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Abstract: Quantum key distribution (QKD) is a secure protocol for exchanging a secret key that is based on the principles
of quantum physics and fulfills information-theoretical security requirements. The first QKD protocol, BB84,
was proposed in 1984. Bit information is sent via four types of quantum states, combining two types of the
bits and bases in BB84. However, half of the bits are discarded after the basis information is exchanged since
a sender and receiver select a basis equally likely. Lo et al. (J. Cryptol.’05) proposed Efficient BB84, in which
basis selection is biased to improve the efficiency. The biased basis selection increases the probability that
the selected bases match, which results in fewer bits being discarded. This letter describes an attack method
against Efficient BB84 that exploits the bias in basis selection and analyzes the security of the method. An
eavesdropper intercepts the first part of the quantum states, performs measurements in the basis with high
selection probability, and obtains bit information without being detected. We then evaluate the extent to which
the obtained bit information compromises the security of the secret key.

1 INTRODUCTION

1.1 Background

Encryption algorithms are essential to ensure the con-
fidentiality of messages for secure communication. A
sender and receiver need to exchange a secret key
to encrypt messages. Key exchange protocols based
on public-key cryptography, such as RSA and Diffie–
Hellman, are widely used. These protocols are based
on computationally secure mathematical problems,
whereas in the field of quantum computing, a quan-
tum algorithm called Shor’s algorithm (Shor, 1994)
was proposed. Shor’s algorithm overcomes these
mathematical problems, which means that with the
development of quantum computers, there is a risk
that the currently used protocols for secret key ex-
change will be compromised.

Several solutions have been proposed to address
this risk. One promising solution is quantum key dis-
tribution (QKD). QKD is a secure protocol for ex-
changing a secret key that is based on the principles of
quantum physics and provides information-theoretic
security, not computational security. The best-known
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QKD protocol is BB84, which was proposed by Ben-
nett and Brassard (Bennett and Brassard, 1984) in
1984. Four types of quantum states are used, com-
bining two types of the transmission bits and trans-
mission bases in BB84. A sender (Alice) firstly sends
the quantum states calculated from one randomly se-
lected bit and basis to a receiver (Bob). Bob randomly
selects one of two measurement bases and measures
the received quantum states. Alice and Bob publicly
exchange information about the selected bases and
discard bits for which the selected bases do not match.
Alice and Bob compare a subset of the remaining
bits and calculate the quantum bit error rate (QBER),
which is used to detect an eavesdropper (Eve). If the
QBER exceeds the threshold, the protocol is initiated.
Otherwise, Alice and Bob perform the key distillation
process to correct bit errors and remove leaked infor-
mation and share a secret key.

The basis selection method provides the same
probability of being selected for both bases and the
probability that the bases match is 1/2. The method is
inefficient due to half of the bits being discarded. An
efficient version of BB84 (Efficient BB84) was pro-
posed by Lo, Chau, and Ardehali (Lo et al., 2005).
Alice and Bob do not select each basis equally, which
biases the selection probability in Efficient BB84. In
other words, there are a basis with low selection prob-
ability (minority basis) and a basis with high selection
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probability (majority basis). Fewer bits are discarded
by increasing the probability that the bases match,
which results in higher efficiency. Lo et al. also in-
troduced a refined calculation method for the QBER
in line with the basis selection bias. Alice and Bob
calculate the QBER for each basis, not for both bases
together. The calculation method for the QBER pre-
vents an intercept-and-resend (I-R) attack, in which
Eve intercepts quantum states from Alice, measures
them, and resends the same quantum states to Bob
as the measurement results. The interception of all
quantum states that is measured only in the majority
basis is detected by increasing the QBER on the mi-
nority basis. However, the above mentioned method
is applicable to the case of intercepting all quantum
states and the case of intercepting only a portion of
the quantum states is not considered. The greater the
bias in basis selection, the smaller the probability that
both Alice and Bob select the minority basis. Eve is
therefore able to intercept quantum states without be-
ing detected if she attacks only a part of them.

