62%,
compared to only 61.35% with MTD and 50.81%
with the single model. Overall, the HybridMTD ap-
proach maintained an accuracy of over 93% in most
cases, demonstrating its robust defense capability on
the MIT-BIH dataset.

4.2.2 Quantitative Performance Differences in
HybridMTD and Baseline Approaches

We also present our results in Table 1 with color
coding highlighting the accuracy differences between
HybridMTD, MTD without ensemble models, and
the single-model approach. Vivid greens indicate
where our HybridMTD approach outperforms the
other methods, while light greens represent more
modest improvements in accuracy. As can be seen,
negative numbers are few and all of them are less than
1%, demonstrating the consistency of HybridMTD in
maintaining higher performance across different at-
tacks and datasets.

For the MNIST dataset, HybridMTD delivers sig-
nificant improvements, especially under the JSMA
attack, where it achieves 94.67% accuracy com-
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pared to 0.26% for the single-model approach and
74.63% for MTD without ensemble models. Sim-
ilarly, under the label flipping attack, HybridMTD
reaches 97.54% accuracy, outperforming both the sin-
gle model (73.00%) and MTD (91.83%).

In the Twitter dataset, HybridMTD shows clear
improvements across all attacks. For instance, under
the JSMA attack, HybridMTD achieves 47.71% accu-
racy, while MTD and the single model only achieve
37.39% and 16.59%, respectively. The label flip-
ping attack demonstrates HybridMTD’s robustness,
with an accuracy of 63.10%, compared to 33.87% for
MTD and 35.96% for the single model.

For the KDD dataset, the results are even more
pronounced. Against the transferability attack, Hy-
bridMTD achieves an accuracy of 99.84%, far
surpassing MTD (43.14%) and the single model
(19.55%). Other attacks, such as BIM, also show
large differences, with HybridMTD reaching 99.28%
accuracy compared to 54.71% for MTD and 18.38%
for the single model.

In the MIT-BIH dataset, HybridMTD consistently
performs better across all attacks. Under the label
flipping attack, HybridMTD achieves 93.62% accu-
racy, significantly higher than the 61.35% achieved
by MTD and 50.81% by the single model. In the fea-
ture collision attack, HybridMTD again outperforms
the others, with a 6.64% higher accuracy than MTD
and 9.66% higher than the single model.

Overall, the table clearly shows that HybridMTD
consistently improves accuracy, demonstrating its ef-
fectiveness in maintaining robust performance against
adversarial attacks across various datasets and attack
types.

4.2.3 Performance of Models Under Adversarial
Attacks Based on Different Metrics

Table 2 presents the comparison of percentages of Ac-
curacy, Recall, and F1 Score under various adversar-
ial attacks for Single Model, Traditional MTD, and
HybridMTD approaches. The results show that Hy-
bridMTD consistently outperformed both the Single
Model and MTD without ensemble models across all
datasets and attack types.

As can be seen in the table, the other two met-
rics (Recall and F1 Score) also followed the same per-
formance trend, aligning with the accuracy discussed
in Section 4.2.1. This indicates that HybridMTD not
only achieves higher accuracy but also maintains con-
sistent improvements in Recall and F1 Score, demon-
strating its superior performance compared to Tradi-
tional MTD and models without any defense mecha-
nism.

5 DISCUSSION

Our primary goal was to assess the effectiveness of a
new technique that combines Moving Target Defense
(MTD) with ensemble models as a defense strategy
against various evasion and poisoning attacks. Our
results indicate that this hybrid approach, termed Hy-
bridMTD, offers substantial improvements in robust-
ness compared to MTD approach without using en-
semble models and conventional single-model meth-
ods.

5.1 Comparison of Defense Strategies of
Existing Studies

Several studies have focused exclusively on apply-
ing MTD against evasion attacks or Denial-of-Service
(DoS) attacks. Notably, we did not find any studies
that address MTD in the context of poisoning attacks.
Most research has been confined to image datasets,
with limited exploration of other data types, except in
a few instances.

We aimed to broaden the scope by including four
different types of data: image (MNIST), text (Twit-
ter Sentiment), tabular (KDD), and signals (MIT-
BIH). We evaluated HybridMTD against a compre-
hensive range of attacks, including white-box, black-
box, targeted (e.g., feature collision), untargeted,
model-specific (e.g., FGSM, BIM, JSMA, C&W),
and model-agnostic attacks. This holistic approach
comprehensively evaluated our defense mechanism
across diverse scenarios.

