
Infrastructure as Code: Technology Review and Research Challenges

Claus Pahl1, Niyazi Gokberk Gunduz1, Övgüm Can Sezen1, Ali Ghamgosar1 and Nabil El Ioini2
1Free University of Bozen-Bolzano, 39100 Bolzano, Italy
2University of Nottingham, 43500 Semenyih, Malaysia

Keywords: Infrastructure as Code, IaC, DevOps, Defect, Smell, Pattern, Drift, Technology Review, Research Challenges.

Abstract: The quality of software management in infrastructure operations for application software is important as
automation in software operations continues to grow. Infrastructure as Code (IaC) refers to a systematic,
technology-supported approach to manage deployment infrastructure for software applications. Sample con-
texts are general software automation, but also cloud and edge and various software-defined networking ap-
plications. DevOps (development and operations) practices, which are already applied in the Infrastructure as
Code (IaC) context, need to be extended to cover the whole IaC life cycle from code generation to dynamic,
automated control. The ultimate objective would range from IaC generation to full self-adaptation of IaC code
in an automated setting. We review available IaC technologies based on a comprehensive comparison frame-
work to capture the state-of-the-art. We also introduce an IaC-specific DevOps process. This serves as a basis
to identify open research challenges. A discussion of defect categories is at the centre of this process.

1 INTRODUCTION

Software management depends on the quality of the
software operation within the chosen infrastructures.
These are also central concerns in the DevOps (De-
velopment and Operations) approach to software life-
cycle automation. The automation of these oper-
ations concerns is important for instance in cloud
and edge computing or software-defined networking.
Infrastructure-as-Code (IaC) is an approach that en-
ables the automation of deployments, configurations,
and management tasks. Tool support enable the cre-
ation, execution and management of secure, reliable,
and ideally self-healed IaC software. The DevOps ap-
proach plays a crucial role here. It is widely adopted
for managing software. When applied to the con-
text of IaC, DevOps practices must extend toward dy-
namic, automated control (Pahl et al., 2019). The
objective for an IaC lifecycle support in a DevOps
framework range from the generation of IaC code to
self-adaptation of IaC code at the end of the cycle.

Our contributions in this work are a comprehen-
sive review of the current state-of-the-art in IaC,
framed within a DevOps-specific IaC framework.
This review covers the following key areas:

• Technology Review: Development of a compari-
son framework and an analysis of key technolo-
gies. Central aspects include context, purpose,
language, and architecture.

• DevOps Framework for IaC: A specific lifecy-

cle tailored for IaC that builds on a general ap-
plication DevOps cycle, with an emphasis on IaC
quality management and defect handling.

• Research Challenges in the IaC Lifecycle: An
exploration of open concerns across the IaC life-
cycle, using the DevOps framework as a basis.

2 RELATED WORK

Infrastructure as Code (IaC) is an active area of re-
search, as a number of recent surveys demonstrate
(Quattrocchi and Tamburri, 2023; Alonso et al., 2023;
Kumara et al., 2021). More specifically, some tech-
nical contributions deal with different aspects of the
IaC lifecycle (Borovits et al., 2022; Quattrocchi and
Tamburri, 2022; Palma et al., 2022) with defects and
quality management at the centre of their investiga-
tion. For instance, (Borovits et al., 2022) address
the detection of inconsistencies as sources of possible
defects using machine learning techniques. (Palma
et al., 2022) investigate defect prediction in projects.
In (Quattrocchi and Tamburri, 2022), also defect pre-
diction is the focus. Quality management is a spe-
cific concern. Here, dedicated investigations into met-
rics catalogs exist (Palma et al., 2020). The recent
European research project PIACERE (Alonso et al.,
2023) aimed to cover the full IaC lifecycle from IaC
code generation to code analysis to deployment to
self-management of IaC solutions. It demonstrates

Pahl, C., Gunduz, N. G., Sezen, Ö. C., Ghamgosar, A. and El Ioini, N.
Infrastructure as Code: Technology Review and Research Challenges.
DOI: 10.5220/0013247700003950
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 151-158
ISBN: 978-989-758-747-4; ISSN: 2184-5042
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

