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Abstract: In a biometric authentication or identification system, the matcher compares a stored and a fresh template to
determine whether there is a match. This assessment is based on both a similarity score and a predefined
threshold. For better compliance with privacy legislation, the matcher can be built upon a privacy-preserving
distance. Beyond the binary output (‘yes’ or ‘no’), most schemes may perform more precise computations, e.g.,
the value of the distance. Such precise information is prone to leakage even when not returned by the system.
This can occur due to a malware infection or the use of a weakly privacy-preserving distance, exemplified by
side channel attacks or partially obfuscated designs. This paper provides an analysis of information leakage
during distance evaluation. We provide a catalog of information leakage scenarios with their impacts on data
privacy. Each scenario gives rise to unique attacks with impacts quantified in terms of computational costs,
thereby providing a better understanding of the security level.

1 INTRODUCTION

Biometric authentication protocols involve the com-
parison of a fresh biometric template with the refer-
ence template. This comparison computes the dis-
tance between the newly acquired data and the stored
template. If this distance is below a given thresh-
old, access is granted; otherwise, it is denied. Ham-
ming distance is a widely used metric in biomet-
ric applications e.g., biohashing (Patel et al., 2015;
Bernal-Romero et al., 2023), iriscode (Daugman,
2009; Dehkordi and Abu-Bakar, 2015; Daugman,
2015), face recognition (Yang and Wang, 2007; He
et al., 2015), gait recognition (Tran et al., 2017),
keystroke (Rahman et al., 2021), ear authentica-
tion (Wang et al., 2021) and palm-vein recogni-
tion (Cho et al., 2021). Computing this distance may
inadvertently leak information that adversaries might
exploit to reconstruct the stored template. These
vulnerabilities may arise from implementation er-
rors, inherent flaws, and server-level attacks such
as malware (Sharma et al., 2023), which can com-
promise system-wide security. Furthermore, Aydin
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and Aysu (Aydin and Aysu, 2024) and Hashemi et
al. (Hashemi et al., 2024) have highlighted an increas-
ing prevalence of side-channel attacks. Side-channel
techniques, including timing, differential power anal-
ysis, cache-based, electromagnetic, acoustic, and
thermal attacks, exploit various operational artifacts
to extract sensitive information (Sharma et al., 2023).
One of the concerns is the partial or total leakage
of distance computation information. Such informa-
tion leakage poses significant security and privacy
risks, especially in sensitive applications like privacy-
preserving applications (e.g., biometric recognition
systems). In this paper, we focus on the following
attacks:

• Offline exhaustive search attacks refer to scenar-
ios for which a leaked yet obfuscated database is
available for an attacker. The attacker employs the
public transformation to verify a candidate vector.
This verification may give additional information
beyond the minimal information leakage (‘yes’ or
‘no’), for example via side-channel attacks.

• Online exhaustive search attacks correspond to at-
tacks for which an attacker must interact with the
biometric system to infer information about the
targeted vector. Then, the attacker needs to force
the system to leak additional information beyond
the minimal information leakage (‘yes’ or ‘no’),
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for example via a malware infection.

Related Works. To the best of our knowledge, two
papers investigate information leakage of biometric
systems using privacy-preserving distance. Pagnin et
al. (Pagnin et al., 2014) shows that the output of a
privacy-preserving distance can be exploited to infer
the hidden input. This type of attack is considered the
most devastating for such systems, as evidenced by
Simoens et al. (Simoens et al., 2012). The work of
Pagnin et al. takes place in the minimal leakage sce-
nario, wherein only the binary output of the biometric
system is given to the attacker. The authors present
the Center Search Attack, designed to recover the hid-
den enrolled input for any ‘valid’ biometric template
in Zn

q, where ‘valid’ refers to inputs within a ball cen-
tered at the enrolled template and with a radius equal
to the decision threshold t. To efficiently locate a valid
input, the authors also examine the exhaustive search
attack, particularly its application on binary templates
(q = 2). They suggest implementing a sampling with-
out replacement strategy using their Tree algorithm
to streamline the identification of a suitable input for
the Center Search Attack. This efficient identification
of a proper input requires a number of authentication
attempts that is exponential in the space dimension n
minus the threshold t. While their work focuses on
the minimal leakage scenario, our analysis includes
the consideration of multiple additional information
leaks that may arise during the matching operation.

