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Abstract: Open-vocabulary segmentation, powered by large visual-language models like CLIP, has expanded 2D seg-
mentation capabilities beyond fixed classes predefined by the dataset, enabling zero-shot understanding across
diverse scenes. Extending these capabilities to 3D segmentation introduces challenges, as CLIP’s image-based
embeddings often lack the geometric detail necessary for 3D scene segmentation. Recent methods tend to
address this by introducing additional segmentation models or replacing CLIP with variations trained on seg-
mentation data, which lead to redundancy or loss on CLIP’s general language capabilities. To overcome this
limitation, we introduce SPNeRF, a NeRF based zero-shot 3D segmentation approach that leverages geometric
priors. We integrate geometric primitives derived from the 3D scene into NeRF training to produce primitive-
wise CLIP features, avoiding the ambiguity of point-wise features. Additionally, we propose a primitive-based
merging mechanism enhanced with affinity scores. Without relying on additional segmentation models, our
method further explores CLIP’s capability for 3D segmentation and achieves notable improvements over orig-
inal LERF.

1 INTRODUCTION

Traditional segmentation models are often limited by
their reliance on closed-set class definitions, which re-
stricts their applicability to dynamic real-world envi-
ronments, where new and diverse objects frequently
appear. Open-vocabulary segmentation, powered by
large visual-language models (VLMs), such as CLIP
(Radford et al., 2021), overcomes this barrier by en-
abling zero-shot recognition of arbitrary classes based
on natural language queries. This adaptability is cru-
cial in applications like autonomous navigation, aug-
mented reality, and robotic perception, where it is im-
practical to exhaustively label every possible object.
CLIP aligns 2D visual and language features within
a shared embedding space, enabling image classifi-
cation/understanding without the need for extensive
retraining.

In 2D segmentation, this flexibility has led to the
development of powerful models (Luo et al., 2023;
Xu et al., 2022). Some methods, like OpenSeg (Ghi-
asi et al., 2021) and LSeg (Li et al., 2022), leverage
CLIP’s embeddings and additional segmentation an-
notation to perform dense, pixel-wise 2D segmenta-
tion. These methods have demonstrated that open-
vocabulary segmentation not only outperforms tradi-

tional closed-set models in adaptability but also pro-
vides a scalable solution for handling diverse tasks
across various domains. However, transitioning from
2D to 3D segmentation introduces unique challenges,
as 3D environments require neural models to interpret
complex spatial relationships and geometric struc-
tures that 2D models do not address.

To tackle these challenges, recent works such as
LERF (Kerr et al., 2023) have embedded CLIP fea-
tures within 3D representations like Neural Radi-
ance Fields (NeRF) (Mildenhall et al., 2020). These
methods aim to bridge 2D VLMs with 3D scene un-
derstanding by enabling open-vocabulary querying
across 3D spaces. However, due to the image-based
nature of CLIP embeddings, which often lack the geo-
metric precision required for fine-grained 3D segmen-
tation, methods either struggle with segmentation in
complex scenes (Kerr et al., 2023), or integrate addi-
tional segmentation models (Engelmann et al., 2024;
Takmaz et al., 2023).

To address these limitations, we propose SPN-
eRF, a NeRF-based approach specifically designed
to incorporate geometric priors directly from the 3D
scene. Unlike prior methods that rely solely on
CLIP’s image-centric features, SPNeRF leverages ge-
ometric primitives to enhance segmentation accuracy.
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By partitioning the 3D scene into geometric primi-
tives, SPNeRF creates primitive-wise CLIP embed-
dings that preserve geometric coherence. This en-
ables the model to better align CLIP’s semantic repre-
sentations with the underlying spatial structure, mit-
igating the ambiguities often associated with point-
wise features.

Furthermore, SPNeRF introduces a merging
mechanism for these geometric primitives, incorpo-
rating an affinity scoring system to refine segmenta-
tion boundaries. This approach allows SPNeRF to
capture semantic relationships between superpoints,
resulting in a more accurate and consistent segmen-
tation output. While avoiding additional segmenta-
tion models or segmentation-specific training data,
our SPNeRF provides a zero-shot architecture for 3D
segmentation tasks.

