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Abstract: The investigation into user authentication via analysis of keyboard usage behaviors has garnered considerable
attention in the literature, resulting in numerous published works on the subject. Continually, novel metric-
based or artificial intelligence-based authenticators are introduced, with their respective advantages being
documented. However, none of these studies have evaluated the performance of these authenticators when the
system is accessed from a remote computer or through a cloud-based environment. This study aims to address
this gap by observing users’ keyboard usage behaviors through a remote terminal over a network. Utilizing
the Carnegie Mellon University (CMU) dataset, features were transmitted over a local network using various
protocols to assess the impact of delay variations on the performance of three newly proposed classifiers
in addition to the 17 existing classifiers in the literature. Furthermore, to bolster the practical findings, a
mathematical model incorporating network delays as input was proposed, and the performances of the studied
classifiers were compared at different signal-to-noise ratios.

1 INTRODUCTION

With the increasing prevalence of digital assets, pro-
tecting services from unauthorized access has become
crucial. Authentication processes today aim to ad-
dress modern security requirements through various
methods such as password entry, asymmetric certifi-
cates, hardware dongles, or two-factor authentication
systems. However, since these tools can be duplicated
or compromised by unauthorized individuals, achiev-
ing the desired level of security remains challeng-
ing. Biometric identification enables multi-layered
authentication systems by tracking users during ser-
vice access or active session.

Biometric identification technologies can be cate-
gorized into two groups. The first category seeks to
identify users based on physiological characteristics
such as facial features, fingerprints, and retinas. The
second category focuses on behavioral characteristics,
such as signatures, keyboard usage, and mouse move-
ments. Keystroke biometrics, a field that aims to iden-
tify users based on their keyboard behaviors, has gar-
nered academic interest since the late 1970s (Peacock
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et al., 2004). Upon examining studies related to key-
board behavior, research efforts can be observed in
two subcategories. The first is referred to as the ”Free
Text” group, which is employed in scenarios where
the content and length of the written text are unspec-
ified. The second is the ”Fixed Text” or also known
as ”Short Text” category, which focuses on shorter or
fixed-length text entries. These classification meth-
ods are predominantly used in scenarios such as pass-
word verification or the validation of PowerShell or
Bash command usage. The primary aim of the study
is to validate the performance of Fixed Text classi-
fiers when operated through a network service, using
parameters that allow for comparison with other clas-
sifiers, thereby addressing a gap in the existing litera-
ture. Therefore we utilized the CMU dataset as input
to evaluate the performance of the proposed classi-
fiers.

The CMU dataset was created by recording the
keyboard usage behaviors of users on a local com-
puter. With the rise of remote work, especially dur-
ing the 2020 pandemic, the management of dedi-
cated and virtual servers through remote access has
become more common. Consequently, it has be-
come increasingly important to examine user behav-
iors observed from remote terminals such as SSH (Se-
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cure Shell), Telnet (Teletype Network), and RDP (Re-
mote Desktop Protocol) in addition to local keyboard
behaviors. In modern systems, key exchanges be-
tween clients and servers are conducted using algo-
rithms such as Diffie–Hellman (Lange and Winter-
hof, 2003), Curve25519 (Bernstein, 2006) or simi-
lar methods (Ylonen, 2019) ensuring that keys are
not transmitted in plain text to mitigate the risk of
network sniffing. However, short text commands
that need to be executed by the user afterward such
as Linux Bash commands like ”ls”, ”rmdir”, ”cp”,
”find”, ”sudo” or passwords required within an active
session or critical Windows PowerShell commands
like ”Get-ChildItem”, ”Remove-Item”, and ”Copy-
Item” are still considered as short-text classifications.