Contributions. We analyze the impact of poten-
tial information leakage in distance evaluations. Our
contributions detail various leakage scenarios, their
corresponding generic attacks, and the computational
costs involved:

• We revisit the exhaustive search attack in the sce-
nario of a minimal (one-bit) information leak-
age, correcting a previous result (see (Pagnin
et al., 2014)) about the costs of optimal and near-
optimal strategies and include additional informa-
tion on cases that are not well-detailed in the lit-
erature.

• We introduce new attack strategies by malicious
clients that exploit various levels of non-minimal
information leaks from the system. Our complex-
ity results, which detail the cost of these attacks,
apply to both offline exhaustive search attacks that
leverage a leaked (yet obfuscated) database and
online exhaustive search attacks involving direct
interactions with the server.

• We investigate a novel attack, named accumula-
tion attack, where an honest-but-curious server

accumulates knowledge during client authentica-
tion. This type of attack occurs when there is a
minor, yet non-negligible, amount of information
leakage.
The complexities of the attacks, relying on differ-

ent scenarios, are summarized in Table 1.

Outline. Section 2 introduces notations and termi-
nologies and classifies the different types of informa-
tion leakages. Section 3 begins by revisiting the ex-
haustive search attack in the minimal (one-bit) infor-
mation leakage scenario, including a correction of a
previously cited result concerning the costs of optimal
and near-optimal strategies. It then introduces new
strategies for attacks by malicious clients capturing
various other types of information leakages, cover-
ing both offline and online exhaustive search attacks,
with an emphasis on their computational costs. The
section concludes by examining accumulation attacks
performed by an ”honest-but-curious” server during
client authentication, detailing the computational cost
involved. Section 4 provides a discussion of the pre-
sented results.

2 PRELIMINARIES

This section introduces the notations as well as the at-
tacker model and, a list of the considered information
leakage scenarios.

2.1 Notations and Attacker Models

Let Zn
q = {0, . . . ,q− 1}n be a metric space equipped

with the Hamming distance d and ε ∈ N a threshold.
The Hamming distance is defined by

d(x,y) = |{i ∈ {1, . . .n,}|xi ̸= yi}|
for two vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn) in
Zn

q. Let Matchx,ε denote the oracle modeling the inter-
action between the biometric system using a privacy-
preserving distance and the attacker. Matchx,ε re-
ceives the template selected by the attacker and com-
pares it with the previously enrolled and stored tem-
plate. If the distance is below the threshold ε, the or-
acle returns 1 and 0 otherwise. In a more formal way,
Matchx,ε is a function defined as:

Matchx,ε : Zn
q −→ {0,1}

y 7−→

{
1 if d(x,y)≤ ε.

0 otherwise.

A privacy-preserving distance may leak additional
information beyond its binary output. Under the spec-
ifications of each scenario, the oracle may display this

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

354



Table 1: Summary of all leakage exploits and their complexities with α such that the occurrence of the rarest error is n−α with
α ∈ R≥1. The Distance-to-Threshold comparison determines if the leak occurs when d(x,y)≤ ε (below) or when there is no
distance requirement between x and y (both). For all the complexities, x and y are in Zn

q with q ≥ 2 except for the minimal
leakage where x and y are in Zn

2. The provided complexities represent worst-case scenarios, except for the accumulation attack
where the result is the expectation.

Distance-to-Threshold comparison Leakage Complexity type Complexity in Big-Oh Theorem

Below

Distance Exponential qn−ε +qε 3.2
Positions Exponential qn−ε +q 3.3

Positions and values Exponential qn−ε 3.4
Positions and values (accumulation) Linearithmic/Polynomial nα logn 3.9

Both

Minimal1 Exponential qn−ε +n(q−1)+2ε 3.5
Distance Linear nq 3.6
Positions Constant q 3.7

Positions and values Constant 1 3.8
1Note that the Big-Oh complexity of the optimal exhaustive search strategy, in the worst-case, is the same as the naive strategy
as the minimum of h(·) is 0.

additional information. The objective of the attacker
is to find the hidden template x exploiting the oracle
outputs. In the context of a biometric system, the ob-
jective of the attacker may be relaxed to simply find y
that is close to x with respect to d and ε.