151

the feasibility of comprehensive tool support for all
stages, but also indicates open challenges. Security
is emphasised as the central property in a DevSecOps
framework. In a special issue (Quattrocchi and Tam-
burri, 2023) on the IaC topic, the individual contri-
butions have addressed distributed deployment, lifey-
cle automation, maturity models and security as cur-
rent concerns. In (Aviv et al., 2023) Infrastructure
from Code (IfC – as opposed to IaC) is investigated.
Here, 14 cloud infrastructure procedures are identi-
fied in four categories. Links between Infrastruc-
ture as Code and software architecture conformance
are the topic in (Ozkaya, 2023). Software architec-
ture distinguishes modules as structural design con-
cerns from component and connector concerns that
focus on the behavioural side and allocation structures
for the required resources. The latter is automated
by IaC. Architecture compliance of deployments thus
needs to be a continuous process. Both (Karanjai
et al., 2023) and (Sokolowski et al., 2023) address
the decentralization of Infrastructure as Code, aim-
ing to take into account decentralised deployments
across teams. A crucial role play interfaces, which
can be declaratively specified to avail of other teams’
deployments. Declarativeness allows match-making
between the users’ wishes and the providers’ offers
in a continuous process. (Staron et al., 2023) review
research into IaC covering the full lifecycle. The im-
portance of the IaC language is noted. In the verifi-
cation and defect identification, particularly security
is singled out, and mechanisms such as security smell
detection are identified. Defect prediction is another
important research direction.

For large-scale distributed systems that need to
adapt to a changing environment, conducting a recon-
figuration is a challenging task (Chardet et al., 2021).
In particular, efficient reconfigurations require the co-
ordination of multiple tasks with complex dependen-
cies. We present Concerto, a model used to manage
the lifecycle of software components and coordinate
their reconfiguration operations. Concerto promotes
efficiency with a fine-grained representation of depen-
dencies and parallel execution of reconfiguration ac-
tions, both within components and between them.

3 TECHNOLOGY REVIEW

We will begin with the introduction of our framework
for classification by providing an explanation of the
dimensions and several aspects related to them. These
dimensions and their aspects will then be used for
the categorization of IaC tools on the market. Next,
we will present the results acquired after evaluating

the tools according to the aforementioned dimensions.
We found this categorization necessary due to the
fragmentation of IaC tools in terms of functionality.
While different tools support different functionalities,
those that share similar functionalities often vary in
how they implement their services.

3.1 Classification Framework

IaC tools will be categorized according to the follow-
ing four dimensions:

• Context: information regarding the environment
of the technology like whether if open-source or
not, which cloud service providers it is compati-
ble with, how large is the community and for how
long it has been supported.

• Functionality: information related to the service
provided by the tool like whether if it is mainly
for provisioning or configuration and if it treats
the infrastructure as mutable or not.

• Language: information about the programming
language the tool utilizes like whether if it is gen-
eral purpose or a domain specific language and
whether if it is procedural or declarative

• Architecture: information about the architecture
of the solution provided by the technology like
whether if it uses a master node to coordinate ac-
tion or agents on the nodes or not.

A summary of the dimensions and their aspects can be
seen in the Table 1. The dimensions are broken down
into several, more concrete aspects and the range of
values assignable to each aspect is defined.

Table 1: IaC Tools Classification Framework.

Dimension Aspect Range

Context

Accessibility Open-Source/Closed-Source
Cloud Compatibility All/Specific Provider

Community Small/Large/Huge
Maturity Low/Medium/High

Functionality
Type Configuration/Provisioning

Infrastructure Mutable/Immutable

Language
Paradigm Procedural/Declarative

Scope DSL/GPL

Architecture
Master Server Required/Not Required
Agent Client Required/Not Required

3.1.1 Context

The context dimensions aims to describe the selected
tools in terms of the frame of reference in which they
are actively used. This frame of reference is analyzed
through the following aspects:

• Accessibility: The organization of the contribu-
tion to the technology.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

152

• Cloud Compatibility: The compatibility with the
various cloud service providers.

• Community: The size of the community that uti-
lizes and/or supports the technology.