In the second part of the study, we emulated the
keystroke timings from the CMU dataset as if the
same users were physically present at the computer.
We then transmitted these keystrokes to a server on a
local network using various protocols, including UDP
(User Datagram Protocol), TCP (Transmission Con-
trol Protocol) with and without enabling Nagle Al-
gorithm, TCP+AES128 (Advanced Encryption Stan-
dard), and TCP+AES256. We examined the changes
in classifier performance when using the newly ob-
served timing information. Additionally, we modeled
network latency and jitter as noise at varying inten-
sities to demonstrate the impact on classifier perfor-
mance.

This study for the first time in the literature,
demonstrated how the performance of classifiers
would change if CMU’s local users conducted the
same experiment over a network. Additionally, it in-
troduced a parameter that had not been previously ex-
amined in the literature, such as the noise immunity
of the classifiers.

2 RELATED WORK

K. S. Killourhy (Killourhy and Maxion, 2009) at-
tempted to detect users during password entry and
compared the performance of various metric-based
classifiers within a specific framework. The CMU
Keystroke Dynamics Benchmark Dataset used in this
study has become a foundational resource for subse-
quent research in this area. In a 2016 study, Morales
et al. (Morales et al., 2016b) summarized the ongo-
ing competition among researchers in this field, not-
ing that the best-known result, with an Equal Error
Rate (EER) of 5.32%, was achieved by the U.S. Army
Research Laboratory (Morales et al., 2016a). In 2019,
M. Yıldırım (Yıldırım and Anarım, 2019) showed
that users could be distinguished based on mouse be-

havior instead of keyboard behavior. Similarly, E.
Davarcı (Davarci and Anarim, 2022) demonstrated in
his work in 2022 that using dual-class classifiers, in-
stead of single-class classifiers, could further reduce
error rates.

In the 2020 study titled TypeNet-Scaling up
Keystroke Biometrics (Acien et al., 2020), a free-text
classification was performed using the Siamese Net-
work architecture and the LSTM (Long Short Term
Memory) module, achieving a 4.8% equal error rate
for sequences of 50 keystrokes. In the study, five
features were used for each keystroke. It has been
observed that in free-text studies, as the sequence
length increases, the system’s performance improves,
whereas it decreases significantly with shorter se-
quences which are the cases for the short-text clas-
sifications. In a 2022 study (Acien et al., 2022),
a similar topology was trained under different loss
functions, yielding error rates of 10.7% with the con-
trastive loss and 8.6% with the triplet-loss function for
sequences of 30 keystrokes. Subsequently, in 2023, a
study (Medvedev et al., 2023) focused on enhancing
the efficiency of the Siamese structure in short-text
classification by transforming keystroke timing infor-
mation into 2D images using the Recurrence Plots
method. This approach allowed for the creation of
longer sequences, reducing the system’s error rate to
7.8%. Later, in another study conducted in 2024 (Fide
and Anarım, 2024), the Siamese network structure
was optimized with a GRU (Gated Recurrent Units)
module. Instead of averaging of each short sequential
evaluation, feeding the network with a long sequence
includes the all averaged sequence from the begin-
ning, successfully reduced the error rate to 7.0% us-
ing contrastive loss function. In this current study, we
enhanced the existing Siamese network GRU model
with a more efficient outlier filtering method and suc-
cessfully reduced the equal error rate to 6.5% using
31 features available in the CMU’s dataset. Addi-
tionally, we tested the same architecture under Bi-
GRU (Bidirectional Gated Recurrent Unit), LSTM,
and Bi-LSTM (Bidirectional Long Short Term Mem-
ory) models and reported their performances. Fur-
thermore, we listed the remote performance metrics
of these four proposed new networks and examined
their noise immunity capabilities.

3 METHOD

3.1 Dataset

Most studies on user keyboard behaviors for fixed-
length short texts utilize the CMU Keystroke Dy-
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namics Benchmark Dataset (Killourhy and Maxion,
2009). In this dataset, 51 different users were asked
to type the string ”.tie5Roanl” 50 times over 8 days
at various times. Transition times between keystrokes
and the duration each key was pressed were recorded
to create the features. Precise timestamps were
recorded using a high-precision external timer con-
nected to a laptop running Windows XP. The sys-
tem’s accuracy was monitored with a high-precision
signal generator and measured as ±200µs. Each
keystroke has three fundamental features: hold time
of a key (H.key1), duration between down events of
two consecutive keys ( DD.key1.key2), and duration
between up to down events of two consecutive keys
(UD.key1.key2), resulting in a total of 31 features for
the 11 keystrokes in each row.