2.2 Typology of Information Leakage

In the context of a biometric system, a critical vul-
nerability arises when information is intercepted be-
tween the matcher and the decision module, as illus-
trated in Figure 1 (point 8). This figure, inspired by
Ratha et al. (Ratha et al., 2001), provides an overview
of the attack points in biometric systems while intro-
ducing both the decision module and two additional
attack points. Except for the accumulation attack, the
attacker exploits points 4 and 8 in all discussed sce-
narios. Point 4 allows the submission of a chosen
template, while point 8 grants access to additional in-
formation beyond the binary output. The accumula-
tion attack only necessitates control over the point 8.
For detailed insights into the remaining attack points,
readers are referred to Ratha et al. (Ratha et al., 2001).
There are three main categories of information leak-
age: Below the threshold; Above the threshold; Both
below and above the threshold.

In each of these categories, several sub-settings
can be identified. The first one corresponds to the ab-
sence of any leakage, resulting in Matchx,ε yielding
only the binary output. Then, the following informa-
tion leakages are examined:

• The distance.

• The positions of the errors.

• Both the error positions and values.

• Both the distance and the positions of the errors.

• Both the distance and the positions and their cor-
responding erroneous values.

It is not relevant to consider that additional informa-
tion is leaked only above the threshold, as no scheme
has such behavior. As a consequence, solely scenar-
ios ‘below the threshold’ and ‘below and above the
threshold’ are examined. The Hamming distance is
a measure of the number of differing coordinates be-
tween two templates. Therefore, knowledge of the
erroneous coordinates implies knowledge of the dis-
tance itself. Hence, we do not consider all possible
scenarios.

3 EXPLOITING THE LEAKAGE

This section provides a comprehensive analysis of the
attacks that can be performed in each leakage sce-
nario, along with an evaluation of their complexity.

3.1 Active Attacks

This section focuses on active attacks, i.e., attacks
where the attacker submits templates to the oracle
Matchx,ε.

3.1.1 Attack Complexity for the Minimal
(One-Bit) Leakage

In this section, the attacker aims to find a template
that lies in the ball of center x (the target template)
and radius ε (the threshold). To identify such a point,
several methods are available, each with its own set of
advantages and disadvantages.

Brute Force. The objective of this attack is to ex-
haustively test all possible templates until the oracle
Matchx,ε yields 1. In the worst case, we test every
template, which results in the examination of qn vec-
tors. To obtain this result, we ignore the ε acceptance
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tion

9.Override
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Figure 1: Attack points in a generic biometric recognition system.

threshold. On the other hand, if we consider that only
n− ε exact coordinates are needed to be accepted by
the system, complexity decreases to qn−ε tests. Since
the attacker specifically targets n− ε coordinates (the
attacker arbitrarily chooses ε coordinates that do not
change), and aims for a perfect match for the n− ε

remaining coordinates yielding the result.

Random Sampling. The attacker randomly
chooses a template in Zn

q and tests it by querying
the oracle Matchx,ε. The precise complexity of this
strategy has not been assessed in the literature. The
worst case for the attacker occurs when the templates
are uniformly distributed in Zn

q. The probability
that a template submitted to Matchx,ε yields 1 is
ρ =

|Bq,ε(x)|
qn . According to this naive strategy, we can

assume that the tests are independent and that each
is modeled as a Bernoulli experiment with a success
probability of ρ. The number of tries needed to obtain
the first success follows a geometric distribution.
Hence, the expected number of tries for an attacker
to get accepted by the system is p−1. First, recall that
the cardinal of Bq,ε(x) is

|Bq,ε(x)|=
ε

∑
i=0

(
n
i

)
(q−1)i,

and that the q-ary entropy is hq(x) = x logq(q− 1)−
x logq x− (1− x) logq(1− x). Then, using the Stirling
approximation (see (Timothée and Ramanna, 2016;
Thomas and Joy, 2006)), the expected number of tries
for an attacker is

ρ
−1 =

qn

|Bq,ε(x)|
=

qn

ε

∑
i=0

(n
i

)
(q−1)i

≤ qn

qnhq(ε/n)+o(n)
= qn(1−hq(ε/n))+o(n)

if ε

n ≤ 1− 1
q holds, and if n is large enough.

Random Sampling Without Point Replacement.
As the random sampling, the attacker randomly
chooses a template in the set S ⊆ Zn

q. At each step,
if Matchx,ε returns 0, the tested vector b is removed
from the set S. The probability of success does
not remain constant throughout the experiment, un-
like in the previous case. Consequently, the exper-
iment follows a hypergeometric distribution. This
game is equivalent to having an urn with qn object
where |Bq,ε(x)| are considered ‘good’. Then, accord-
ing to Ahlgren (Ahlgren, 2014) the expected number
of queries to Matchx,ε before success is given by

qn +1
|Bq,ε(x)|+1

≈ ρ
−1.