• Maturity: The duration for how long the technol-
ogy has been supported.

The Contribution Style aspect can be assigned
Open-Source or Closed-Source values. The Cloud
Compatibility aspect can take the value All if the
technology can be used with every cloud provider or
a list of specific cloud providers if it is only compat-
ible with a specific set. The Community aspect can
take the values Small, Medium or Large depending on
the amount of interaction Github or software related
forums such as StackOverflow or social media sites
like X. The Maturity aspect can take the values Low,
Medium or High depending on the date the project has
been made available.

3.1.2 Functionality

The functionality dimension describes a tool in terms
of features it provides to the users. The features are
analyzed through the following aspects:

• Type: The category of the functionality provided
by the technology.

• Infrastructure: The selected infrastructure
paradigm of the technology.

The Type aspect can be assigned Configuration or
Provisioning. If the technology supports both, the
most commonly used type will be selected. The
Infrastructure aspect can be assigned Mutable or
Immutable values.

Configuration Management and Provisioning:
Configuration management and provisioning tools
differ in the stage of the DevOps lifecycle they aim
for. Configuration management tools are primarily
focused on automatically monitoring and managing
the state of the infrastructure that hosts the appli-
cation, so they are related to the monitor/self-heal
stage. Provisioning tools are primarily focused on
initializing the infrastructure the application will be
deployed on, so they are related to the deploy stage.

Mutable and Immutable Infrastructures: Muta-
ble and immutable infrastructures refer to the way
the tools consider the infrastructure in terms of the
method of managing, replacing and updating them. A
tool that considers infrastructure as mutable applies
it’s changes directly without the need for a rebuild. A
tool that considers the infrastructure to be immutable
do not change the existing configuration but instead
creates new deployments to replace the existing one.

The relationship between configuration manage-
ment and mutable infrastructures can be seen as the
aim of configuration management is to edit and up-
date the existing infrastructure according to the results
of monitoring, which can be done only if the existing
infrastructure is considered mutable. A similar rela-
tionship can also be observed between provisioning
and immutable infrastructure as the aim of provision-
ing is to set up a new infrastructure for deployment,
which signals for an infrastructure that is immutable.

3.1.3 Language

The language dimension aims to describe the selected
tools in terms of the programming language they
utilize. The programming languages are analyzed
through the following aspects:

• Paradigm: The method of describing the infras-
tructure used by the programming language of the
technology.

• Scope: The scope of the application domain of the
programming language used by the technology.

The Paradigm aspect can be assigned Procedural
or Declarative values. The Scope aspect can be
assigned either Domain-Specific Language (DSL) or
General-Purpose Language (GPL) values.

Procedural and Declarative Languages: Procedu-
ral and declarative languages differ in terms of the
method of defining the infrastructure. Procedural lan-
guages explicitly defined the actions to be taken to
reach the required state. Declarative languages define
the properties of the desired final state of the infras-
tructure to be, leaving the instructions to create it to
the underlying technology.

A relationship between declarative languages and
configuration management tools can be formed, as
the defined end state of the infrastructure can be used
by the configuration management tool as a standard
to manage. A similar relationship between procedural
languages and provisioning tools can also be formed
as the defined execution steps to reach the desired
infrastructure can be run on each deployment.

General Purpose and Domain Specific Languages:
General purpose languages (GPL) and domain spe-
cific languages (DSL) differ in terms of the scope of
domains they are designed to be used for. A general
purpose language (Java) is designed to be used for a
variety of domains(ML, web development, etc.). A
domain-specific language (Terraform HCL, etc.) is
designed specifically to be used in a single domain
(cloud infrastructure provisioning).

Infrastructure as Code: Technology Review and Research Challenges

153

3.1.4 Architecture

The architecture dimension aims to describe the tech-
nology according to the architectural style of the so-
lution provided by the technology. The architectural
style is analyzed through the following aspects:

• Master Server: The requirement of a master
server to utilize the technology.

• Agent Client: The requirement of an agent client
to be installed on the configured infrastructure for
the technology to be used.

Both the Master Server and the Agent Client
aspects can be assigned Required or Not Required
values.