For transmissions over the network, the keystroke
hold time (H.key1) and the time between releasing
one key and pressing the next (UD.key1.key2) were
not used. Only the delays between pressing con-
secutive keys (DD.key1.key2) were utilized. Conse-
quently, the feature inputs for the classifiers were re-
duced to 10 features.

Figure 1 illustrates the completion times for each
tasks performed by Subject-03 as an example and
the variations in these times over the observed pe-
riod. It is observed that over time, users gained profi-
ciency with the experiment and, completed the tasks
in shorter durations on average.
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Figure 1: Subject 03 - Total Timings over trials.

3.2 Proposed Siamese Network
Architecture

As explained in the 3.1, there are 10 keystroke time-
stamps transferred over the network in the dataset.
Therefore our classification procedures were per-
formed based on this set of 10 features. Before any
processing, the values in the dataset were normalized
by dividing each value by 255. Subsequently using

the Recurrent Plot (Medvedev et al., 2023) method,
the timing values were converted into 10x10 images,
and these images were then flattened to form a 1x100
input vector. Instead of individually comparing this
vector with the 128 rows belonging to genuine users
in the training set and averaging the results, the vector
was reformatted to 128x100 and input into the system
in a single step. This approach eliminated the need
for averaging, and an improvement in system perfor-
mance was observed (Fide and Anarım, 2024).

Each Bi-GRU/Bi-LSTM structure fundamentally
consists of 32 cells, but due to its bidirectional nature,
this number increases to 64 cells. Each cell has a tanh
activation function and a recurrent dropout rate of 0.2.
To further prevent over-fitting, an additional dropout
layer with a rate of 0.2 has been included in the sys-
tem. The final dense layer has been added to stabi-
lize the validation loss function. The Siamese net-
work constructed in this configuration contains a to-
tal of 46,952 (Bi-GRU) and 61,288 (Bi-LSTM) train-
able parameters, which are shared between the left
and right branches of the network.

3.3 Training Phase

The whole CMU dataset consists of 51 users, each
with 400 samples, and each sample contains 31 time-
stamp features related to keystroke durations but re-
duced to 10 after transmitting them thought the local
network. When training the Siamese biGRU/biLSTM
network architecture for each user, 200 samples out
of the 400 were used for training, and the remaining
200 for testing. In all studies conducted within the
scope of this article, the training and test sets were
kept strictly separate.

10% of the training data were set aside for valida-
tion and for early stopping during the training phase.
Additionally, in the normal training set, values that
deviated from the median by more than 5.5 times the
mean absolute deviation were considered outliers and
were excluded. To be able to train the proposed net-
work structure, samples representing anomalies, as
well as positive labels specific to the user were re-
quired. This requirement was met using the training
sets of other users within the CMU dataset. Negative
labels were taken from first five samples of 50 other
users to ensure a balance between positive and nega-
tive labels during training. Therefore, a total of 450
records in the training set are available for each user,
comprising 200 positive and 250 negative samples.

As the loss function, the contrastive loss function
(Hadsell et al., 2006) was used. Given input vector
pairs xi and x j containing the user’s keystroke time-
stamps, with network output f (.) as shown in Figure
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Figure 2: Proposed Siamese Network with Bi-GRU/Bi-
LSTM models.

