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Abstract: In recent years, research focused on emotion based on brain activity has yielded significant insights into the 
mechanisms of information processing in the brain. Leveraging this knowledge, studies have increasingly 
examined the effects of various stimuli on human emotions, with applications progressing in fields such as 
neuromarketing. However, existing methods for emotion estimation from EEG—such as those using power 
spectra, correlations, or deep learning—face challenges in generalizability due to considerable individual 
differences. In this study, we applied multidimensional directed coherence analysis, which can analyze the 
flow of information in the brain, to the measured EEG data. Following this, we trained a neural network using 
data augmented with noise to simulate individual differences, proposing a method capable of generalizable 
emotion inference. As a result, we achieved an average accuracy rate of 99.91% on training data and 90.83% 
on test data. 

1 INTRODUCTION 

Emotion plays a crucial role in human decision-
making and social behavior, drawing increasing 
attention to the relationship between emotion and the 
brain, particularly in neuroengineering. This topic is 
considered highly significant, as understanding the 
connection between emotion and brain activity is 
expected to yield applications in fields such as brain-
computer interfaces (BCI) and neuromarketing. 

The relationship between brain activity and 
emotion has been explored extensively through fMRI 
studies. For example, Papez et al. examined the link 
between human emotions and hippocampal activity 
(Papez, 1937). Irwin conducted functional magnetic 
resonance imaging (fMRI) studies and documented 
amygdala activation at both poles in response to 
specific stimuli (Irwin et al., 1996). George used 
positron emission tomography (PET) on individuals 
experiencing sadness and happiness (George et al., 
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1995). Findings indicated marked activation in the 
limbic system and brainstem during sadness, while no 
similar increase in brain activity was found during 
happiness. Fisher identified the activation of the 
amygdala and hippocampus when subjects viewed 
faces depicting fear. These studies highlight the 
association between certain brain regions and specific 
emotions (Fischer et al., 2003). Another study 
assessed brain activity across various emotional states 
in response to diverse facial and background images 
(Shimada et al., 2009). However, due to the high cost 
of fMRI, it is challenging to apply it extensively in 
emotion-related brain activity studies across various 
fields. 

Therefore, electroencephalography (EEG) is 
widely used as a more economical approach for brain 
activity measurement, particularly in areas such as 
psychiatry. EEG thus offers significant advantages 
for studying brain activity related to a range of 
emotions. 
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If emotions can be estimated from brain waves, 
this could lead to applications in neuromarketing, 
such as product development based on consumers' 
unconscious reactions, as well as in safe driving 
assistance systems that monitor drivers' emotional 
states to help prevent dangerous driving. 

Although several studies have reported emotion 
classification using EEG, many of them focused on 
only 2 to 3 specific emotions (Alarcão & Fonseca, 
2019). However, Plutchik previously reported that 
human emotions can be expressed through a 
combination of 8 basic emotions (Plutchik et al., 
1980). Thus, existing research using brainwave-based 
emotion classification has not fully covered this 
diverse range of emotions. This study aims to classify 
four types of emotional states based on Plutchik's 
eight basic emotions.  

2 RELATED WORK 

There are several challenges in using EEG for 
emotion estimation. These include the fact that EEG 
is a time-series signal with extensive information, 
exhibits significant inter-individual variability, and 
lacks clear patterns associated with specific 
emotional states. Previous studies have attempted to 
capture and classify emotional characteristics in EEG 
through signal processing techniques. Common 
approaches have relied on power spectral analysis and 
electrode correlation information. More recently, 
machine learning-based methods have been explored 
to automatically extract previously unknown 
emotion-related features from EEG signals. 