This attack has a slightly better performance com-
pared to the previous one, although it is accompanied
by an exponential memory cost that reduces its effi-
ciency, making this version less interesting than the
previous one.

Remark 3.1.1. In the case of random sampling, if
the value of n is large, it is preferable to select a draw
with replacement to save memory while maintaining
a high degree of performance. Indeed, the probability
of drawing a vector that has already been selected is
relatively small if n is sufficiently large.

Tree Search. This algorithm was proposed by
Pagnin et al. (Pagnin et al., 2014). The underlying
idea is to construct a tree of depth n such that each
point of the space is considered to be a leaf. The
tree structure is utilized to establish relative relations
among the points of Zn

q and to guarantee that after
each unsuccessful trial, non-overlapping portions of
the space Zn

q can be removed. Specifically, if a point
p ∈ Zn

q does not satisfy the authentication, the algo-
rithm removes not only the tested point p from the
set of potential centers but also its sibling relatives
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generated by the common ancestor ε (i.e., the subtree
of height ε covering these siblings is removed). At
each attempt, the attacker can remove approximately
qε templates from the research space (for more de-
tails, please refer to (Pagnin et al., 2014)). The run-
ning time of the attack is the cost of exploring a q-ary
tree of order n− ε.
Remark 3.1.2. It should be noted that, as intended,
the cost of all the presented attacks is exponential.

Optimal Solution. The optimal solution is to solve
the set-covering problem (Korte et al., 2011) using
balls of radius ε. The main idea is to cover the
space with the smallest number of balls of radius ε

to partition the space. The objective is to remove
an entire ball of radius ε if the query fails. This is
an instance of the set covering problems. Pagnin et
al. (Pagnin et al., 2014) claimed that the number of
points that the adversary needs to query is only a
factor of O(ε ln(n+ 1)) more than the optimal cover.
However, the result is imprecise, as detailed below in
this remark, mainly because the optimal cover is not
given.
Theorem 3.1. Given ε a threshold, x ∈ Zn

q a vec-
tor, and Matchx,ε, an attacker with the optimal strat-
egy can retrieve x in qn(1−hq(ε/n))+o(n) queries to
Matchx,ε.

Proof. The strategy between a bounded and an un-
bounded adversary may differ as detailed in the fol-
lowing:

• Unbounded Adversary: The adversary solves
the NP-hard set covering problem (Korte et al.,
2011) to find the optimal covering of Zn

q using
balls of radius ε. The adversary exhaustively
searches x using at most qn(1−hq(ε/n))+o(n) queries
to Matchx,ε. The number of vectors involved in
a given optimal cover is qn

|Bq,ε(x)| , which can be
asymptotically approximated as detailed in what
follows. Then, using bounds on the binomial co-
efficient (see (Thomas and Joy, 2006; Timothée
and Ramanna, 2016)), the result follows if ε

n ≤
1− 1

q holds and if n is large enough.
• Bounded Adversary: The adversary may use a

greedy algorithm to find a non-optimal covering
containing qnH(n)

|Bq,ε| vectors (Chvatal, 1979) with

H(n) = ∑
n
i=1 i−1 the n-th harmonic number. The

adversary then finds a solution with an exhaus-
tive search in at most qnH(n)

|Bq,ε| queries. To provide

a more intuitive value, notice that qnH(n)
|Bq,ε| can be

bounded up by qn(ln(n)+1)
|Bq,ε| . As in the unbounded

Table 2: Expected number of calls to oracle for the ex-
haustive search method Random Sampling with Replace-
ment (RSR). Examples with real biometric systems with
q = 2.

System n ε
RSR
(log2)

IrisCode (Daugman, 2009) 2,048 738 121.37
IrisCode (Daugman, 2009) 2,048 656 199.94
IrisCode (Daugman, 2009) 2,048 574 300.24
FingerCode (Harikrishnan et al., 2024) 80 30 5.92
BioHashing (Belguechi et al., 2013) 180 60 17.74
BioEncoding (Ouda et al., 2010) 350 87 70.62
BioEncoding (Ouda et al., 2010) 350 105 45.18

case, using the q-ary entropy and Stirling’s ap-
proximation, this non-optimal covering leads the
attacker to make at most qn(1−hq(ε/n))+o(n) queries,
as logq(ln(n)+1) = o(n).