2, and Li j defined as 0 for pairs xi and x j from the
same class and 1 for pairs from different classes, the
contrastive loss function LCF is defined as shown in
(1):

LCF =(1−Li j)

∥∥ f (xi)− f (x j)
∥∥2

2
2

+Li j
max2

{
0,ε−

∥∥ f (xi)− f (x j)
∥∥

2

}
2

(1)

During training, the margin value ε was set to 0.1.
Optimal results were achieved using the Adam opti-
mizer with a learning rate of 0.0001, ε=1e-8, a maxi-
mum of 200 epochs, and a batch size of 32. The pro-
cesses were performed on an AMD Ryzen Thread-
ripper 3990X 64-Core Processor, with 256GB RAM,
Linux Kernel v6.8, using Python 3.12.3 and Tensor-
Flow v2.17.0. For reproducibility, the seed of the
Pseudo Random Generators were set to a fixed value

of 7. All Python codes developed for the study are
provided on GitHub (Fide, 2024).

3.4 Real-Time Keystroke Emulator

The purpose of the real-time keystroke emulator is to
accurately replicate the keystroke events of users from
the CMU dataset in a network environment. This al-
lows us to obtain the keystroke timing information of
CMU dataset users as if they were connecting to a re-
mote terminal rather than typing on a local computer.
The structure of the emulator and server is shown in
Figure 3.

CMU Data-set Emulator
Real Time Embedded Platform

Cloud

Terminal Server
TELNET Server

SSH Server
Event Capture Application

UDP
TCP

Figure 3: Proposed real-time keystroke emulator.

The Real-Time Keystroke Emulator was designed
because non-real-time operating systems such as
Windows (Microsoft, 2024) or Linux cannot gener-
ate events with a sufficient accuracy to match the
timing information in CMU’s dataset while they can
easily capture the events with accurate timestamps
with the help of existing hardware supports such
as IEEE 1588 Time Stamping (IEEE, 2008) pro-
vided in the Ethernet transceivers. The emulator is
equipped with a MIPS (Microprocessor without Inter-
locked Pipelined Stages) based micro controller runs
at 200MHz, a 10MHz temperature-controlled oscilla-
tor, a Real-Time Clock, and an Ethernet port with a
bandwidth of 100Mbps. Operating without any oper-
ating system, the emulator runs a TCP stack directly
on bare metal. It has been observed that the emula-
tor can generate keystroke events with 10µs precision
based on CMU’s dataset.

The emulator listens on specific TCP and UDP
ports as a server. Upon receiving timing information
in the format shown in Figure 4, it automatically repli-
cates the specified events over the network at the in-
dicated times.

SOH Len ChrLen DD.t DD.i DD.e DD.5 DD.R DD.o DD.a DD.n DD.l DD.Ret CRC16 EOH

SOH Len t i e 5 R o a n l Ret CRC16 EOH

Client

Server

Figure 4: The Emulator communication protocol, the client
asks and the server replies.
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3.5 The Windows Application

CMU’s dataset contains 20400 rows of records
from 51 users, encompassing a total of 204000
keystrokes. As illustrated in Figure 5, the developed
Windows application (Embarcadero, 2024) emulated
the entire dataset under various scenarios including
UDP, TCP+Nagle, TCP-Nagle, TCP+AES128, and
TCP+AES256. The network packet information was
captured using Wireshark (Orebaugh et al., 2007), and
the timing information was analyzed. Each scenario
took approximately 14 hours to complete. Embedded
C and Delphi codes can be accessed on GitHub (Fide,
2024) publicly.

Figure 5: The Windows application that transmits CMU
data to the emulator.

3.6 Performance Criteria

To compare the classifier performances in the biomet-
ric studies, usually the Equal Error Rate (EER) and
the Zero Miss Rate (ZMR) are used. To calculate the
EER, the sensor threshold level is selected such that
false rejection and false acceptance rates are equal, as
shown in Figure 6. This method was employed by
Kang in 2007 (Kang et al., 2007a). Because the EER
is an error rate, a lower values indicate better sensor
performances. In this study, a total of 51 ∗ 6 ∗ 20 =
6120 ROC (Receiver Operating Characteristic) curves
were generated for each of the six different training
sets as CMU local, UDP, TCP+Nagle, TCP-Nagle,
TCP+AES128 and TCP+AES256 and for 20 differ-
ent classifiers. And the EER values were calculated
as the mean of 51 users. While calculating these val-
ues for each individual classifiers, the train and test
method used by Killourhy (Killourhy and Maxion,
2009), which later became a reference for researchers
in this field, was strictly followed. The first 200 out
of 400 data points for each user were utilized to train

the classifiers, while the remaining 200 were used to
test genuine users. For the imposter test, a total of
250 data points were used, comprising the first 5 data
points from each of the 50 other users.