The main contributions of SPNeRF are as follows:

• Geometric primitives for improved 3D segmen-
tation: We integrate geometric primitives into
NeRF for open-set segmentation, introducing a
loss function that maintains consistency within
primitive-wise CLIP features, ensuring coherent
segmentation across 3D scenes;

• Primitive-based merging with affinity scoring:
SPNeRF employs a merging mechanism that uses
affinity scoring to refine segmentation, capturing
semantic relationships among primitives and im-
proving boundary precision;

• Enhanced segmentation without additional mod-
els: By leveraging primitive-based segmentation
and affinity refinement, SPNeRF improves seg-
mentation accuracy over LERF without relying
on extra segmentation models, preserving open-
vocabulary capabilities with a streamlined archi-
tecture;

2 RELATED WORK

2.1 2D Vision-Language Models

CLIP (Radford et al., 2021) has fueled the explosive
growth of large vision-language models. It consists
of an image encoder and a text encoder, each mapping
their respective inputs into a shared embedding space.
Through contrastive training on large-scale image-
caption pairs, the encoders align encoded image and
caption features to the same location in the embed-
ding space if the caption accurately describes the im-
age, otherwise the encoders push them away. 2D seg-
mentation methods building on CLIP have extended
its potential. Approaches by (Ghiasi et al., 2021; Li

et al., 2022) achieve open vocabulary segmentation
by training or fine tuning on datasets with segmenta-
tion info. These datasets tend to have limited vocabu-
lary due to expensive annotation cost of segmentation,
which leads to reduced open vocabulary capacity as
stated in (Sun et al., 2024; Kerr et al., 2023). The
works of (Sun et al., 2024; Lan et al., 2024) explore
alternative approaches to maximize CLIP’s potential,
achieving competitive semantic segmentation results
while preserving its general language capabilities.

2.2 Neural Radiance Fields

Neural Radiance Fields (NeRFs) (Mildenhall et al.,
2020) represent 3D geometry and appearance with
a continuous implicit radiance field, parameterized
by a multilayer perceptron (MLP). They also pro-
vide a flexible framework for integrating 2D-based
information directly into 3D, supporting complex
semantic and spatial tasks. Works, such as (Cen
et al., 2024), bring class-agnostic segmentation abil-
ity from 2D foundation models to 3D. The method
proposed by (Siddiqui et al., 2022) adds multiple
branches to NeRF for instance segmentation. Works,
like (Engelmann et al., 2024), extend NeRF’s ca-
pabilities to 3D scene understanding by leveraging
pixel-aligned CLIP features from 2D models like (Li
et al., 2022). Our work builds on LERF (Kerr et al.,
2023), which utilizes pyramid-based CLIP supervi-
sion for open-vocabulary 3D segmentation. However,
while LERF’s global CLIP features enable effective
language-driven queries, they often lack the precision
needed for 3D segmentation - a limitation our method
seeks to improve.

2.3 3D Open-Vocabulary Segmentation

Extending open-vocabulary segmentation from 2D to
3D brings challenges, as 2D vision-language mod-
els like CLIP struggle with the spatial complexity
of 3D scenes. Methods like OpenMask3D (Takmaz
et al., 2023) accumulate and average CLIP features
obtained from instance-centered image crops. The
features are then used to represent the 3D instance
for instance segmenation. OpenScene (Peng et al.,
2023) projects 2D CLIP features into 3D by align-
ing point clouds with 2D embeddings using a 3D
convolutional network. This enables language-driven
queries without labeled 3D data. Other methods, like
(Yang et al., 2024), leverage image captioning models
(Wang et al., 2022) to generate textual descriptions of
images, and align point cloud features with open-text
representations. Based on LERF, our method lever-
ages NeRF as a flexible framework for 2D to 3D lift-
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Figure 1: Overview of SPNeRF Pipeline. Given 2D posed images as input, SPNeRF optimizes a 3D CLIP feature field
by distilling vision-language embeddings from the CLIP image encoder. Simultaneously, the radiance field is trained in
parallel. Superpoints, which are extracted from the 3D geometry, are used to enhance both the radiance field and CLIP feature
field during optimization, ensuring better alignment of semantic and spatial information. The training process leverages a
combination of loss functions L to refine the consistency and accuracy of the feature representations. The merging block
combines query labels with superpoints information to produce semantic segmentation results.

ing, avoiding the geometric consistency limitation of
direct 2D projection methods. Furthermore, we take
advantage of simple geometric primitives instead of
full 3D object masks in (Takmaz et al., 2023) to en-
hance spatial coherence across the scene.