In our experiments with the MNIST dataset using
FGSM with an epsilon of 0.1, HybridMTD achieved
notable improvements. The MTDeep framework
[13] increased accuracy from 0% to 23.8%, and the
Morphence framework [15] increased accuracy from
9.98% to 71.43%. HybridMTD achieved an accuracy
of 98.69%, demonstrating consistency in performance
across various attack types. Many studies reported
an accuracy close to 0% under FGSM attack due to
different settings. Therefore, direct comparison with
these studies is challenging.

For C&W attacks on MNIST, another paper [18]
reported an increase in accuracy from 0% to 50%,
while the Morphence framework achieved an increase
from 0% to 97.75%. HybridMTD maintained an ac-
curacy of 85.03% against C&W, compared to 78.92%
with a single model. It’s worth noting that Morphence
utilized multiple CNN models with six layers each,
whereas our approach employed simpler CNN mod-
els with only three layers. Despite this difference in
model complexity, HybridMTD demonstrated supe-
rior performance, highlighting the robustness and ef-
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Table 1: This table shows accuracy differences of HybridMTD compared to MTD without ensemble models and the single-
model approach across datasets. Each dataset has two sub-columns: ’vs MTD’ (accuracy differences with MTD without
ensemble) and ’vs Single’ (accuracy differences with the single-model approach). Positive values indicate better performance
of HybridMTD.

MNIST Twitter KDD MIT-BIH

HybridMTD vs MTD vs Single vs MTD vs Single vs MTD vs Single vs MTD vs Single

FGSM 1.59% 0.53% 0.82% 2.46% 39.03% 55.01% 1.13% 7.03%

BIM 0.17% 0.37% 0.64% 5.83% 44.57% 80.90% 2.64% 6.75%

JSMA 20.30% 94.67% 10.32% 31.12% 23.12% 52.16% 17.46% 24.74%

C&W 6.88% 6.11% 1.74% 4.37% 17.20% 85.32% 17.70% 16.12%

Transferability 1.25% -0.47% 1.32% 16.77% 56.70% 80.29% 1.09% 26.85%

Label Flipping 5.71% 24.54% 29.23% 27.14% 0.97% 0.18% 32.27% 42.81%

Feature Collision 2.43% 0.10% 10.05% 2.95% 2.12% -0.30% 6.64% 9.66%

Table 2: Comparison of Accuracy, Recall, and F1 Score across Four Datasets (MNIST, Twitter, KDD, MIT-BIH) under
Different Situations. The table presents metrics for different scenarios: Base (before any adversarial attack), and under
various adversarial attacks, including FGSM, BIM, JSMA, C&W, Transferability, Label Flipping, and Feature Collision. The
results are compared for Single Model, Traditional MTD, and HybridMTD approaches.

MNIST Twitter KDD MIT-BIH

Accuracy F1-Score Recall Accuracy F1-Score Recall Accuracy F1-Score Recall Accuracy F1-Score Recall

Base

HybridMTD 98.75% 98.73% 98.73% 66.1% 61.72% 61.16% 99.82% 99.81% 99.82% 98.54% 98.50% 98.55%

MTD 98.75% 98.73% 98.73% 66.1% 61.72% 61.16% 99.82% 99.81% 99.82% 98.54% 98.50% 98.55%

Single Model 98.28% 98.26% 98.27% 66.52% 66.24% 66.27% 99.88% 99.86% 99.88% 97.28% 96.87% 97.28%

FGSM

HybridMTD 98.69% 98.68% 98.68% 22.18% 19.42% 20.50% 96.43% 97.74% 96.44% 98.32% 98.27% 98.33%

MTD 97.1% 97.14% 97.16% 21.36% 17.09% 19.56% 57.4% 60.35% 57.41% 97.19% 97.12% 97.19%

Single Model 98.16% 98.14% 98.14% 19.72% 19.45% 19.43% 41.42% 41.41% 41.43% 91.29% 91.37% 91.29%

BIM

HybridMTD 98.37% 98.36% 98.34% 21.02% 17.41% 19.14% 99.28% 99.39% 99.29% 98.37% 98.29% 98.38%

MTD 98.2% 98.18% 98.18% 20.38% 16.87% 18.43% 54.71% 56.31% 54.72% 95.73% 95.78% 95.73%

Single Model 98% 97.99% 98.00% 15.19% 13.48% 15.01% 18.38% 10.59% 18.38% 91.62% 91.68% 91.62%