Then, in both cases, the number of queries is
qn(1−hq(ε/n))+o(n) and the result follows. ■

Remark 3.1.3. The time required to configure the
greedy algorithm is exponential, rendering the afore-
mentioned attack impractical. Moreover, even if an
attacker computes the optimal covering, it still needs
to query an exponential number of times the Matchx,ε
to find a point close to x.

It is also interesting to note that the expected time
for an attacker to be accepted by the system using
the random sampling with and without replacement
method is equivalent to the worst case using the opti-
mal method.

Example of Expectations for the Random Sam-
pling. To illustrate the influence of the threshold
and the choice of q on exhaustive search, we calcu-
late the precise expectation of the number of attempts
required for an attacker to successfully impersonate
the user in different settings using the random sam-
pling method. The results are presented in Table 2.
Experimental results show that to increase the secu-
rity against exhaustive search, it is more interesting to
increase q than to decrease ε.

3.1.2 Attack Complexities for Leakage Below
the Threshold

Leakage below the threshold is considered in this sec-
tion. Given the hidden target x, querying y such that
d(x,y) ≤ ε to the oracle Matchx,ε provides informa-
tion beyond the binary output.

Leakage of the Distance. The first case occurs
when the distance is given to the attacker as extra in-
formation.
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Theorem 3.2. Given ε a threshold, x ∈ Zn
q a vector,

and Matchx,ε leaks the distance below the thresh-
old, an attacker can retrieve x in the worst case in
O(qn−ε +qε) queries to Matchx,ε.

Proof. The system, using the Hamming distance, re-
quires a minimum of n − ε accurate coordinates to
output 0. Since the attacker specifically targets n− ε

coordinates (the attacker arbitrarily chooses ε coor-
dinates that do not change), an exhaustive search at-
tack is performed in at most qn−ε steps to get ac-
cepted by the system. Then, a hill-climbing attack
runs on the remaining ε coordinates to minimize the
distance at each step. Coordinate by coordinate, the
attacker obtains the right value if the distance de-
creases. Since there are q different values to test on
ε coordinates, determining the correct ones requires a
maximum of (q− 1)ε steps. Then, the overall com-
plexity is O(qn−ε +qε). ■

Leakage of the Positions. The positions of the er-
rors are the extra information given to the attacker,
while their values remain secret.

Theorem 3.3. Given ε a threshold, x ∈ Zn
q a vector,

and Matchx,ε leaks the positions of the errors below
the threshold, an attacker can retrieve x in the worst
case in O(qn−ε +q) queries to Matchx,ε.

Proof. As the leakage occurs solely below the thresh-
old, the first step is to find a vector y ∈ Zn

q such that
d(x,y) ≤ ε. To identify such a vector, the attacker
performs an exhaustive search attack in qn−ε steps,
as previously shown. Since ε coordinates remain un-
known, and each coordinate ranges from 0 to q− 1,
every possibility must be examined. By testing all
possibilities simultaneously – for instance, testing all
coordinates at 0, then all coordinates at 1, and so forth
up to q− 2 while retaining the correct values – the
original vector can be identified in no more than q−1
queries (refer to the example illustrated in Figure 2).
Therefore, the complexity of the attack for recovering
x is O(qn−ε +q). ■

Figure 2 gives a representation of the attack de-
scribed above in the case Z5

4 and the hidden vector
or the missing coordinates is (0,1,3,2,2). Note that
the actual complexity is q−1 since the final exchange
is unnecessary, as the coordinates at q − 1 become
known after q−1 queries by inference.

Leakage of the Positions and the Values. When
a vector below the threshold is given to the oracle
Matchx,ε, the attacker gets information about both er-
ror positions and their values. This is similar to an
error-correction mechanism designed to correct errors

below a given threshold. Note that in the binary case,
this scenario is the same as the previous one, hence
the only considered case is q > 2.

Theorem 3.4. Given ε a threshold, x ∈ Zn
q a vector,

and Matchx,ε leaks the positions and the values of the
errors below the threshold, an attacker can retrieve x
in O(qn−ε) queries to Matchx,ε.