Master Server and Agent Client: Some tools may
require a server to be set up to manage the infras-
tructure. These servers are called ”master” since the
updates on the infrastructures are decided on these
servers. Similarly, some tools may require an agent to
be installed on the server that needs to be configured.
These agents are called ”client” as they are usually in
a server-client relationship with master servers. Agent
clients are responsible for applying the necessary up-
dates on the existing infrastructure.

3.2 Technology Classification

This section displays and explains the results ac-
quired after applying the aforementioned classifica-
tion framework to the following selected IaC tech-
nologies in the market: Chef, Puppet, Ansible,
Pulumi, Heat, DOML, Terraform, TOSCA and
CloudFormation. The results of the classification
can be seen in Table 2. The rows in the aspect column
of Table 2 refer to the resource the information is ac-
quired from. The links to these resource can be found
in the list at footnote1.

1

- Chef: https://docs.chef.io/ - github.com/chef/chef
- Pulumi: https://www.pulumi.com/docs/iac/ -

github.com/pulumi/pulumi
- Terraform: https://developer.hashicorp.com/terraform/docs

- github.com/hashicorp/terraform
- Puppet: https://www.puppet.com/docs/index.html -

github.com/puppetlabs/puppet
- Heat: https://docs.openstack.org/heat/latest/ -

github.com/openstack/heat
- TOSCA: https://docs.oasis-

open.org/tosca/TOSCA/v2.0/csd07/TOSCA-v2.0-
csd07.pdf - github.com/orgs/OpenTOSCA/repositories

- Ansible: https://docs.ansible.com/ -
github.com/ansible/ansible

- CloudFormation: https://docs.aws.amazon.com/cloud-
formation/ - github.com/aws-cloudformation

4 DevOps FOR IaC

DevOps (Development and Operations) is a frame-
work that captures the need for continuously used
automation across the whole life cycle of software.
We present an IaC-specific DevOps model here. This
serves as a conceptual framework to align challenges
and discuss defect management as a central problem.

4.1 DevOps Principles

It is important to distinguish DevOps for general ap-
plication software and DevOps for IaC as a specific
type of software. Application DevOps covers the
full cycle for the application management automation
(Pahl et al., 2020). IaC DevOps covers the IaC de-
ployment part as part of the Ops automation. Some
concrete challenges for IaC stem from the technol-
ogy ecosystem (Rahman et al., 2019; Kumara et al.,
2021). Market/technology fragmentation is the key
problem as the discussion of language, approach and
infrastructure dimensions above with different combi-
nations has shown. A consequence, where multi-layer
deployments are present, are requirements of a wide
range of IaC skills.

4.2 An IaC DevOps Chain

In Figure 1, we present the IaC DevOps framework,
associating IaC-specific activities to the four main
phases Creation, Verification, Deployment and Man-
agement. We divide this into four phases:

• Phase 1: Coding - plan/create/code/build

• Phase 2: Quality assurance - test/verify

• Phase 3: Deployment - please/configure/deploy

• Phase 4: Management - operate/monitor/self-heal

5 PRINCIPAL CHALLENGES
AND DEFECT HANDLING

Based on the IaC-specific DevOps framework from
the previous section, we now identify and organise
research challenges along the different phases. The
wider challenges are then mapped to more concrete
defects that the core of those challenges. Defects are
a central concept as they will allow to associate a con-
crete remdial action to the problem encountered.

- DOML: https://www.piacere-doml.deib.polimi.it/
specifications/DOML Specification v2.1.pdf -
git.code.tecnalia.com/piacere/public/the-platform/doml

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

154

Table 2: Classification Table for the IaC Technologies.

