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Abstract: Brain tumour resection yields many challenges for neurosurgeons and even though histopathological analysis 

can help to complete tumour elimination, it is not feasible due to the extent of time and tissue demand for 

margin inspection. This paper presents a novel attention-based self-supervised methodology to improve 

current research on medical hyperspectral imaging as a tool for computer-aided diagnosis. We designed a 

novel architecture comprising the U-Net++ and the attention mechanism on the spectral domain, trained in a 

self-supervised framework to exploit contrastive learning capabilities and overcome dataset size problems 

arising in medical scenarios. We operated fifteen hyperspectral images from the publicly available HELICoiD 

dataset. Enhanced by extensive data augmentation, transfer-learning and self-supervision, we measured 

accuracy, specificity and recall values above 90% in the automatic end-to-end segmentation of intraoperative 

glioblastoma hyperspectral images. We evaluated our outcomes with the ground truths produced by the 

HELICoiD project, obtaining results that are comparable concerning the gold-standard procedure. 

1 INTRODUCTION 

Brain and Central Nervous System (CNS) cancers are 

ranked in the 12th position in terms of mortality, 

concerning both genders, with 248,500 deaths 

worldwide in 2022, according to the International 

Agency for Research on Cancer (IARC) of the World 
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Health Organization (WHO) (Bray et al., 2024). 

Particularly, brain tumours represent the most 

common CNS cancer type (Bray et al., 2024). The 

WHO classifies such tumours into four grades (Louis 

et al., 2021) and glioblastoma (GB - Grade 4) is the 

deadliest one, with an age-standardized 5-year 
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survival rate in the 2010-2014 period of 4% to 17% 

(Girardi et al., 2023).  

Currently, the standard treatment for GB tumours 

is surgery, followed by radiotherapy or 

chemotherapy. To achieve maximal tumour 

resection, neurosurgeons use several intraoperative 

tools (Fabelo et al., 2016, 2018; Florimbi et al., 2020) 

which, nevertheless, exhibit several constraints, 

mainly cost and time, and also do not precisely 

outline tumour borders (Halicek et al., 2019).  

Hyperspectral Imaging (HSI) is a non-invasive, 

non-ionizing and label-free technique (Torti et al., 

2023), that is becoming more popular in the context 

of cancer detection thanks to recent technological 

advances (Kumar et al., 2021; Lu et al., 2014). 

Moreover, several studies highlighted that tumour 

cells present a unique molecular spectral signature 

and reflectance characteristics (Florimbi et al., 2020; 

Leon et al., 2021).  

During the last decade, Machine and Deep 

Learning (ML, DL) solutions emerged as innovative 

tools to examine and cluster different cancer types 

using HSI (Collins et al., 2021; Jansen-Winkeln et al., 

2021; La Salvia et al., 2023; Salvia et al., 2022). 

Concerning intraoperative GB segmentation of HS 

images, this research mainly emerged within the 

European project HELICoiD (HypErspectraL 

Imaging Cancer Detection) (Fabelo et al., 2016). 

Here, an in vivo human brain HS database was 

created and several ML and basic DL pipelines were 

developed (Florimbi et al., 2020). In this field, the 

main challenge is retrieving a target ground truth to 

supervise ML algorithms, as physicians can only 

partially identify the tumour and its boundaries when 

performing a diagnosis (Fabelo et al., 2019). 

Therefore, HELICoiD-based ML studies comprised 

supervised and unsupervised algorithms to overcome 

this problem and perform automatic segmentation of 

intraoperative-captured HS images. 

Lately, self-supervised learning (SSL) is emerging 

as a framework to operate small-sized datasets with 

limited labelling (Wang et al., 2022; Yue et al., 2022; 

Zhu et al., 2022). SSL algorithms work by distilling 

representative characteristics from unlabelled and 

unstructured data, learning shared and separate 

features in a contrastive manner, surpassing supervised 

architectures on many domains (Wang et al., 2022).  

To the best of the authors' knowledge, no prior 

work exists concerning medical brain tumour HS 

images and SSL. Hence, here we propose a novel self-

supervised deep learning architecture, an attention-

based U-Net++, as a proof-of-concept to perform the  

automatic end-to-end segmentation of fifteen 

intraoperative GB HS images retained from the 

HELICoiD database (Fabelo et al., 2019). 