3 METHOD

In this section, we introduce SPNeRF, our proposed
method for zero-shot 3D semantic segmentation. SP-
NeRF extends NeRF by incorporating CLIP features
into an additional feature field, building on princi-
ples similar to LERF. We outline the loss functions
which are designed to train this feature field, ensuring
improved consistency of CLIP features within super-
points. Furthermore, we detail a merging mechanism
for robust semantic class score and leverage super-
point affinity scores to refine the segmentation results.
A comprehensive overview of the SPNeRF pipeline is
presented in Figure 1.

3.1 Preliminary: LERF

We first introduce Language Embedded Radiance
Fields (LERF) (Kerr et al., 2023) which SPNeRF is
built upon. LERF integrates CLIP embeddings into
a 3D NeRF framework, enabling open-vocabulary
scene understanding by grounding semantic language

features spatially across the 3D field. Unlike standard
NeRF outputs (Mildenhall et al., 2020; Barron et al.,
2021), LERF introduces a dedicated language field,
which leverages multi-scale CLIP embeddings to cap-
ture semantic information across varying levels of de-
tail. This language field is represented by Flang(x,s),
where x is the 3D position and s is the scale.

To supervise this field, LERF uses a precomputed
multi-scale feature pyramid of CLIP embeddings as
ground truth. The feature pyramid is generated from
patches of input multi-view images at different scales.
Utilizing volumetric rendering (Max, 1995), the lan-
guage field can be used to render CLIP embeddings
in 2D along each ray r⃗(t) = o+ td:

φlang(r) =
∫

T (t)σ(t)Flang(r(t),s(t))dt, (1)

where T (t) represents accumulated transmittance,
σ(t) is the volume density, and s(t) adjusts accord-
ing to the distance from the origin, enabling effi-
cient, scale-aware 3D relevance scoring. The ren-
dered CLIP embedding is then normalized to the unit
sphere similar as in (Radford et al., 2021).

The main objective during training is to align
the rendered CLIP embeddings with the ground truth
CLIP embeddings by minimizing the following loss:

Llang =−λlang ∑
i

φlang ·φgt (2)

where φlang denotes the rendered CLIP embedding,
φgt is the corresponding target embedding from the
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precomputed feature pyramid, and λlang is the loss
weight. This loss encourages CLIP embeddings in
the language field to align with its language-driven
semantic features, thereby allowing open-vocabulary
queries within the 3D scene.

3.2 Geometric Primitive

A core component of SPNeRF is the introduction of
geometric primitives. Following recent works (Yin
et al., 2024; Yang et al., 2023), we employ a normal-
based graph cut algorithm (Felzenszwalb and Hutten-
locher, 2004) to over-segment the point cloud P ∈
RN×3 into a collection of superpoints {Qi}

NQ
i=1, this

results in higher-level groupings that better capture
the geometric structure of the scene. By aggregating
CLIP features at the superpoint level rather than for
individual points, we produce more coherent repre-
sentations, addressing the ambiguities often encoun-
tered with point-wise embeddings.

To ensure consistency in the aggregated CLIP fea-
tures and to align the NeRF representation with the
input point cloud, we introduce two complementary
loss functions: a consistency loss and a density loss.

Consistency Loss. To promote consistency across
batches of points within superpoints, we employ the
consistency loss on sampled pairs of point embed-
dings following the Huber loss, then average the re-
sults across multiple scales. This loss makes the
CLIP embeddings more resilient to outliers, allowing
the embeddings to align closely with the majority of
points in each batch. Given two embeddings, fi and f j,
from a batch of sampled points within a superpoint,
the consistency loss for each pair is defined as:

Lc(fi, f j) =

{
1
2∥fi − f j∥2 if ∥fi − f j∥ ≤ δ

δ∥fi − f j∥− 1
2 δ2 if ∥fi − f j∥> δ

(3)

where δ is a threshold parameter that determines the
transition between the quadratic and linear regions of
the loss. The overall consistency loss for a batch is
then averaged across all scales as follows:

Lc batch =
1
N ∑

(i, j)∈batch

1
S

S

∑
k=1

Lc(fik , f jk) (4)

where N is the number of sampled point pairs, and
batch represents the set of sampled pairs within the
superpoints, S is the number of scales. This averaging
across scales encourages consistent feature alignment
within superpoints.