Zheng proposed a method to estimate three 
emotional states—positive, negative, and neutral—
using the GSCCA method, which identifies 
correlations between electrodes and EEG frequencies 
(Zheng, 2017). Li et al. proposed an estimation 
method for quantifying happiness and sadness using 
CSP and LinearSVM (Li & and Lu, 2009). In their 
study, participants were shown facial images 
representing specific emotions, and their EEG was 
recorded. Emotion estimation with this classifier 
achieved an average test accuracy of 93.5%. Saha 
reports a method using CNN for emotion estimation 
(Saha et al., 2022). However, because DNN-based 
emotion estimation algorithms function as black 
boxes, they cannot reliably estimate emotion based on 
brain activity features identified in EEG and fMRI 
studies. This limitation reduces the reliability of 
EEG-based emotion estimation. 

This study aims to analyze the relationship 
between emotion and brain activity using EEG by 

combining a signal processing method that visualizes 
the correlation and direction of each frequency 
between electrodes with a neural network (NN). In a 
previous study, we proposed two method using 
multidimensional directed coherence analysis to 
visualize brain activity from EEG signals (Torii et al., 
2023; Torii et al., 2024). Multidimensional directed 
coherence analysis tracks brain activity more 
effectively than one-dimensional coherence and was 
used to estimate joy, sadness, anger, and surprise. 
With the exception of joy, multidimensional 
coherence analysis achieved significantly higher 
accuracy than one-dimensional coherence analysis, 
which does not capture the multidimensional flow of 
brain activity. 

We extracted frequency and electrode 
combinations that showed statistically significant 
differences in the small/large relationship of 
multidimensional directed coherence values across 
emotions. These differences were used as rules for 
emotion estimation, termed 'relative emotion rules,' as 
detailed in Section 3.2. In the first method, each 
extracted relative emotion rule was assigned equal 
weight for emotion estimation. However, there are 
varying levels of importance among these rules in 
accurately estimating emotion. 

We then explored a method to enhance accuracy 
by focusing on relative emotion rules that are highly 
effective for emotion estimation in the second 
method. NNs are widely used in various fields to 
provide optimal solutions by weighting data 
appropriately. Previous research describes a method 
for classifying the importance of relative emotion 
rules across four emotions—joy, sadness, anger, and 
surprise—using NNs. 

This study also explored methods to classify four 
emotional states—joy, sadness, anger, and surprise—
by combining multidimensional directed coherence 
analysis, noise, and NNs. By incorporating noise, we 
aimed to represent individual variability in EEG 
signals, and by utilizing all values obtained from the 
analysis—not just those used in the relative emotion 
rule—we sought to extract features that, while not 
statistically different, play a crucial role in accurate 
emotion estimation. 

The contributions of this study are as follows. 
First, by combining multidimensional directed 
coherence analysis with NNs, we achieved a higher 
accuracy rate than previous methods in the test data. 
Second, by analyzing the NN weights, we 
demonstrated the potential to identify not only areas 
with significant differences between emotions but 
also subtle features that are important for emotion 
classification. This approach, which leverages cost-
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effective and widely accessible EEG devices to 
enable broader emotion classification, holds potential 
for applications in diverse fields such as 
neuromarketing, driver assistance, and robotic 
collaboration through emotion state inference. 

3 PROPOSED METHOD 

We have previously reported on methods for 
estimating emotion using EEG with 
multidimensional directed coherence. In the initial 
study, we applied multidimensional directed 
coherence analysis to EEG data representing specific 
emotional states, extracting statistically distinct 
features for each frequency and electrode 
combination. These features were termed 'relative 
emotion rules, and unknown emotional states were 
identified by comparing them with these rules and 
employing a majority voting principle. 

In the subsequent research, we suggested a 
method for evaluating the importance of relative 
emotion rules by applying weighting based on a NN, 
rather than treating all rules as equal. 

In this paper proposes an inference method that 
directly applies a NN to the values obtained from 
multidimensional directed coherence analysis 
without using relative emotion rules. By 
incorporating noise to represent individual variability, 
we achieved high accuracy. 