Figure 6: A ROC curve and EER value belong to user s015.

3.7 The Classifier Performances

In the literature, classifiers utilizing the CMU dataset
report their performances using all 31 features in the
dataset (Killourhy and Maxion, 2009). Since not all
of these physical features are available during net-
work transmissions, Table 1 lists the EER of existing
classifiers by replicating the conditions where only 10
features from the original CMU dataset are used. This
allows for a comparison between the classifier per-
formances obtained using the original data and those
obtained after introducing network and protocol de-
lays. Additionally, Table 1 presents the EER values
for scenarios where keystrokes were transmitted using
UDP. UDP is a connection-less protocol commonly
used in applications where low network latency is cru-
cial, but packet delivery and content consistency are
not guaranteed. It is observed that when network la-
tency is significantly lower than the user’s keystroke
timings, classifiers trained using UDP transmission
dataset and local CMU dataset perform nearly iden-
tically in metric-based classifiers and similarly in AI-
based classifiers.

Table 2 lists the changes in EER values when us-
ing TCP. The impact of the Nagle algorithm (Peterson
and Davie, 1996), which degrades classifier perfor-
mance by approximately 7%, is clearly shown. The
Nagle algorithm improves the efficiency of TCP pro-
tocol headers by delaying the transmission of small
data packets, leading to additional delays in the trans-
mission of small packets. Unlike UDP, TCP is a
connection-oriented protocol that ensures the correct
order and delivery of data. However, this comes at
the cost of increased network latency, which signifi-
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Table 1: These results were obtained by using only the DD.key1.key2 features from the original CMU dataset and transmitting
the data over the network using UDP.

UDP Comparisons using only DD.key1.key2 features vs Original CMU
No Classifier CMU - EER UDP - EER
1 Nearest Neighbor with PSR (Zhong et al., 2012) 0.115 0.115
2 Siamese GRU (Fide and Anarım, 2024) 0.119 0.122
3 Nearest Neighbor with Mahal. (Cho et al., 2000) 0.121 0.121
4 Siamese Bi-GRU* 0.125 0.126
5 Siamese Bi-LSTM* 0.125 0.127
6 Siamese LSTM* 0.131 0.132
7 One-Class SVM (Yu and Cho, 2003) 0.138 0.137
8 z-score optim nu(1.292) (Haider et al., 2000) 0.145 0.145
9 Scaled Manhattan (Araujo et al., 2005) 0.151 0.151
10 Bayesian (Rennie et al., 2003) 0.153 0.153
11 Mahalanobis (Duda et al., 2001) 0.153 0.153
12 Filtered Manhattan (Joyce and Gupta, 1990) 0.154 0.154
13 k-means (Kang et al., 2007b) 0.156 0.156
14 Normalized Mahalanobis (Bleha et al., 1990) 0.168 0.169
15 Manhattan (Duda et al., 2001) 0.172 0.172
16 Euclidean (Duda et al., 2001) 0.187 0.187
17 z-score (Haider et al., 2000) 0.189 0.190
18 Multilayer Perceptron NN (Cho et al., 2000) 0.201 0.218
19 Standard Neural Network (Haider et al., 2000) 0.201 0.202
20 Normalized Euclidean (Bleha et al., 1990) 0.219 0.219

Table 2: The reflections of the EER values in scenarios where the Nagle algorithm is enabled and disabled during TCP usage
are listed.