Density Loss. To ensure that NeRF accurately cap-
tures the geometry of the 3D scene, we use a density
loss to guide NeRF’s density field based on the point
cloud positions. For a given point pi from the point
cloud, we encourage the NeRF density σ(pi) at that
location to be close to 1, indicating high occupancy:

Ldensity =
1
N

N

∑
i=1

(1−σ(pi))
2 (5)

this loss ensures that NeRF correctly represents the
occupied regions of the 3D space, aligning the density
field with the underlying point cloud geometry.

Progressive Training. To ensure effective opti-
mization of SPNeRF, we employ a progressive train-
ing strategy. Initially, we apply the NeRF color ren-
dering loss (Mildenhall et al., 2020) during training to
allow the geometry to converge and establish an spa-
tial structure. Then, we introduce the CLIP language
embedding loss Llang, enabling the language field to
learn meaningful language features for positions in
the 3D field. Finally, we incorporate the consistency
loss Lc batch and density loss Ldensity to enhance the
consistency and robustness of the CLIP embeddings
within superpoints. This staged training process en-
sures a balanced and efficient optimization of both the
geometric and semantic components of SPNeRF.

3.3 Merging Block

Instead of relying on per-point clustering, SPNeRF
assigns segmentation labels based on the relevancy
score between superpoint-level CLIP embeddings and
the target class label embeddings.

Relevancy Score. After training, we begin by us-
ing farthest point sampling to select Np representative
points within each superpoint. Given a sampled point
pi in the superpoint spn, i ∈ {1,2, . . . ,Np}, with Np
being the number of sampled points, n ∈ {1,2, . . . ,N}
and N the number of superpoints. We retrieve the
CLIP embedding fpi of point pi by querying the SPN-
eRF CLIP feature field at pi’s position. These embed-
dings collectively represent the superpoint spn’s CLIP
feature set.

Next, the target class label is encoded using the
CLIP text encoder to produce a positive CLIP embed-
ding fpos. As proposed by LERF (Kerr et al., 2023),
we also define a set of negative CLIP embeddings
{fnegk}, k ∈ {1,2, . . . ,K}. fneg j represent the encoded
features of canonical text like ”object” and ”things”.
For each representative embedding fpi within the su-
perpoint, we compute the cosine similarity with both
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the positive class embedding and each negative em-
bedding. For each point pi, its relevancy score Rpi is
the minimum score across all negative comparisons
after softmax normalization:

F(f1, f2) = exp(sim(f1, f2)) (6)

Rpi = min
K

(
F(fpi ,fpos)

F(fpi ,fpos)+F(fpi ,fnegk )

)
(7)

where exp is the exponential function, sim is the co-
sine similarity, and K is the number of negative em-
beddings.

The relevancy score Rspn for a given superpoint
spn is the median relevancy scores of all sampled
points, which is robust against outliers. The median
point’s CLIP embedding is also used to represent the
superpoint’s CLIP embedding fspn .

Affinity Score. To further enhance the effect of rel-
evancy score, we introduce an affinity score. Same
as calculating the relevancy score, we need positive
and negative embeddings for comparison to define the
score. For the given class, we choose Na superpoints
which have the highest relevancy score as positive su-
perpoints sppos j , and use their CLIP embeddings as
positive embeddings{fpos j}, j ∈ {1,2, . . . ,Na}. We
choose another Na superpoints which have the low-
est relevancy score as negative superpoints spnegk , and
use their CLIP embedding as negative embeddings
{fnegk}, k ∈ {1,2, . . . ,Na}. In order to calculate the
affinity score Aspn sppos j

between a superpoint spn and
a positive superpoint sppos j , we compare fspn with
each positive embedding fpos j and the set of Na neg-
ative embeddings {fneg j}, and select the minimum
score across all negative comparisons:

Aspn sppos j
= min

Na

(
F(fspn ,fpos j )

F(fspn ,fpos j )+F(fspn ,fnegk )

)
(8)

Then, we use the relevancy score Rpos j of each
positive superpoint sppos j as weight to average all Na
affinity scores, and acquire the affinity score Aspn for
the superpoint spn:

Aspn =
∑

Na
j=1 Rpos j ·Aspn sppos j

Na
(9)

The relevance score Rspn for superpoint spn is then
scaled with affinity. The scaled relevancy score R∗

spn
can be calculated as:

R∗
spn = Rspn ·w · (1+(Aspn −min

N
(Aspn)) (10)

where w is the affinity weight, and N is the number of
superpoints.