1.2 Contribution

This letter considers a variant of the I-R attack using
only the majority basis, in which Eve intercepts only a
part of the quantum states, particularly the initial part.
We firstly calculate the probability that the attack is
detected, (i.e., the probability of increasing the QBER
on the minority basis). We estimate the number of bits
until the first detection on the basis of the calculated
probability and the properties of the geometric distri-
bution. The estimated value is the number of bits to
intercept. We then calculate the proportion of the suc-
cessful attack among the intercepted bits and estimate
the number of correctly intercepted bits. The attack
succeeds if Eve guesses the correct basis and receives
the same bits as Alice and Bob. We finally evaluate
the impact on the security of the secret key via the
acquired bits corresponding to the value of the bias.
Since the bits, including the bits we did not obtain in
our attack, are randomized in the key distillation pro-
cess, we do not obtain the bit sequence of the secret
key itself. Instead, we discuss the extent to which the
obtained bits affect the security of the secret key, par-
ticularly its entropy.

1.3 Related Works

We review some basic attacks against BB84.
A simple attack is I-R attack (Bennett and Bras-

sard, 1984) mentioned above. Fake-State (F-S) attack
(Makarov and Hjelme, 2005) is a variant of I-R at-
tack, which exploits the weakness of Bob’s detector.

Figure 1: Our Attack Model.

F-S attack utilizes quantum states that are detected by
the Bob in a manner controlled by Eve, instead of the
quantum states that were intercepted and measured.

Photon number splitting (PNS) attack (Huttner
et al., 1995; Brassard et al., 2000; Lütkenhaus, 2000)
uses the existence of the quantum states with multi-
photon such as weak coherent states, not single-
photon. Eve firstly intercepts the quantum states from
Alice, blocks them in the case of single photons, and
in the case of multiple photons, splits off one pho-
ton and sends the rest to Bob. Eve then acquires the
bit information by obtaining the basis information ex-
changed between Alice and Bob and measuring in the
same basis.

2 ATTACK MODEL

We denote the minority basis as X , the majority ba-
sis as Z, the selection probability of the X basis as
PX , and the selection probability of the Z basis as
PZ . Owing to the bias in basis selection, we set
PX = p (0 < p ≤ 1/2) and PZ = 1− p.

An overview of our attack model is shown in Fig-
ure 1. Intuitively, we take advantage of the fact that
the Z basis is chosen more often because of the basis
selection bias. Eve intercepts quantum states from Al-
ice, measures them in the Z basis selected with prob-
ability 1, and resends the same quantum states to Bob
as the measurement results. The quantum states sent
by Alice are the eigenstates of the X basis or Z ba-
sis depending on the probabilities PX and PZ , whereas
the quantum states received by Bob are the eigen-
states of the Z basis resent by Eve. If our attack fails
(i.e., the QBER calculated by Alice and Bob exceeds
the threshold), the information for the key distillation
process is not exchanged over classical communica-
tion and the protocol is restarted from the beginning.
Eve is therefore able to confirm whether the attack
has been successful or failed. If the attack fails, it is
repeated on the protocol that is restarted.
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3 SECURITY ANALYSIS

This section evaluates the entropy loss of the secret
key due to our proposed attack. We firstly calculate
the probability that our attack is detected for our at-
tack model. The detection of our attack occurs in the
case in which both Alice and Bob select the X basis,
whose measured bits differ. Since the probability that
both Alice and Bob select the X basis is p2 and the
probability that their measured bits differ is 1/2, the
detection probability is p2/2. The average number of
eavesdropping bits until our attack is first detected is
2/p2 − 1 bits when Eve implements our attack from
the first quantum state by utilizing the expected value
of the geometric distribution. Eve thus obtains the
first 2/p2 −1 bits without being detected.

We then calculate the proportion of the success-
ful attack among 2/p2 −1 bits. The successful attack
occurs in the case in which under the condition that
our attack is not detected, the basis chosen by both
Alice and Bob is either the X basis or Z basis and the
measured bits of Alice, Bob, and Eve are all the same.
The probability that both Alice and Bob select the X
basis is p2, and in this case, the probability that the
measured bits of Alice, Bob, and Eve are all the same
is 1/4. The probability that both Alice and Bob select
the Z basis is (1− p)2, and in this case, the probabil-
ity that the measured bits of Alice, Bob, and Eve are
all the same is 1. Since the probability of not being
detected is 1− p2/2, the proportion of the successful
attack is

p2 × 1
4 +(1− p)2 ×1

1− p2

2

=
5p2 −8p+4
−2p2 +4

.

Thus, the number of bits that are successfully attacked
among 2/p2 −1 bits is(

2
p2 −1

)
× 5p2 −8p+4

−2p2 +4

=
5p4 −8p3 −6p2 +16p−8

2p4 −4p2 .