TCP+Nagle (Nagle enabled) vs TCP-Nagle (Nagle disabled)
No Classifier TCP+Nagle EER TCP-Nagle EER
1 Nearest Neighbor with PSR (Zhong et al., 2012) 0.189 0.116
2 Nearest Neighbor with Mahal. (Cho et al., 2000) 0.189 0.124
3 Siamese Bi-GRU* 0.201 0.125
4 Siamese Bi-LSTM* 0.221 0.130
5 Siamese GRU (Fide and Anarım, 2024) 0.224 0.123
6 Siamese LSTM* 0.232 0.131
7 One-Class SVM (Yu and Cho, 2003) 0.267 0.138
8 z-score optim nu(1.195) (Haider et al., 2000) 0.243 0.145
9 Scaled Manhattan (Araujo et al., 2005) 0.234 0.152
10 Bayesian (Rennie et al., 2003) 0.189 0.153
11 Mahalanobis (Duda et al., 2001) 0.189 0.153
12 Filtered Manhattan (Joyce and Gupta, 1990) 0.231 0.154
13 k-means (Kang et al., 2007b) 0.225 0.157
14 Normalized Mahalanobis (Bleha et al., 1990) 0.247 0.169
15 Manhattan (Duda et al., 2001) 0.239 0.172
16 Euclidean (Duda et al., 2001) 0.325 0.187
17 z-score (Haider et al., 2000) 0.259 0.191
18 Multilayer Perceptron NN (Cho et al., 2000) 0.286 0.218
19 Standard Neural Network (Haider et al., 2000) 0.279 0.211
20 Normalized Euclidean (Bleha et al., 1990) 0.332 0.219
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Table 3: The reflections of EER values for scenarios where AES128 and AES256 encryption algorithms are used during TCP
transmissions are listed.

TCP+AES128 vs TCP+AES256
No Classifier TCP+AES128 EER TCP+AES256 EER
1 Nearest Neighbor with PSR (Zhong et al., 2012) 0.116 0.116
2 Nearest Neighbor with Mahal. (Cho et al., 2000) 0.122 0.123
3 Siamese Bi-GRU* 0.125 0.124
4 Siamese GRU (Fide and Anarım, 2024) 0.126 0.124
5 Siamese Bi-LSTM* 0.127 0.126
6 Siamese LSTM* 0.132 0.132
7 One-Class SVM (Yu and Cho, 2003) 0.138 0.139
8 z-score optim nu(1.293) (Haider et al., 2000) 0.146 0.146
9 Scaled Manhattan (Araujo et al., 2005) 0.152 0.152
10 Bayesian (Rennie et al., 2003) 0.152 0.153
11 Mahalanobis (Duda et al., 2001) 0.152 0.153
12 Filtered Manhattan (Joyce and Gupta, 1990) 0.154 0.154
13 k-means (Kang et al., 2007b) 0.156 0.157
14 Normalized Mahalanobis (Bleha et al., 1990) 0.169 0.169
15 Manhattan (Duda et al., 2001) 0.172 0.171
16 Euclidean (Duda et al., 2001) 0.186 0.186
17 z-score (Haider et al., 2000) 0.190 0.190
18 Multilayer Perceptron NN (Cho et al., 2000) 0.210 0.216
19 Standard Neural Network (Haider et al., 2000) 0.223 0.209
20 Normalized Euclidean (Bleha et al., 1990) 0.218 0.219
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Figure 7: The effects of network delays and jitters on the performance of classifiers are illustrated.
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cantly affects the physical characteristics of a user’s
keystroke dynamics.

Table 3 presents the EER values obtained when
a 128-bit and 256-bit AES encryption layer is added
to the data transmitted over the TCP protocol. To-
day, most applications requiring secure connections
(HTTPS, SSL, SSH, etc.) communicate using this
structure. It is observed that communications con-
ducted in this manner are not affected by the Nagle
algorithm, which is enabled by default in TCP, and
the EER values are comparable to the EER values ob-
tained locally from the CMU dataset.