Dimension Aspect Chef Puppet Ansible Pulumi CloudFormation Heat Terraform TOSCA DOML

Context

Accessibility 2 Open-Source Open-Source Open-Source Open-Source Closed-Source Open-Source Open-Source Open-Source Open-Source

Cloud Compatibility 1 All All All All AWS All All All All

Community 2 Large Large Huge Small Small Small Huge Large Small

Maturity 2 High High Medium Medium Low Medium Medium Medium Low

Functionality
Type 1 Configuration Configuration Configuration Provisioning Provisioning Provisioning Provisioning Configuration Provisioning

Infrastructure 1 Mutable Mutable Mutable Immutable Immutable Immutable Immutable Immutable Immutable

Language
Paradigm 1 Procedural Declarative Declarative Declarative Declarative Declarative Declarative Declarative Declarative

Scope 1 GPL DSL DSL GPL DSL DSL DSL GPL DSL

Architecture
Master Server 1 Required Required Not Required Not Required Not Required Not Required Not Required Not Required Not Required

Agent Client 1 Required Required Not Required Not Required Not Required Not Required Not Required Not Required Not Required

Figure 1: IaC DevOps Framework with IaC Creation, Verification, Deployment and Management Stages.

5.1 IaC DevOps Challenges

Specific challenges shall now be discussed to system-
atically cover the stages of the IaC DevOps lifecy-
cle with its processing activities, starting with coding,
followed by testing and quality assurance and finally
maintenance and change management. We highlight
in this subsection the key concerns before discussing
them in more detail in the subsequent sections.

Stage 1: Coding has, apart from the languages as-
pects discussed above, aspects in software design that
apply: the definition of well-known IaC code patterns
and anti-patterns.

Stage 2: Quality assurance looks at a software ver-
ification and validation perspective. Generally, a dif-
ficulty in replicating errors is noted, as the state issue
linked to the mutability aspect shows. IaC languages
differences and tools heterogeneity also cause prob-
lems and security and trustworthiness are a specific
concerns beyond a functionality view.

Stages 3 and 4: In particular maintenance and
change management result in problems: configura-
tion drift between the specification and its changing
server state can be difficult to detect and deal with,
and changing infrastructure requirements beyond ba-
sic maintenance cause another set of difficulties. We
will make these challenges more concrete by identi-
fying and categorising defects as the underlying con-
crete problems behind the challenges. To give an ex-
ample of a concrete defect illustrating security chal-
lenges, Algorithm 1 shows a security-related defect
where a password is exposed in logs. The defect

Figure 2: Conceptual Framework.

is mitigated by adding ‘secret => true’, which can
be done during the DEV-stages through code anal-
ysis. Patterns are examples of preventive measures
to avoid problems. We also investigate what can go
wrong across the lifecycle stages in more detail and
also how to fix these defects. The main concepts are
summarised in Figure 2.

5.2 Defect Handling

In general, defects in IaC scripts can be categorised
according to when they occur in the different DevOps
stages and whether they can be fixed statically or dy-
namically or by a combination of both. Defects can be
organised in eight general categories (Rahman et al.,
2020): syntax, conditional, documentation, depen-
dency, service, itempotency, configuration data, se-
curity. We adopt their empirically determined cate-
gories, but also align them with the DevOps stages
below in order to clarify possible remedial strategies.

For the defect handling, we need to consider a

Infrastructure as Code: Technology Review and Research Challenges

155

Algorithm 1: IaC Script Defect – visible password, to be hidden.

glance cache config {
‘ DEFAULT / auth url ’ : value = > $auth url ;
‘ DEFAULT / admin tenant name ’ : value = > $keystone tenant ;
‘ DEFAULT / admin user ’ : value = > $keystone user ;

- ‘ DEFAULT / admin password ’ : value = > $keystone password ; [to be removed]
+ ’ DEFAULT / admin password ’ : value = > $keystone password , secret = > true ; [to be added]

range of activities across different DevOps stages: (i)
defect avoidance at early stages through smell and
anti-pattern detection and pattern usage, (ii) defect
identification across all stages, applying from code-
level analysis during coding to log-based analysis of
running systems, and (iii) defect remediation, includ-
ing self-healing based on identified causes through
root cause analysis (RCA) and other techniques.

A framework emerges that links static, dynamic
and mixed defects with (i) preventive and early-stage
detection (smell detection, anti-pattern detection to
avoid defects), (ii) preventive use of patterns to avoid
defects - although patterns address only two of the
defect types (e.g., security and service as defect cate-
gories are address by caches, load balancers and cir-
cuit breakers as suggested patterns as we will explain
in more detail below), (iii) defect detection needs to
happen at all stages, and (iv) drift is property between
the code and infrastructure level - drift can obscure
smell and defects at code level due to the lack of archi-
tecture conformance. We discuss in detail some stage-
specific challenges and then defect management.