Proof. First, an exhaustive search is performed to find
a vector y for which the distance is below the thresh-
old, for a cost of O(qn−ε). Then, given the error po-
sitions and the corresponding error values, y yields
immediately the recovery of x. In the end, the com-
plexity of the attack is O(qn−ε). ■

3.1.3 Leakage Below and Above the Threshold

The second scenario is considered in this section,
which involves a leakage independent of the thresh-
old. In other words, when a hidden vector x is tar-
geted, the queried vector y to the oracle Matchx,ε re-
sults in the leak of additional information.

Minimal Leakage (a Single Bit of Information
Leakage). The basic usage of the system is char-
acterized by the minimal leakage scenario, where the
binary output itself is considered a necessary leak-
age. This minimal leakage is indispensable for the
system’s work and is consistent across these scenar-
ios as the system always responds. Remark that if the
server does not answer above the threshold, the non-
answer gives the attacker the wanted information.

Theorem 3.5. Given ε a threshold, x ∈ Zn
q a vector,

and Matchx,ε that does not leak any extra informa-
tion, an attacker can retrieve x in O(qn−ε+n(q−1)+
2ε) queries to Matchx,ε.

Proof. As in the previous cases, the attacker seeks a
vector y below the threshold. Such a vector is found
by exhaustive search in qn−ε steps. Then, the attacker
performs the center search attack (Pagnin et al., 2014)
(generalized to Zn

q) to retrieve the original data in at
most n(q− 1) + 2ε queries. Indeed, the generaliza-
tion does not change the cost of the edge detection
but changes the cost of the center search from n to
n(q− 1). The complexity of the attack to find x is
O(2n−ε +n+2ε). ■

Leakage of the Distance. In this case, d(x,y) the
distance between y∈Zn

q the fresh template and x ∈Zn
q

the old template is leaked to the attacker regardless of
the threshold.
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Figure 2: Exploiting the error position leaked in the case Z5
4

and the hidden vector or missing coordinates is (0,1,3,2,2).

Theorem 3.6. Given ε a threshold, x ∈ Zn
q a vector,

and Matchx,ε leaks the distance, an attacker can re-
trieve x in O(nq) queries to Matchx,ε.

Proof. As the attacker has access to the distance, it
is possible to perform a hill-climbing attack, trying
to minimize the distance at each step. The strategy
is to find the vector y, coordinate by coordinate. As
each coordinate has q possible values and there are n
coordinates, this is done in O(nq) steps. ■

Leakage of the Positions. The extra information
given to the attacker is the positions of the errors.
Theorem 3.7. Given ε a threshold, x ∈ Zn

q a vector,
and Matchx,ε leaks the positions of the errors, an at-
tacker can retrieve x in O(q) queries to Matchx,ε.

Proof. She tries the vector (0, . . . ,0), (1, . . . ,1) up to,
(q − 1, . . . ,q − 1) and keep for each coordinate the
right value (see Figure 2). Hence, the complexity of
the attack to recover x is O(q). ■

Leakage of the Positions and the Values. In this
last case, the positions of the errors and correspond-
ing values are leaked. Unlike the scenario of leakage
below the threshold, such a leak provides an error-
correcting code mechanism that operates irrespective
of any distance and threshold.
Theorem 3.8. Given ε a threshold, x ∈ Zn

q a vec-
tor, and Matchx,ε leaks the positions of the errors
and their values, an attacker can retrieve x in O(1)
queries to Matchx,ε.

Proof. The submission of any vector gives the posi-
tion of each error, and how to correct them, yielding a
complexity in O(1). ■

Example of the Worst Case for Active Attacks De-
pending on the Leakage. To illustrate the influence
of the leakage type on the attack complexity, we com-
pute the number of attempts (in the worst case) re-
quired for an attacker to successfully impersonate the
user in different settings. The results are presented in
Table 3 and Table 4.

3.2 Accumulation Attack: A Passive
Attack

During the client authentications, the attacker pas-
sively gathers information by observing errors leaked
by the server. More specifically, the server leaks a
list of positions and errors computed over the integers
(i.e., xi−yi) made by a genuine client during each au-
thentication. Such information gathered during one
successful authentication attempt is called an obser-
vation. The attacker aims to partially or fully recon-
struct x by exploiting these observations.

In the binary case (i.e., q = 2), the errors pre-
cisely yield the bits. If xi − yi = 1 then xi = 1, and
if xi − yi = −1 then xi = 0. This attack is related to
the Coupon Collector’s problem (Ferrante and Salta-
lamacchia, 2014), which involves determining the ex-
pected number of rounds required to collect a com-
plete set of distinct coupons, with one coupon ob-
tained at each round, and each coupon acquired with
equal probability.