3.1 Multidimensional Directed 
Coherence 

First, multidimensional directed coherence analysis is 
described (Sakata et al., 1998). Studies using fMRI on 
emotion have reported that activity in specific regions 
of the brain is associated with specific emotions 
(Fischer et al., 2003). Therefore, in this study, a 
multidimensional directed coherence analysis was 
conducted to visualize information flow, as 
considering the source of EEG signals is essential for 
accurate emotion estimation. Other analytical 
methods do not consider for information flow. 

The coherence analysis method in signal 
processing explains the level of coherence between 
two time-series signals x(t) and y(t) (whether they are 
in phase or correlated). Furthermore, the directed 
coherence analysis method can be used to determine 
the direction of coherence. 

Multidimensional directed coherence analysis is 
an extension of directed coherence analysis. 

Multidimensional directed coherence analysis 
estimates the direction of signal propagation at a 

specific frequency between electrodes, assuming both 
immediate, delay-free signals from sources near the 
electrode where the EEG is measured and delayed, 
attenuated signals from sources near other electrodes. 
Directed coherence analysis, which takes into account 
only signal propagation between two electrodes, can 
incorrectly indicate apparent signal flow, such as a 10 
Hz flow between electrodes xଵ and xଷ, as illustrated 
in Figure 1 (Kamitake et al., 1982). In contrast, 
multidimensional directed coherence analysis can 
eliminate this apparent signal flow by using phase 
information across all electrodes and accounting for 
the temporal relationship between them.  

 
Figure 1: Instances of misinterpretation that may arise when 
employing directed coherence analysis.  

The formula for multidimensional directed 
coherence analysis was derived in a previous study 
(Sakata et al., 1998). Multidimensional directed 
coherence analysis can not only detect the coherency 
components that conventional coherence analysis 
could detect, but also the temporal backward/forward 
relationship among them. This relationship is 
interpreted as information flow. Multidimensional 
directed coherence is calculated with 
multidimensional autoregressive (AR) model 
estimation. An AR model regresses the current values 
using historical data. Assume that the EEG time series 𝑥ሺ𝑛ሻ is represented by an AR model in Equation (1). 
Here, 𝛼 is the AR coefficient, 𝛽 is the disturbance, 
and 𝑀 is the AR order. 

𝑥 ൌ  𝛼𝑥ି  𝛽𝜔ெ
ୀଵ  (1)

 Let 𝐴 and 𝑏  be the AR coefficients for the 
signal between electrodes 𝑖 and 𝑗 obtained by Fourier 
transforming both sides of equation (1) and predictive 
residual, respectively. Let the number of electrodes 
for measuring EEG be k, frequency be f, white noise 
with zero means and one variance be 𝜔୬ , power 
spectrum at electrode 𝑖 be 𝑃௫ሺ𝑓ሻ, and cross-spectrum 
between signals obtained from electrodes 𝑖 and 𝑗 be 𝑃௫௫ೕሺ𝑓ሻ. In this study, γ୧୨ሺ𝑓ሻ is the multidimensional 
directed cross-spectrum and is defined in equation 
(2). Furthermore, the multidimensional directed 
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coherence between measurement electrodes i and j 
can be expressed as หγ୧୨ሺ𝑓ሻหଶ, where the direction of 
information flow indicated by the multidimensional 
directed coherence is 𝑥 → 𝑥. 𝛾ሺ𝑓ሻ ൌ 𝑃௫ఠೕሺ𝑓ሻට𝑃௫ሺ𝑓ሻ ⋅ 𝑃ఠೕሺሻ 

ൌ A୧୨ሺ𝑓ሻ ⋅ 𝑏ට𝑃௫ሺ𝑓ሻ ሺ𝑖, 𝑗 ൌ 1,2,⋅⋅⋅ , 𝑘ሻ (2)

3.2 Relative Emotion Rules 

For the selected EEG, the multidimensional directed 
coherence analysis described in 3.1 was applied to 
obtain the correlation and direction of information 
flow (information flow in the brain) for each 
combination of electrodes and each frequency. Figure 
2 displays the shape of analyzed data. The vertical 
axis represents a combination of electrodes, and the 
horizontal axis represents frequencies from 0 to 40.48 
Hz. The number of subjects is represented in the 
depth direction. Analysis data is obtained for all 
subjects and each emotion. These data were divided 
into training data to create an emotion estimation 
algorithm and test data to verify the accuracy of 
emotion estimation. 