5.3 Development Stages 1 and 2 (DEV)

Stage 1: Creation – Plan, Create, and Package the
IaC: Coding has, apart from the languages aspects
discussed above, aspects in software design that ap-
ply, specifically the definition of well-known IaC code
patterns and anti-patterns. As a specific challenge, we
focus here on patterns that in the form of design and
architecture patterns are important mechanisms to de-
sign for quality in normal software development. The
definition of IaC code patterns needs to be improved.

Defect avoidance can be based on patterns. Pat-
terns are linked to quality objectives. Some common
code patterns have emerged for IaC: caches for per-
formance or load balancers for scaling. Another pat-
tern category are deployment patterns that encode
the availability of certain deployment types: deploy-
ment purpose such as canary releases or NFP objec-
tive such as green deployment These are well-known,
but not yet properly coded as IaC patterns in catalog-
format as they exist for general application software.

Another direction that needs more attention is

static defects and anti-patterns as defect indica-
tors, which we will look into below. The notion of
smells can also be applied to identify potential de-
fects. A program code smell is a characteristic in the
source code of a program such as duplicate code or
unsuitable naming, which could result in a potential
problem, at least for future problem remediation. For
IaC code, this is less well understood than for more
established programming languages. These concepts
are well-explored for recent application architectures
(Cerny et al., 2023), but require better analysis and
reflection for IaC (Opdebeeck et al., 2023).

Often, a variety of infrastructures are intended
as targets for a single application. Depending
on the stage (development, testing, integration,
pre-production, or production), the infrastructure
to be provisioned varies, which makes a manual
management process work-intensive and error-prone.

Stage 2: Verification – Verify the Trustworthiness
of IaC: Quality assurance looks at a software verifi-
cation and validation perspective: generally, a diffi-
culty in replicating errors is noted, as the state issue
linked to the mutability aspect shows, IaC languages
differences and tools heterogeneity also cause prob-
lems, and security and trustworthiness are a specific
concerns beyond a functionality view,

The relevant quality concerns are latency, security
and trustworthiness. However, the management of
these qualities is made difficult by the following
aspects. Systems created with IaC workflows are
often large and complex to maintain. It is difficult to
manually keep Minor configuration changes in IaC
code can spread out to different parts of the system.
An example is a Web site where security and network
parameters can affect different parts of the system.

Defect Management - DEV Stages: Static defects
cover coding and verification, with the following de-
fect categories:

• Syntax: script syntax errors can occur, but are de-
tectable statically.

• Conditional: erroneous logic or conditional val-
ues are more difficult to identify.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

156

• Documentation: includes incorrect maintenance
notes, readme files and other documentation.

Smells are another type of code assessment to
indicate potential problems.

Prediction: Defect prediction is also of increasing
importance: Collected metrics can be used to predict
defect based on past system behaviour. This can be
applied to performance as well as security concerns.

5.4 Operations Stages 3 and 4 (OPS)

Stage 3: Deployment – Release, Configure, and
Deploy IaC: Distributed deployment is an open chal-
lenge as complexity rises. Here the heterogeneity al-
ready discussed might aggravate the problem by re-
quiring specifications in different formats and not pro-
viding equally formatted or equally reliable feedback.
Maintenance and change management also introduce
additional problems, including: (i) configuration drift,
where discrepancies arise between the specification
and the changing server state, making detection and
resolution difficult, and (ii) evolving infrastructure
requirements that extend beyond basic maintenance,
adding further complexity.

Configuration drift occurs when production or pri-
mary hardware and software infrastructure configura-
tions deviate from their original state due to manual
interventions. Configuration drift is the central chal-
lenge at this stage: Once a system is created via an
IaC workflow, a manual modification of its config-
uration often leads to a misalignment (which is the
configuration drift phenomenon) between the actual
system and its initial infrastructural code. This occurs
with more major changes, but also even smaller secu-
rity problems need to be patched. Configuration drift
is a natural phenomenon caused usually by large num-
bers of ongoing hardware and software changes. Con-
figuration drift is said to accounts for 99% of reasons
why recovery and high availability systems fail. Ad-
ditionally, unidentified configuration drift poses sig-
nificant risks, including data loss and outages.