JSMA

HybridMTD 94.93% 94.97% 94.92% 47.71% 46.61% 47.29% 59.06% 62.40% 59.07% 84.59% 85.17% 84.60%

MTD 74.63% 74.86% 74.66% 37.39% 35.93% 36.16% 35.94% 36.02% 35.94% 67.13% 71.53% 67.13%

Single Model 0.26% 0.26% 0.26% 16.59% 16.28% 16.32% 6.9% 8.84% 6.90% 59.85% 68.45% 59.86%

C&W

HybridMTD 85.03% 86.8% 85% 35.54% 25.29% 35.88% 97.15% 96.96% 97.16% 68.22% 69.40% 68.22%

MTD 78.15% 81.44% 77.91% 33.8% 24.15% 33.82% 79.95% 78.49% 79.93% 50.52% 59.17% 50.52%

Single Model 78.92% 80.28% 78.65% 31.17% 17.45% 31.02% 11.83% 6.11% 11.83% 52.1% 58.86% 52.10%

Transferability

HybridMTD 97.74% 97.70% 97.67% 34.53% 19.37% 34.34% 99.84% 99.83% 99.84% 98.64% 98.58% 98.64%

MTD 96.49% 96.46% 96.41% 33.21% 16.69% 33.35% 43.14% 44.03% 43.12% 97.55% 97.34% 97.56%

Single Model 98.21% 98.20% 98.19% 17.76% 16.28% 17.21% 19.55% 10.71% 19.55% 71.79% 74.64% 71.79%

label Flipping

HybridMTD 97.54% 97.52% 97.51% 63.1% 59.27% 59.02% 99.7% 99.69% 99.71% 93.62% 95.51% 93.63%

MTD 91.83% 91.64% 91.64% 33.87% 16.87% 33.33% 98.73% 98.46% 98.73% 61.35% 72.88% 61.36%

Single Model 73% 70.56% 73.13% 35.96% 34.87% 35.54% 99.52% 99.42% 99.52% 50.81% 64.05% 50.81%

Feature Collision

HybridMTD 98.98% 98.98% 98.97% 64.75% 61.25% 60.68% 99.53% 99.51% 99.54% 96.65% 96.51% 96.65%

MTD 96.55% 96.53% 96.53% 54.7% 47.49% 48.32% 97.41% 96.55% 97.42% 90.01% 89.32% 90.02%

Single Model 98.88% 98.86% 98.86% 61.8% 60.50% 61.43% 99.83% 99.84% 99.83% 86.99% 85.66% 86.99%

ficiency of our approach.
In a study using the KDD dataset with a DoS

attack, another paper [16] reported an accuracy in-
crease from 50% to around 90%. In contrast, our

HybridMTD strategy consistently showed higher re-
silience and performance across different datasets and
attack types. For example, on the KDD dataset, Hy-
bridMTD maintained accuracy above 96% against

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

80



most attacks, achieving an accuracy of 98.64%
against the transferability attack.

5.2 Implications for Practice and
Limitations

Our framework demonstrates significant resilience
against various types of attacks, particularly poison-
ing attacks. In scenarios where the majority of models
are not poisoned, which we consider a more realistic
scenario, the final evaluation based on majority vot-
ing of ensemble models ensures robust performance.
This approach effectively mitigates the impact of poi-
soning attacks, maintaining high accuracy.

For evasion attacks, the framework performs well
as long as the adversarial examples do not drasti-
cally degrade the performance of most models. When
adversarial examples are strong enough to affect all
models, we still observe an increase in accuracy,
but this may not always qualify as an effective de-
fense, particularly in the case of the Twitter senti-
ment dataset. Performance on this dataset was com-
paratively lower than on other datasets, because even
adversarial examples crafted for specific models of-
ten had a broader impact, reducing the accuracy of
most models in the pool. As a result, when select-
ing a subset of models from the pool, many mod-
els are already affected by these adversarial exam-
ples, leading to good performance overall but not as
robust as observed with the other datasets. Twitter
sentiment is complex and highly susceptible to per-
formance degradation. This complexity arises from
the linguistic nuances, variability in sentiment expres-
sion, and context ambiguity inherent in textual data.
These factors make it easier for adversarial attacks to
significantly and easily reduce accuracy, as small per-
turbations can lead to misclassification in sentiment
analysis.

Additionally, our approach outperformed the
MTD approach without using ensemble models in all
tested scenarios. This demonstrates that integrating
ensemble models with MTD enhances robustness and
significantly improves overall performance. This suc-
cess suggests that our HybridMTD framework could
serve as a substantial improvement over traditional
MTD approaches, making it a more reliable and ef-
fective defense strategy in practical applications.