 

 

Figure 1: Taxonomy of intraoperative GB segmentation 

ground truth derived by manually correcting HELICoiD 

results to smoothen the borders. 

2 MATERIALS AND METHODS 

2.1 In-Vivo HS Human Brain Dataset 
and Pre-Processing 

We operated 27 GB HS images derived from the 

HELICoiD database (Fabelo et al., 2016; Florimbi et 

al., 2020). Data was captured using an intraoperative 

HS acquisition system at The University Hospital 

Doctor Negrin of Las Palmas de Gran Canaria (Spain) 

(Fabelo et al., 2018). The Comité Ético de 

Investigación Clínica-Comité de Ética en la 

Investigación (CEIC/CEI) of the University Hospital 

Doctor Negrin approved the study and the informed 

consent was signed by all participating patients. 

Physicians labeled each spatial pixel according to 

the taxonomy proposed in Fig. 1, employing a semi-

automatic labelling tool based on the Spectral Angle 

Mapper (SAM) method (Fabelo et al., 2019). In this 

way, a ground-truth map was generated for each HS 

image, where the neurosurgeon selected reference 

pixels from normal, tumor, hypervascularized and 

background classes. Therefore, the SAM algorithm 

clustered pixels that resulted similar to the reference 

spectral signatures. The tumor tissue class was 

assessed by histopathology.  

The HELICoiD ML framework starts by pre-

processing the raw HS images captured by the 

intraoperative HS acquisition system and ends by 

generating a four-color thematic map after 

performing supervised and unsupervised 

classification (Fig. 2).  

The pre-processing chain applied to the HS image 

is detailed in (Florimbi et al., 2020), reducing the 

 

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

634



 

Figure 2: Data preparation, STEGO framework, training and inference resulting from SSL: the raw in-vivo HS images are 

pre-processed (Florimbi et al., 2020) and cropped for homogeneity reasons. In addition, in section a), the SAM labelling is 

performed only once during the Helicoid framework training to derive the resulting images shown on the right. These, the 

pre-processed and the cropped images represent the input to the STEGO framework, in b), employed for segmentation 

purposes using supervised learning with U-Net++ backbone network. c) presents the three unsupervised loss functions 

adopted in the training phase and how they are combined, while d) details the inference process, using SSL through the 

definition of a hybrid network obtained combining the outputs of the parallel execution of U-Net++ and ViT. 

instrumentation noise and limiting the curse of data 

dimensionality. After preprocessing, HS images 

featured 128 spectral bands and cropped to equal 

spatial dimensions. The raw HS images were 

calibrated for dark noise correction, using a dark and 

a white reference (Fabelo et al., 2016; Florimbi et al., 

2020). Moreover, the extreme noisy bands were 

removed due to the low performance of the sensor, 

obtaining an HS cube of 645 spectral bands. After 

that, to avoid redundant information, the HS cube was 

decimated to 128 spectral bands and normalized 

between 0 and 1. 

2.2 Data Partitioning 

The dataset employed is composed of 27 images 

partitioned at patient-level and divided in 3 subsets: 

15 images together with their ground-truths are used 

for the supervised training, 11 (without ground-

truths) for the unsupervised training and 1 for test.  

Each image has been resized to obtain a spatial 

dimension of 198x198; in this way, computational 

performance is optimized by evaluating images of the 

same dimensions. 

2.3 Attention-Based U-Net++,  
Self-Supervised STEGO 
Framework and Segmentation 
Vision Transformer 

Here, we propose a novel DL architecture, namely the 

attention-based U-Net++, comprising the attention 

mechanism along the spectral dimension and the 

well-known U-Net++ architecture along the spatial 

frame. In recent years, transformer-based 

architectures have proven themself worthy of 

investigation in vision contexts (Shamshad et al., 

2023).  