Example 3.2.1. Suppose a setting with a metric
space Zn

2 equipped with the Hamming distance. A
client seeks to authenticate to an honest-but-curious
server that uses a scheme leaking d(x,y) and the
corresponding errors if d(x,y) ≤ ε. As the client
is legitimate, i.e., d(x,y) ≤ ε with a high probabil-
ity, the attacker recovers the values of at most ε

erroneous bits. The attacker needs to collect all
the bits of the client, turning this problem into a
Coupon Collector problem. For example, let as-
sume x = (0,0,1,1,0,1,0), ε = 3. The attacker sets
z = (?,?,?,?,?,?,?). Session 1: The client authenti-
cates with y=(1,1,0,1,0,1,0). In this case, d(x,y)=
3 ≤ ε. The values of the erroneous bits of the client
are obtained, yielding z=(0,0,1,?,?,?,?). Session 2:
the client authenticates with y = (0,0,0,0,1,1,0). In
this case, d(x,y) = 3 ≤ ε, and the attacker obtains the
value of the erroneous bits of the client and updates
z = (0,0,1,1,0,?,?). At this point, replacing the un-
known values with random bits gives a vector that lies
inside the acceptance ball as the number of unknown
coordinates is smaller than the threshold ε.

In biometrics, some errors happen more fre-
quently than others. In this setup, the Weighted
Coupon Collector’s Problem must be considered.
Each coupon (i.e., each error) has a probability pi
to occur. Suppose that p1 ≤ p2 ≤ ·· · ≤ pn and
∑

n
i=1 pi ≤ 1 then, according to Berenbrink and Sauer-

wald (Berenbrink and Sauerwald, 2009) (Lemma
3.2), the expected number of round E is such that:

1
p1

≤ E ≤ H(n)
p1

(1)

Exploit the Leak: Understanding Risks in Biometric Matchers

359



Table 3: Number of calls to oracle depending on the leakage type (worst case analysis). Examples with real biometric
systems (for the leakage below the threshold) with q = 2.

System n ε

Complexity (log2)

Distance Position Distance
and Position

IrisCode (Daugman, 2009) 2,048 738 1,310 1,310 1,310
FingerCode (Harikrishnan et al., 2024) 80 30 50 50 50
BioHashing (Belguechi et al., 2013) 180 60 120 120 120
BioEncoding (Ouda et al., 2010) 350 87 263 263 263

Table 4: Number of calls to oracle depending on the leakage type (worst case analysis). Examples with real biometric
systems (for the leakage both above and below the threshold) with q = 2.

System n ε

Complexity (log2)

Distance Position Distance
and Position

IrisCode (Daugman, 2009) 2,048 738 12.00 1 0
FingerCode (Harikrishnan et al., 2024) 80 30 7.32 1 0
BioHashing (Belguechi et al., 2013) 180 60 8.49 1 0
BioEncoding (Ouda et al., 2010) 350 87 9.45 1 0

with H(n) the n-th harmonic number. The upper
bound on H(n) is 1+ logn, which yields the expected
number of rounds required to complete the collection:

1
p1

≤ E ≤ ln(n)+1
p1

. (2)

However, while in the original problem one coupon is
obtained at each round, the number of errors made by
a client during an authentication session is variable,
i.e., between 1 and ε. In this case, the expected num-
ber of rounds required before all the errors have been
observed is smaller than in the case where only one er-
ror occurs at each round. Consequently, the expected
number of rounds required to collect all the errors is
still in O(logn/p1).

Theorem 3.9. Given ε a threshold, x ∈ Zn
2 a vec-

tor, Matchx,ε leaks the positions of the errors and
their values below the threshold, and assuming that
the rarest coupon is obtained with probability p1 =
n−α with α ∈ R≥1 an attacker can retrieve x in
O(nα logn).

Proof. According to the Weighted Coupon Collec-
tor’s problem and assuming that the rarest coupon is
obtained with probability p1 = n−α with α ∈R≥1, the
vector x is recovered in O (nα logn) observations. ■

It is worth noting that in this scenario, the attacker
does not control the error. If the attacker controls
the error locations, then it is possible to obtain x in
⌈n/ε⌉ queries. This can happen during a fault attack,
akin to side-channel attacks. It should also be noted

that some coordinates of biometric data may be non-
variable and, as a consequence, an attacker cannot re-
cover them. This partial recovery attack is, therefore,
a privacy attack, and leads to an authentication attack
if the number of variable coordinates is sufficiently
large (at least n− ε in the binary case).