However, this enhanced performance comes with
a tradeoff: increased training time. The need to train
multiple models and the additional computation re-
quired for dynamic model selection during testing can
result in longer processing times. Despite this, the im-
provement in robustness and accuracy justifies the ad-
ditional cost. In environments where security and re-

liability are critical, the benefits of maintaining high
accuracy and resilience against attacks outweigh the
increased computational demands, making this ap-
proach a valuable investment.

In practice, this implies that our HybridMTD
framework can be particularly effective in environ-
ments where poisoning attacks are a significant con-
cern and where the diversity and strength of adversar-
ial attacks vary. The combination of MTD and ensem-
ble models offers a versatile defense strategy capable
of adapting to different attack scenarios.

5.2.1 Factors Influencing Defense Effectiveness

The effectiveness of the HybridMTD strategy de-
pends on several factors. Key among them is the di-
versity of models in the pool, as similar architectures
may share vulnerabilities. The quality of training
data is also critical, as incomplete or biased datasets
can limit robustness. Additionally, the frequency
of model updates impacts adaptability to evolving
threats, while sufficient randomness in model selec-
tion ensures unpredictability. Addressing these fac-
tors enhances both the robustness and efficiency of
the defense mechanism.

5.2.2 Computational Costs

The HybridMTD strategy incurs higher computa-
tional costs compared to simpler defense methods due
to the need for training multiple models and dynam-
ically forming ensembles during inference. These
costs, however, are justified by the significant im-
provements in robustness and security against adver-
sarial attacks. The extent of this overhead depends
on the deployment scenario: for models pre-trained
and distributed across applications, the training cost is
incurred only once, whereas node-specific retraining
significantly increases expenses. Future work could
explore optimizations such as model pruning, dis-
tributed training, or transfer learning to reduce both
training and inference costs. Balancing robustness
with resource efficiency is critical for deploying this
approach in resource-constrained environments.

5.3 Future Work

In future work, we plan to further investigate the ob-
served discrepancy where the Single model demon-
strates better resilience to attacks compared to MTD
in certain instances. Specifically, cases such as FGSM
on the MNIST dataset and Label Flipping on the KDD
dataset suggest that the Single model achieves accu-
racy levels closer to HybridMTD than MTD without
ensemble models under some attack scenarios, even
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though these differences in resilience are not substan-
tial. A deeper exploration into the factors contribut-
ing to this resilience in the Single model, as well as
the trade-offs between Single and MTD without us-
ing ensemble models in different attack environments,
would provide valuable insights for optimizing de-
fense strategies across various adversarial contexts.

Additionally, future work could involve investi-
gating scenarios where the attacker has enhanced ca-
pabilities. For evasion attacks, this could include cre-
ating adversarial examples based on knowledge of
a greater number of model architectures within the
pool, and for poisoning attacks, it could involve gain-
ing access to compromise a larger number of models.
Although this assumes a level of access and knowl-
edge that is unrealistic in real-world scenarios, explor-
ing these worst-case conditions would allow us to un-
derstand the robustness of different defense strategies
under maximum adversarial pressure, further inform-
ing the development of resilient frameworks.

6 CONCLUSION

In this study, we aimed to assess the effectiveness
of HybridMTD, a novel defense strategy that com-
bines Moving Target Defense with ensemble neural
network models, against a wide range of adversarial
attacks. Our extensive experiments across four dif-
ferent datasets—MNIST (image), Twitter Sentiment
(text), KDD (tabular), and MIT-BIH (signals)—and
seven sophisticated attack types, including both eva-
sion and poisoning attacks, have demonstrated the ro-
bustness and resilience of HybridMTD.

The results indicate that HybridMTD significantly
outperforms the traditional MTD approach and con-
ventional single-model methods, maintaining high ac-
curacy and robustness. By leveraging the dynamic se-
lection of a subset of models from a diverse pool and
employing majority voting, HybridMTD increases
the unpredictability of the defense mechanism, mak-
ing it more challenging for adversaries to execute
their attacks successfully. HybridMTD worked ex-
ceptionally well for poisoning attacks, maintaining
high performance when most models were not com-
promised. For evasion attacks, HybridMTD demon-
strated robust performance, particularly when adver-
sarial examples did not severely degrade the perfor-
mance of most models. Overall, in all scenarios, we
observed a substantial increase in performance, con-
firming HybridMTD’s effectiveness as a comprehen-
sive defense strategy.
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