Following data preparation, we used the attention-

based U-Net++ inside the STEGO (Self-supervised 

Transformer with Energy-based Graph 

Optimization), a novel framework that distils 

unsupervised features into high-quality discrete 

semantic labels (Hamilton et al., 2022). We carefully 

modified the algorithmic structure, developed from 

scratch in MATLAB 2022a (MathWorks, CA, USA), 

to receive the GB HS images as input. It extracts the 

features from the backbone architecture, the U-Net++ 

path, and later retains the segmentation results 
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corresponding to the selected image characteristics 

(Fig. 2-b). After that, by adopting a contrastive 

learning methodology, the network can learn feature 

correspondences in an unsupervised fashion. In fact, 

the STEGO core yields a novel contrastive loss 

function (Fig. 2-b) designed to encourage features to 

form compact clusters while preserving their 

relationships across the entire dataset (Hamilton et al., 

2022). In the STEGO framework, the 15 images with 

their ground truth have been used for training. 

Successively, an unsupervised training has been 

performed on the 11 HSI images without ground truth 

to derive the loss function. In this phase, the resulting 

loss is the summation of the loss output contributions 

obtained from the KNN, self and Random loss 

functions (Fig. 2-c). 

The last step is the inference, where we modified 

the U-Net++ standard architecture, designing an 

additional parallel path to analyse the spectral 

signatures of the HS image after a first pooling step, 

set to reduce the networks' parameters (Fig. 2-d). 

Hence, we merged the attention-based neural path 

and the U-Net++, averaging their outcomes. More 

specifically, we implemented a combination of U-

Net++ and a completely trainable vision transformer 

(ViT), used to improve the backbone network’s 

predictions (Fig. 2-d). Here, the self-supervised 

learning to calculate the loss function extracts 

features from both the U-Net++ backbone network 

(invariant throughout the training phase, allowing to 

obtain coherent characteristics even from diverse 

images) and the segmentation, represented by the 

entire hybrid network (Hamilton et al., 2022). In such 

an application, the segmentation part keeps 

parameters fixed only in the first step of the training 

so that both networks can run in parallel without 

affecting the previous training done with tagged 

images. In this phase, the 15 ground-truth maps and 

their corresponding HS images have been used (as 

well as inputs to the STEGO framework). 

The networks were trained using a desktop PC 

with Windows 10 SO and Intel processor Core i9-

9900X with 3.5 GHz, 128 GB RAM DDR4 with 2667 

MHz working frequency, 2 NVIDIA GPUs GeForce 

RTX 2080, each with 8 GB of dedicated memory. 

Fifteen images were employed for both STEGO 

framework and inference, with dimensions of 

198×198 pixels × 128 bands, because they showed 

both ground-truth for all the classes and were 

conformant with the synthetic RGB image. The 

HELICoiD framework results were processed by 

deleting wrong point classifications to smoothen the 

areas. 11 additional HS images with the same 

dimensions but without their ground truths have been 

used for the unsupervised training, thus leaving one 

image to test the entire method. 

Since the available data (especially in terms of 

pixels) is not sufficient to allow for a purely supervised 

approach, data augmentation through the application of 

an augmenter function has been done to perform 

transformations able to generate additional images. In 

particular, spectral noise, global salt and pepper noise, 

affine transformations and spectral bands substitutions, 

as well as their options management, were applied. In 

this way, for each image a series of configurations are 

provided together with their occurrence probability, 

thus increasing data variability.  

Due to the different spatial dimensions between 

the images in the database, a sub portion has been 

selected as a trade-off between the amount of 

information and hardware constraints. In the UNet++ 

architecture, a series of convolutions is performed: 

the first has 128 filters, while successive blocks 

employ, respectively, 64, 128, 256, 512 and 1024 

convolutions. These are followed by an oversampling 

that brings back the original spatial dimensions, with 

the number of filters kept constant while their 

execution order is inverted, and the last convolutional 

layer has the same number of filters as the final 

number of classes in the image, that is 4.  

The drop out layer has always the same 

probability value of 0.5 and the final part of the 

network, represented by the combination of softmax 

and classification layers. 

The first sampling layer of ViT employs an 8×8 

window, further changing spatial dimensions to 24×24, 

while patches are extracted through a 1×1 window to 

select single spectral signatures forcing the network to 

focus on the spectral dimension. Such patches are then 

projected to have an embedded dimension of 256 

(twice the initial number of bands). Four transformer 

encoding blocks were used with 8 heads by the 

attention layer, whereas the MLP layer projects data 

with double their dimensions, hence returning, as 

output, the same dimensions of the input. Lastly, all 

drop out layers have 0.4 as probability value. 