As with other concepts, such as patterns, software
engineering is aiming to deal with similar problems,
e.g., architecture drift in a more general setting.

Stage 4: Management – Monitor, Self-Heal, and
Replan: Changes at this stage cover changing quality
for a given application configuration, but also chang-
ing infrastructure requirements. The infrastructure
requirements may change over time, for instance, it
might be necessary move an application from private
on-premises to cloud/edge. This also includes the
maintainability of the IaC and its consistency to the

changes and needs of the infrastructure.
Ideally, the remediation of possible problems

can be automated and self-healing of problems and
self-adaptation to new requirements is feasible.

Defect Management - OPS Stages: Dynamic de-
fects cover deployment and management stages,
where the following defect categories occur:

• Dependency: such as missing artifacts, i.e, this is
usually about availability as the quality concern.

• Service: e.g., insufficient provisioning, resulting
in performance and availability quality concerns.

• Idempotency: is a reference to the problem that
the repeatability of effects is often not given due
to unobservable state differences.

Static and Dynamic is a defect category referring to a
mix of categories of two individual detection stages:

• Configuration Data: includes pathname errors that
generally lead to availability problems, which in
some cases can be statically detected. Also other
configuration option can be statically checked.

• Security: this covers the wider CIA (confiden-
tiality, integrity, availability) concerns, some of
which can be syntactically detected (such as the
password leak above) and others such as attack-
related actions only be dealt with dynamically.

• Architecture Conformance: The ongoing confor-
mance to a specified system architecture needs to
be continuously verified (Ozkaya, 2023). Other-
wise, the drift phenomenon occurs that hinders
comprehensive analysis and maintenance. For in-
stance, root cause analyses benefit strongly from
knowledge about the intended behaviour to allow
an exact determination of defect root causes.

5.5 Summary

Table 3: Challenges Summary.

Stage Challenge Defect

Stage
1

Pattern + Anti-
Pattern

Syntax, Conditional, Documentation

Stage
2

Replication,
Heterogeneity
Security

Stages
3 + 4

Architecture
drift, Change

Dependency, Service Quality, Idem-
potency, Configuration Data, Security,
Architecture Conformance

Using a number of empirically determined challenges
as the basis, we linked these to wider challenges that
are aligned with our DevOps model, see Table 3.

Infrastructure as Code: Technology Review and Research Challenges

157

6 CONCLUSIONS

We compared important open IaC technologies based
on a structured catalogue of criteria to capture the
state-of-the-art. Then, we identified challenges for
IaC that would direct future research in the area. We
aligned the challenges with an IaC-specific DevOps
framework and mapped challenges to defect in order
to indicate defect handling strategies within the De-
vOps phases. We have build on a variety of sources
here to incorporate empirical research and thematic
issues on the topic, but have extended and combined
these into a coherent review of technologies and chal-
lenges. The review revealed a variety of different so-
lution, which due to their heterogeneity create a di-
verse technology market with many challenges result-
ing from this. Variety allows for innovative directions
to be taken, but also reflects that currently no consen-
sus on successful directions and that, in many tech-
nology aspects, not enough best practice knowledge
exist, adding to the list of open challenges.

What emerges is the need for more automation. In
particular the management of defects requires more
intelligent approaches for all stages. Here, solutions
from general software engineering with is defect pre-
vention, detection and remediation techniques using
patterns, smell and drift identification can be bor-
rowed to transfer ideas from general code to IaC as
a specific code format. This requires the role of AI
(Pahl, 2023; Tatineni and Chakilam, 2024) to be ex-
plored for the challenges in general and how in par-
ticular the defects across the DevOps stages can be
addressed.

REFERENCES

Alonso, J., Piliszek, R., and Cankar, M. (2023). Embrac-
ing iac through the devsecops philosophy: Concepts,
challenges, and a reference framework. IEEE Soft-
ware, 40(1):56–62.