For each superpoint spn, the class with highest
scaled relevancy score is assigned during semantic
segmentation.

4 EXPERIMENTS

In this section, we present our experimental evalua-
tion assessing both quantitative and qualitative per-
formance. We compare its performance in zero-shot
3D segmentation with respect to the baseline meth-
ods LERF and OpenNeRF. In addition, we conduct
an ablation study to analyze the contribution of each
of SPNeRF’s components, including the consistency
loss and affinity alignment.

4.1 Experiment Setup

We evaluated SPNeRF on the Replica dataset, a stan-
dard benchmark for 3D scene understanding. Replica
dataset comprises photorealistic indoor scenes with
high-quality RGB images and 3D point cloud data,
annotated with per-point semantic labels for a vari-
ety of object categories. This dataset serves as a ro-
bust benchmark for evaluating segmentation in com-
plex, densely populated indoor environments. For
each scene in Replica, 200 posed images are used for
all experiments.

For image language features extraction, we uti-
lized OpenCLIP ViT-B/16 model. We trained our
SPNeRF with posed RGB images and 3D geome-
try, applied zero-shot semantic segmentation without
additional fine-tuned or pre-trained 2D segmentation
models. For evaluation, we followed the approach of
(Peng et al., 2023). The accuracy of the predicted
semantic labels is evaluated using mean intersection
over union (mIoU) and mean accuracy (mAcc).

4.2 Method Comparison

Quantitative Evaluation. We compare with Open-
NeRF (Engelmann et al., 2024), OpenScene (Peng
et al., 2023) and LERF (Kerr et al., 2023). To eval-
uate LERF, we generated segmentation masks by ren-
dering relevancy maps, projecting them onto Replica
point clouds, and assigning each point of the class
with the highest score, same as (Engelmann et al.,
2024) proposed. OpenNeRF is evaluated with their
provided code. In order to provide a comparison of
the models’ own effectiveness on segmentation, we
did not use NeRF-synthesized novel views to fine-
tune the models during comparison. In contrast, SP-
NeRF and LERF use RGB images as input, while
OpenNeRF takes RGB images and corresponding
depth maps as input. Results of OpenScene are taken
from (Engelmann et al., 2024).

Table 1 summarizes the 3D semantic segmen-
tation performance of SPNeRF relative to baseline
methods on the Replica dataset. SPNeRF achieves
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Figure 2: 3D segmentation results in comparison to other methods. Qualitative comparison of 3D semantic segmentation
results on the Replica dataset. Rows display results from (top to bottom) ground truth, LERF, OpenNeRF and SPNeRF, across
3 indoor scenes. SPNeRF demonstrates improved boundary coherence and segmentation accuracy in general.

Table 1: Quantitative results on Replica dataset for 3D se-
mantic segmentation.

Method mIoU mAcc
LERF 10.5 25.8
OpenScene 15.9 24.6
OpenNeRF 19.73 32.61
SPNeRF (Ours) 17.25 31.07

competitive scores with a mIoU of 17.25% and mAcc
of 31.07%. While LERF and SPNeRF both use orig-
inal CLIP to extract semantic information, SPNeRF
improves significantly over the baseline LERF. Al-
though OpenNeRF attains the highest overall perfor-
mance with the support of a fine-tuned 2D model for
segmentation, SPNeRF’s results emphasize its effec-
tive integration of superpoint-based feature aggrega-
tion and language-driven embeddings without addi-
tional 2D segmentation knowledge.

The experimental results demonstrate SPNeRF’s
enhanced capability in maintaining feature consis-
tency within superpoints, especially when evaluated

against the LERF baseline. The 6.75% improve-
ment in mIoU over LERF without structural net-
work changes illustrates the impact of our approach in
aligning semantic language features spatially across
3D fields. Without any 2D segmentation knowledge,
SPNeRF’s results align closely quantitatively with
OpenNeRF which is trained with a 2D segmentation
model, indicating CLIP’s potential for fine-grained
segmentation.