3 RESULTS AND DISCUSSION 

We evaluated the outcomes both quantitatively (as 

shown in Fig. 3) and qualitatively concerning the 

results retrieved from the HELICoiD dataset, since it 

represents the safest and most honest way of 

performance assessment. Fig. 3 exhibits the set of 

evaluation metrics considered in this study.  

Qualitatively, concerning the hypervascularized 

tissue, the self-supervised architecture proposed in 
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this study can precisely outline this class. In addition, 

although the attention-based U-Net++ retains suitable 

specificity, recall and accuracy concerning the 

tumour class, it yields improvable results for the 

normal class. In fact, even though data augmentation 

has been performed, the explanation of this 

performance is due to the still small number of images 

available, resulting in the architecture misclassifying 

the background, or wrongly detecting normal 

signatures as malignant ones. This issue will be 

solved without changing the model architecture when 

a bigger dataset is conceived.  

Furthermore, we measured competitive inference 

times compared to the standard CUDA environment 

offered by MATLAB 2022a, hence without a custom 

implementation, concerning the HELICoiD 

processing times. HELICoiD’s fastest parallel and 

best optimized version took 1.68 s to elaborate the 

largest image of the database employing a GPU 

(Florimbi et al., 2020), whilst our methodology 

performs segmentation inference in 6.73 ± 2.58 s, 

thoroughly satisfying the real-time constraint 

imposed by the intraoperative HS acquisition system 

used in the HELICoiD project, which acquired the 

images in less than 80 s (Fabelo et al., 2018). 

In the case of the hybrid network (combination of 

ViT and U-Net++), a first training has been 

performed to obtain baseline values, followed by the 

self-supervised framework. The first part is divided 

into four steps:  

1. U-Net++ and ViT pre-training,  

2. supervised training, through the adoption of the 

STEGO framework, of the single nets for 

segmentation purposes,  

3. tumours’ segmentation by training of all 

networks (through substitution of the last layer 

with a weighted classification one to discriminate 

the error contribution among all classes of the 

entire dataset) and loss function calculus through 

unsupervised learning combining the 

contributions of KNN, self and random loss 

functions,  

4. self-supervised training of the attention-based U-

Net++.  

 

Performance of the trained network has been 

evaluated on the entire dataset of 27 images through 

self-supervised learning and compared to statistical 

metrics derived from the confusion matrix (Fig. 4): 

accuracy, precision, recall, DICE similarity 

coefficient, F1 score, Intersection over Union (IoU) 

and ROC’s Area Under Curve (AUC). 

4 CONCLUSIONS 

In this work we investigated a novel DL methodology 

targeting the end-to-end semantic segmentation of 

hyperspectral images belonging to the HELICoiD 

 

 

Figure 3: Hybrid network segmentation results. 

Segmentation of Intraoperative Glioblastoma Hyperspectral Images Using Self-Supervised U-Net++

637



 

Figure 4: Example of the segmentation output for a test 

image undergoing self-supervised learning. The tumour is 

shown in red, while the background is in yellow. 

Hypervascularized tissue is in blue and normal tissue is in 

green. 

dataset. Namely, we researched a self-supervised 

algorithm to train an innovative segmentation 

architecture. The proposed methodology allows the 

end-to-end segmentation of such images, targeting 

real-time processing to be employed during open 

craniotomy in surgery.  

This innovative approach improves the gold-

standard HELICoiD pipeline and it offers competitive 

results in terms of classification. We measured 

competitive inference results for the identification of 

unhealthy tissue, namely exceeding 90% in 

specificity and recall. Nonetheless, the framework 

exhibits poor performance when the architecture 

classifies normal and background image portions as 

tumour.  

On the other hand, this is an open research topic 

which we aim to improve and clarify in further works. 

We believe the proposed SSL methodology could 

refine medical HS image segmentation, thus brushing 

up state of the art computer-aided diagnostic systems.  

A further improvement will be the evaluation of our 

approach considering broader datasets, including a 

higher number of images, potentially coming from 

different brain tumours, thus obtaining a general 

diagnostic tool. 

The proposed methodology could enhance 

medical hyperspectral research overcoming labelling 

and dataset size challenges. 
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