In the context of two emotions, if Welch’s t-test 
at a significance level of 5% reveals a significant 
difference in the mean values of multidimensional 
directed coherence for each emotion at a certain 
frequency for a specific combination of electrodes, 
then a significant difference can occur in the amount 
of information flow within the brain between the two 
emotions for that electrode combination and 
frequency. 

We used this difference in significant information 
flow between emotions (relative emotion rule) for 
estimating emotions. All emotion combinations, 
electrode combinations, and frequency patterns were 
examined to obtain relative emotion rules.  

3.3 Proposed Method 

This section explains the conventional emotion 
estimation method based on the relative emotion rules 
established in Section 3.2, and compares it with the 
proposed method, which does not rely on relative 
emotion rules. 

First, we describe the conventional method. Using 
the EEG of a specific emotion in the training data, we 
obtained the distribution of values of multi- 
 

 
Figure 2: Shape of analyzed data using multidimensional 
directed coherence. 

dimensional directed coherence for a specific 
combination of electrodes at a specific frequency, 
which was approximated by a normal distribution. 
Next, when estimating the emotion, the normal 
distribution was compared with the test data for 
which the emotion was unknown. When the value 
obtained by integrating the probability density 
function of the normal distribution from ∞ to the 
value of multidimensional directed coherence of the 
test data was larger than a predetermined smaller 
percentage (discrimination threshold), the value is 
determined to be considerably larger than the 
distribution of directed coherence values of the 
specific emotion. By, contrast, when the value 
obtained by integrating the probability density 
function of the normal distribution from -∞ to the 
value of multidimensional directed coherence of the 
test data was smaller than the discrimination 
threshold, the value is determined to be considerably 
smaller than the distribution of directed coherence 
values of the specific emotion.  

 Based on the large/small relationship with the 
specific emotion of the obtained training data, a 
relative emotion rule was extracted for which this 
large/small relationship was consistent. The relative 
emotion rule indicates the large/small relationship of 
values between two emotions, one of which was set 
to a specific emotion of the training data such that the 
other emotion can be inferred to be the emotion of the 
test data. This procedure was performed for all 
electrode combinations and frequencies, and the 
emotion of the test data inferred from all extracted 
relative emotion rules was used to determine the most 
plausible emotion based on the principle of majority 
rule voting, resulting in the final emotion estimation. 
Figure 3 displays the flow of emotion estimation as 
“Previous Method 1”.  

The second method is shown as "Previous Method 
2" in Figure 3. This method based on the large/small 
relationship obtained by comparing testing data and 
discrimination threshold, 1 was set when this 
large/small relationship matched the relative emotion  
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Figure 3: Estimation process of the two preceding methods and the proposed method. 

rule and 0 when this condition was not satisfied.These 
results were used as input data to estimate the 
emotions using a NN.  Using an NN, the rules are not 
treated in the same rank when estimating each 
emotion. However, the values are adjusted using the 
weight coefficients. Larger coefficients can be 
applied to rules that are more important for estimating 
emotion, and smaller coefficients can be applied to 
less important rules, allowing estimation to be 
performed with sorting of rules.   

The proposed method is shown in Figure 3 as 
"Proposed Method". Two types of data are prepared: 
data obtained after multidimensional directed 
coherence analysis and data with added noise post-
analysis. These two datasets are shuffled and divided 
into training and test data. Next, the two-dimensional 
post-analysis data are converted into one-dimensional 
data, and all values obtained from the analysis are 
used as input data for the NN. 

The NNs used in both the previous method 2 and 
the proposed method were simple, consisting of only 
two layers: an input layer and an output layer. We 
used stochastic gradient descent (SGD) as the 
optimizer, Softmax as the activation function, and 
CrossEntropyLoss as the loss function. We stopped 
the training when the loss stopped decreasing to avoid 
overfitting. 