4 NOISE IMMUNITY OF
CLASSIFIERS

In the practical study, a completely isolated network
structure was used, minimizing the effects of traf-
fic congestion on the results. To test this effect at
different levels, network delays and jitters affecting
keystroke attributes were modeled as compounded
semi-normal distributed noise. Given x as the fea-
ture vector, n as the size of each feature vector, ηi
as the delay noise added to each keystroke timings,

E[·] as the expectation operator, σ2
η =E[xxT ]/10

SNRdB
10 ,

β = 1− 2/π, and SNR as the desired signal-to-noise
ratio in dB, the resulting feature vector y was obtained
as shown in Equation (3) and T total time to a classi-
fier input is given in Equation (4).

The EER breakdowns of classifiers at signal-to-
noise ratios ranging from -20 dB to +60 dB, result-
ing from the modeling, are shown in Figure 7. Ac-
cordingly, in environments with low network delay
and jitters, the Nearest Neighbor PSR method (Zhong
et al., 2012) shows the best performance. In contrast,
in environments with high delay and jitters, the clas-
sical Euclidean method (Duda et al., 2001), followed
closely by the One-Class SVM method (Yu and Cho,
2003), provides the best results. Generally, at signal-
to-noise ratios of +20 dB or lower, classifier EER
values deteriorate, with the maximum performance
degradation occurring around +10 dB.

While GRU and Bi-GRU structures exhibit simi-
lar EER values in low-noise environments, Bi-GRU
outperforms GRU within the 0 to 25 dB SNR range.
This suggests that Bi-GRU has greater noise immu-
nity than GRU. Interestingly, LSTM and Bi-LSTM
models do not perform as much as GRU and Bi-GRU
in noise-free environments. However, they demon-
strate significantly better performance than GRU-
based models, especially below +10 dB SNR.

ηi ∼

∣∣∣∣∣ℵ(0,
σ2

η

β
)

∣∣∣∣∣ (2)

yi = xi +ηi i = 1..n (3)

T =
n

∑
i=1

xi +ηi (4)

5 CONCLUSIONS

In this study, we proposed three new Siamese network
authenticators and investigated the keyboard usage
behaviors of users connecting to a remote computer
over a network, taking into account network delays
and jitters. To facilitate this examination, a keystroke
emulator was designed and developed. The perfor-
mance of our newly proposed classifiers as well as
others frequently evaluated using the CMU dataset in
local connections in the literature, was observed for
the first time in a network environment. Their per-
formance changes were systematically recorded in ta-
bles, under the influence of UDP, TCP, encrypted, and
unencrypted channels. Additionally, network delays
and jitters were modeled as compounded semi-normal
distributed noise to identify the classifiers with the
highest and lowest noise immunity. The study re-
vealed that classifiers demonstrating the best perfor-
mance on the CMU dataset in local tests do not main-
tain the same performance levels in network envi-
ronments, particularly under conditions involving Na-
gle’s algorithm or network congestion. Conversely,
some classifiers that perform poorly on local datasets
exhibited improved performance in network environ-
ments. We also identified that Bi-LSTM and Bi-GRU
models have better noise immunity and perform better
in a noisy environments than LSTM and GRU mod-
els.

Future research can further investigate the noise
immunities and average EER changes of current ar-
tificial intelligence algorithms, in addition to metric-
based classifiers. This study assumed that network
characteristics were stationary during the training and
testing phases; however, realistic scenarios necessi-
tate examining performance under non-stationary jit-
ters and delays.

Understanding why certain classifiers perform
better in noisy environments could lead to the devel-
opment of methods to enhance noise immunity. Addi-
tionally, examining classifier performance in the pres-
ence of various security layers like Virtual Private
Networks (VPN) (Ostroukh et al., 2024) or physical
network environments, such as WiFi, 3G, 4G, and 5G,
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can provide a comprehensive understanding of their
effectiveness under different conditions.
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