Aviv, I., Gafni, R., Sherman, S., Aviv, B., Sterkin, A., and
Bega, E. (2023). Infrastructure from code: The next
generation of cloud lifecycle automation. IEEE Softw.,
40(1):42–49.

Borovits, N., Kumara, I., Nucci, D. D., Krishnan, P., Palma,
S. D., Palomba, F., Tamburri, D. A., and van den
Heuvel, W. (2022). Findici: Using machine learn-
ing to detect linguistic inconsistencies between code
and natural language descriptions in infrastructure-as-
code. Empir. Softw. Eng., 27(7):178.

Cerny, T., Abdelfattah, A. S., Maruf, A. A., Janes, A., and
Taibi, D. (2023). Catalog and detection techniques of
microservice anti-patterns and bad smells: A tertiary
study. Journal of Systems and Software, 206:111829.

Chardet, M., Coullon, H., and Robillard, S. (2021). Toward

safe and efficient reconfiguration with concerto. Sci-
ence of Computer Programming, 203:102582.

Karanjai, R., Kasichainula, K., Xu, L., Diallo, N., Chen, L.,
and Shi, W. (2023). Diac: Re-imagining decentralized
infrastructure as code using blockchain. IEEE Trans-
actions on Network and Service Management.

Kumara, I., Garriga, M., Romeu, A. U., Di Nucci, D.,
Palomba, F., Tamburri, D. A., and van den Heuvel, W.-
J. (2021). The do’s and don’ts of infrastructure code:
A systematic gray literature review. Information and
Software Technology, 137:106593.

Opdebeeck, R., Zerouali, A., and De Roover, C. (2023).
Behaviour-aware security smell detection for infras-
tructure as code. In BE-NL Software Evolution.

Ozkaya, I. (2023). Infrastructure as code and software
architecture conformance checking. IEEE Softw.,
40(1):4–8.

Pahl, C. (2023). Research challenges for machine learning-
constructed software. Service Oriented Computing
and Applications, 17(1):1–4.

Pahl, C., Fronza, I., El Ioini, N., and Barzegar, H. R. (2019).
A review of architectural principles and patterns for
distributed mobile information systems. In Intl Conf
on Web Information Systems and Technologies.

Pahl, C., Jamshidi, P., and Zimmermann, O. (2020). Mi-
croservices and containers. Software Engineering
Conference. Gesellschaft für Informatik eV.

Palma, S. D., Nucci, D. D., Palomba, F., and Tamburri,
D. A. (2020). Toward a catalog of software qual-
ity metrics for infrastructure code. J. Syst. Softw.,
170:110726.

Palma, S. D., Nucci, D. D., Palomba, F., and Tamburri,
D. A. (2022). Within-project defect prediction of
infrastructure-as-code using product and process met-
rics. IEEE Trans. Software Eng., 48(6):2086–2104.

Quattrocchi, G. and Tamburri, D. A. (2022). Predic-
tive maintenance of infrastructure code using ”fluid”
datasets: An exploratory study on ansible defect
proneness. J. Softw. Evol. Process., 34(11).

Quattrocchi, G. and Tamburri, D. A. (2023). Infrastructure
as code. IEEE Softw., 40(1):37–40.

Rahman, A., Farhana, E., Parnin, C., and Williams, L.
(2020). Gang of eight: A defect taxonomy for infras-
tructure as code scripts. In ICSE.

Rahman, A., Mahdavi-Hezaveh, R., and Williams, L.
(2019). A systematic mapping study of infrastructure
as code research. Information and Software Technol-
ogy, 108:65–77.

Sokolowski, D., Weisenburger, P., and Salvaneschi, G.
(2023). Decentralizing infrastructure as code. IEEE
Softw., 40(1):50–55.

Staron, M., Abrahão, S., Penzenstadler, B., and Hochstein,
L. (2023). Recent research into infrastructure as code.
IEEE Softw., 40(1):86–88.

Tatineni, S. and Chakilam, N. V. (2024). Integrating ar-
tificial intelligence with devops for intelligent infras-
tructure management: Optimizing resource allocation
and performance in cloud-native applications. Jrnl of
Bioinformatics and AI, 4(1):109–142.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

158