4 EXPERIMENTS 

The proposed method in this paper aims to evaluate a 
broader range of emotions based on Plutchik's basic 
emotions. Publicly available datasets did not include 
emotions comparable to those targeted by this 

method; therefore, specific emotional states were 
generated using images based on techniques from 
previous studies. (Torii, 2023).  

Informed consent was obtained from the 
participants regarding the purpose of the experiment 
and the risks associated with participation in the 
experiment by procedures approved by the Bioethics 
Committee for Human Life at Tokyo Denki 
University. Furthermore, their written consent was 
obtained for participation. 

EEG measurements were performed within 1 min 
of image presentation. The electrode arrangement 
was based on the international 10–20 method, and the 
unipolar derivation method was used with the average 
of the two earlobe electrodes as the reference 
electrode. The measured data were digitized and 
recorded at a sampling frequency of 200 Hz. The 
measured EEG data were pre-processed using a high-
pass filter with a cutoff frequency of 0.5 Hz, and a 
low-pass filter with a cutoff frequency of 60 Hz. EEG 
data was measured at Fp1, Fp2, F3, F4, P3, P4, T3, 
T4, O1, and O2 using the average potential of 
earlobes A1 and A2 as a reference. During the 
measurements, the participants were instructed to 
minimize body movements and blinking. However, if 
a significant artifact was detected, the measurements 
were repeated. The subjects included 30 healthy 
individuals, comprising 23 males and 7 females, with 
an average age of 21.9 years (±1.57). 

EEG data from the subsequent 20 s (from the 40th 
to the 60th second) of the 1 min of the measured data 
were used as EEG data. 

In the analysis, 8096 frequencies, from 0 to 40.48 
Hz at 0.005 Hz intervals were used. Two electrodes 
were selected from 10 electrodes. Then, a total of 90 
combinations of electrodes were evaluated.  
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To validate the proposed method, we compared 
emotion estimation using relative emotion rules with 
a method that generates relative emotion rules 
through coherence analysis, which visualizes the 
actual correlations between electrodes, rather than 
using multidimensional directed coherence analysis. 

The data used to create the relative emotion rules 
and train the NN were designated as training data, and 
the data that were not used were designated as test 
data. 

5 RESULTS 

The dataset for training the neural networks (NNs) 
was split into training (90%) and test (10%) sets, 
using 10-fold cross-validation. Emotion estimation 
was performed on both sets in each fold, and the 
average accuracy was computed over 10 folds. Figure 
4 shows results of NN training and inference using 
noiseless data from multidimensional directed 
coherence analysis of EEG signals, as well as results 
when combining this data with noise-augmented data. 
White noise (mean: 0, variance: 1) was used as the 
noise source. Training with only noiseless data 
achieved average accuracies of 75.68% (±10.16) for 
training and 28.33% (±10.67) for test sets. When 
noiseless data was combined with noise-augmented 
data, accuracies improved to 99.82% (±0.41) for 
training and 71.67% (±5.20) for test sets, showing 
noise addition enhances test accuracy. 

Subsequently, different types of noise were 
introduced to examine their effects on training and 
inference performance. Unlike white noise, which has 
a uniform power spectrum across all frequencies, 
pink noise has higher power in low-frequency 
components, with power spectral density decreasing 
as frequency increases. The noise types used are as 
follows: 
 White Noise (mean: 0, variance: 0.1) 
 White Noise (mean: 0, variance: 0.01) 
 Pink Noise 

Figure 5 shows the results of adding these noise 
types to the training data. With white noise (variance 
0.1), the average accuracy was 99.49% (±0.73) for 
training and 75.42% (±5.09) for test data. For white 
noise (variance 0.01), training accuracy increased to 
99.73% (±0.46), while test accuracy dropped to 
68.33% (±6.77). Pink noise achieved the highest 
accuracy rates, with 99.91% (±0.18) for training data 
and 90.83% (±4.86) for test data. Among the tested 
noise types, pink noise provided the best overall 
performance. 