Qualitative Evaluation. Figure 2 illustrates a qual-
itative comparison of segmentation results between
SPNeRF, OpenNeRF, and LERF across various in-
door scenes in the Replica dataset. While the other
methods’ segmentation tend to splash near bound-
aries, SPNeRF demonstrates great boundary coher-
ence and spatial consistency, particularly in scenes
with complex object arrangements. OpenNeRF,
while generally robust in correct class estimation, ex-
hibits minor loss of detail in cluttered environments.
SPNeRF’s superpoint-based segmentation mitigates
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Figure 3: Ablation comparison of consistency loss. Even contrained by the fragmented superpoints, the results w/o loss
tend to be consistent due to the image embedding characteristic of CLIP. The consistency loss helps the model to get more
precise semantic info, especially for large superpoints like wall surfaces.

Figure 4: Ablation comparison. The figure illustrates the improvement by consistency loss and affinity score.

these issues by aggregating features within geomet-
ric boundaries, resulting in coherent representations,
especially when comparing the wall areas with LERF,
SPNeRF learns to concentrate on the correct semantic
even using same network structure.

Overall, the qualitative results highlight the ability
of SPNeRF to deliver competitive 3D segmentation in
complex scenes, complementing its quantitative gains
in mIoU and mAcc. The combination of CLIP em-
beddings and superpoint-based relevancy scoring en-
ables SPNeRF to differentiate structures and maintain
semantic consistency across object boundaries, reduc-
ing noise and improving clarity in less visible areas.

4.3 Ablation Study

To analyze the impact of SPNeRF’s individual com-
ponents, we perform an ablation study by system-
atically removing the primitive consistency loss and
affinity-based refinement. Table 2 presents the quan-
titative results. Removing the primitive consistency
loss results in a notable decrease in mIoU (from 17.25
to 15.31) and mAcc (from 31.07 to 26.82), highlight-
ing its importance in preserving coherent embeddings
within superpoints. As also shown in Figure 3, consis-

tency loss largely improved the precision of classifica-
tion, especially for large superpoints like walls, which
are more likely to contain different semantic embed-
dings, consistency loss helps the CLIP feature field
to learn the most important and distributed semantics
of superpoints. Similarly, excluding the affinity-based
refinement slightly reduced the performance numeri-
cally. As shown in Figure 4, affinity refinement can
improve the segmentation quality by capturing se-
mantic relationships between superpoints, for exam-
ple chair surfaces, and maintain the possibility to over
cover adjacent parts.

Table 2: Ablation study results on the Replica dataset.
Both the primitive consistency loss and affinity refinement
contribute significantly to SPNeRF’s overall segmentation
quality.

Model Variant mIoU mAcc
Full SPNeRF 17.25 31.07
w/o Affinity Refinement 17.13 30.77
w/o Consistency Loss 15.31 26.82
w/o both 13.78 24.59
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5 CONCLUSION

We introduced SPNeRF, a zero-shot 3D segmenta-
tion approach that enhances Neural Radiance Fields
(NeRF) through the integration of geometric primi-
tives and visual-language features. Without training
on any ground truth labels, our model can semanti-
cally segment unseen complex 3D scenes. By embed-
ding superpoint-based geometric structures and ap-
plying a primitive consistency loss, SPNeRF over-
comes the limitations of CLIP’s image-based embed-
dings, achieving higher spatial consistency and seg-
mentation quality in 3D environments, while mitigat-
ing ambiguities in point-wise embeddings. SPNeRF
outperforms LERF and performs competitively with
OpenNeRF, while SPNeRF avoids additional 2D seg-
mentation models required by OpenNeRF. While SP-
NeRF has demonstrated competitive performance, it
also inherits limitations from CLIP’s 2D image-based
embeddings, leading to occasional ambiguities in de-
tails. Future work could explore more efficient alter-
natives to NeRF, such as Gaussian splatting (Kerbl
et al., 2023) or efficiently incorporating 2D founda-
tion models like the Segment Anything Model (SAM)
(Kirillov et al., 2023) to enable instance-level seg-
mentation.
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