Remark 3.2.1. In the non-binary case, the value
xi − yi does not provide enough information. The
exact value of xi can be determined in two cases.
First, if xi − yi = −q + 1, then xi = 0. Second, if
xi−yi = 2(q−1), then xi = q−1. For all other cases,
there is an ambiguity regarding the value of xi as yi
is unknown. However, by knowing the distribution of
xi and yi, repeating observations yields a statistical
attack.

Attacks for each type of leakage along with their
complexities are summarized in Figure 1.

4 CONCLUDING REMARKS

Our investigation into the information leakage of a
biometric system using privacy-preserving distance
has uncovered critical security vulnerabilities that
arise under various scenarios. By evaluating the im-
pact of different types of leakage, including distance,
error position, and error value, we have highlighted
the potential risks posed to data privacy and security.

Our analysis has encompassed ‘below the thresh-
old’ and ‘below and above the threshold’ setups, al-
lowing us to identify specific conditions under which
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information leakage can significantly affect the over-
all security of the system.

It is important to highlight that the leakage ‘be-
low the threshold’ does not notably harm the security
of the system, while the leakage of ‘both below and
above the threshold’ markedly decreases the security.
Indeed, the attacks exploiting the leakage ‘below the
threshold’ are primarily exponential, while those ex-
ploiting information ‘below and above the threshold’
are mainly constant.

The accumulation attack we investigated assumes
errors uniformly distributed throughout each authen-
tication session. The result of the accumulation at-
tack could be further refined by considering a variable
number of coupons, randomly drawn between 0 and
ε in each round, while acknowledging the actual dis-
tribution of the errors. To the best of our knowledge,
no previous studies provide an analysis of the distri-
bution of the errors for any systems.

In practical scenarios, certain errors may occur
more frequently than others, while some may never
occur. A skewed distribution of errors will substan-
tially increase the expected number of authentications
required from the legitimate user for the server to re-
cover the hidden template in its entirety. Future re-
search should involve refining the accumulation at-
tack as suggested above and exploring other distance
metrics, such as L1 (i.e., Manhattan distance) and L2.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the French
Agence Nationale de la Recherche (ANR), under
grant ANR-20-CE39-0005 (project PRIVABIO).

REFERENCES

Ahlgren, J. (2014). The probability distribution for draws
until first success without replacement.

Aydin, F. and Aysu, A. (2024). Leaking secrets in homo-
morphic encryption with side-channel attacks. Jour-
nal of Cryptographic Engineering, pages 1–11.

Belguechi, R., Cherrier, E., Rosenberger, C., and Ait-
Aoudia, S. (2013). Operational bio-hash to preserve
privacy of fingerprint minutiae templates. IET bio-
metrics, 2(2):76–84.

Berenbrink, P. and Sauerwald, T. (2009). The weighted
coupon collector’s problem and applications. In Ngo,
H. Q., editor, Computing and Combinatorics, pages
449–458, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Bernal-Romero, J. C., Ramirez-Cortes, J. M., Rangel-
Magdaleno, J. D. J., Gomez-Gil, P., Peregrina-

Barreto, H., and Cruz-Vega, I. (2023). A review on
protection and cancelable techniques in biometric sys-
tems. IEEE Access, 11:8531–8568.

Cho, S., Oh, B.-S., Kim, D., and Toh, K.-A. (2021). Palm-
vein verification using images from the visible spec-
trum. IEEE Access, 9:86914–86927.

Chvatal, V. (1979). A greedy heuristic for the set-
covering problem. Mathematics of operations re-
search, 4(3):233–235.

Daugman, J. (2009). How iris recognition works. In The
essential guide to image processing, pages 715–739.
Elsevier.

Daugman, J. (2015). Information theory and the iriscode.
IEEE transactions on information forensics and secu-
rity, 11(2):400–409.

Dehkordi, A. B. and Abu-Bakar, S. A. (2015). Iris code
matching using adaptive hamming distance. In 2015
IEEE International Conference on Signal and Im-
age Processing Applications (ICSIPA), pages 404–
408. IEEE.

Ferrante, M. and Saltalamacchia, M. (2014). The coupon
collector’s problem. MATerials MATemàtics, 2014:35.
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