The above mentioned value is the number of bits
after exchanging the information of the selected ba-
sis. Although the randomization of bits in the key
distillation process does not allow for obtaining the
bit sequence of the secret key, it is possible to evalu-
ate the entropy loss of the secret key. Some bits are
discarded in the QBER calculation process and key
distillation process to obtain a secret key. We assume
that half of the bits are consumed in the QBER cal-
culation process and 2H2(QBER) proportion of bits
in the key distillation process for the sake of simplic-
ity. H2 represents the binary entropy function, where
H2(x) = −x log2(x)− (1− x) log2(1− x). Our attack

Figure 2: Entropy Loss of Secret Key.

increases the QBER only in the case in which both Al-
ice and Bob choose the minority basis and their mea-
sured bits differ. We consider the influence of channel
noise and assume that QBER = 0.03 holds. There-
fore, the number of secret key bits whose entropy de-
creases due to our attack is
5p4 −8p3 −6p2 +16p−8

2p4 −4p2 ×0.5× (1−2H2(0.03))

=
5p4 −8p3 −6p2 +16p−8

2p4 −4p2 ×0.3056.

The entropy loss of the secret key corresponding to
the biased probability p is shown in Figure 2.

The entropy loss of the secret key increases when
the value of p is reduced to improve the efficiency
from Figure 2. This result means that the bias in basis
selection affects the security of the secret key.

4 DISCUSSION

We discuss the validity of the number of intercepted
bits from the beginning. If our attack is successful,
we obtain the number of intercepted bits. Otherwise,
we do not obtain any bits. Let the number of inter-
cepted bits be n. Since the attack success probability
is (1− p2/2)n, the expected value of the obtained bits
is n(1 − p2/2)n. The expected value is maximized
by nmax = −1/ ln(1 − p2/2). Because we compare
the relationship between the values of (2/p2 −1) and
nmax, we show that the following inequality holds

− 1

ln(1− p2

2 )
−1 <

2
p2 −1 <− 1

ln(1− p2

2 )
.

Since ln(1 − p2/2) < 0 and 2/p2 > 0 hold for
0 < p ≤ 1/2, the left side of the above inequality is
transformed to

p2 <−2ln
(

1− p2

2

)
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and the right side is transformed to

−(2− p2) ln
(

1− p2

2

)
< p2.

We firstly show p2 <−2ln(1− p2/2) and set

f (p) =−2ln
(

1− p2

2

)
− p2.

We have f (p) > f (0) = 0 i.e. p2 < −2ln(1− p2/2)
holds since

f ′(p) =
2p3

2− p2 > 0

holds.
We next show −(2− p2) ln(1− p2/2)< p2 and set

g(p) = p2 +(2− p2) ln
(

1− p2

2

)
.

We have g(p) > g(0) = 0 i.e. −(2 − p2) ln(1 −
p2/2)< p2 holds since

g′(p) =−2p ln
(

1− p2

2

)
> 0

holds.
Therefore, the number of intercepted bits (2/p2 −

1) is suppressed from above and below nmax and
nmax−1. The equation shows that our attack is almost
optimal in terms of the number of the intercepted bits.

We then present two countermeasures against our
attack. The first countermeasure is to reduce the bias
in basis selection. The entropy loss of the secret key is
reduced by reducing the basis selection bias as shown
in Figure 2. The second countermeasure is to store
the shared bits over a long period of time and combine
these bits that are shared at different times to gener-
ate the secret key. Adding one-way functions to key
generation increases its effectiveness.

5 CONCLUSIONS

This letter proposed an attack method that exploits the
bias in basis selection against Efficient BB84 and per-
formed a security evaluation of the entropy loss of the
secret key. We firstly calculated the probability of
detection and estimated the number of bits to attack
from the beginning for the I-R attack that intercepts
quantum states and measures only in the majority ba-
sis. We then calculated the number of bits for which
we correctly obtained bit information within the esti-
mated bits. We finally evaluated the contribution of
the obtained bit information to the entropy loss of the
secret key.

Decoy states (Hwang, 2003) were proposed to
protect against PNS attack. Decoy states prevent the
PNS attack by detecting changes in the photon num-
ber distribution caused by eavesdropping. Since our
attack involves the partial interception of quantum
states, the effect of introducing decoy states needs to
be discussed in detail, which we will consider in fu-
ture work.
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