 

Figure 4: Average accuracy rate of the proposed method 
with noise and noiseless conditions. 

 
Figure 5: Comparison using pink noise and white noise with 
varying levels of variance is presented as follows: Blue: 
pink noise, Orange: white noise with a variance of 0.01, 
Green: white noise with a variance of 0.1, Cyan: white noise 
with a variance of 1. 

To confirm whether the proposed method 
captures essential features for emotion representation 
better than statistically significant relative emotion 
rules, we compared several approaches: using only 
the relative emotion rule (previous method 1), 
combining the rule with NNs (previous method 2), 
and coherence-based methods without considering 
multidimensional flow. Figure 6 shows the estimation 
results. For the proposed method, we used pink noise, 
as it demonstrated the highest accuracy rate. 

The average accuracy rates for the previous 
method 2 were 95.06% (±2.77) for training and 
41.44% (±3.98) for test data, while for previous 
method 1, they were 58.51% (±4.86) and 31.07% 
(±3.42), respectively. The conventional coherence 
analysis method with relative emotion rules yielded 
accuracies of 45.95% (±2.81) for training and 37.98% 
(±3.42) for test data. 

Previous method 2 uses binary values (1 or 0) for 
inference, whereas the proposed method incorporates 
correlation values from multidimensional directed 
coherence analysis. To examine the impact of input 
data flexibility, we compared results using only 
relative emotion rules with those using correlation 
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values post-analysis. For matches with the rules, the 
correlation values were retained; for mismatches, the 
values were set to 0. 
 Figure 7 shows the results. Using correlation 
values for unknown emotions from all electrode 
combinations and frequencies in the relative emotion 
rules, the average accuracy was 71.31% (±19.13) for 
training and 40.12% (±2.25) for test data. When 
retaining correlation values for matches with the rules 
and setting mismatches to 0, the training accuracy 
was 83.57% (±7.78), and the test accuracy was 
41.79% (±2.58). 

 
Figure 6: Average accuracy rate: Blue: Proposed method 
(pink noise), Orange: Previous method 2, Green: Previous 
method 1, Cyan: Using coherence method 

 
Figure 7: Comparison of the average accuracy rates: Blue: 
using 0 or correlation values from multidimensional 
directed coherence, Orange: using the correlation values 
specified in the relative emotion rules, Green: using all the 
correlation values. 

6 DISCUSSIONS 

Comparing the results of applying all correlation 
values from multidimensional directed coherence 
analysis to the NN showed that adding noise to the 
data improved accuracy for both training and test sets 
compared to using noiseless data. This improvement 
likely stems from the inclusion of noise-augmented 
data in the training set, which enhances learning by 

better reproducing regions with significant individual 
differences. 

Among the four noise types tested, including 
white noise with a mean of 0 and variance of 1, no 
notable differences were observed in training 
accuracy. However, in the test data, pink noise 
improved accuracy by approximately 10% compared 
to white noise conditions. This suggests that 
individual differences are more concentrated in low-
frequency components than distributed across the 
frequency spectrum. 

In addition to pink and white noise, other colored 
noises such as brown, blue, and violet noise were also 
evaluated. Their definitions are based on Beran et al. 
(2013) and Kasdin and N.J. (1995). When applied, 
these noises resulted in lower test accuracies than 
white noise. 

Blue and violet noise increase power in high-
frequency components, which do not effectively 
represent individual differences occurring in lower 
frequencies. Brown noise, while similar to pink noise 
in emphasizing low-frequency components, exhibits 
a steep power decline at higher frequencies, limiting 
its ability to retain necessary high-frequency 
information. This limitation likely explains why 
brown noise did not achieve the same performance as 
pink noise. 

These findings suggest that low-frequency noise 
is critical for reproducing individual differences and 
improving test accuracy, while specific high-
frequency components are also necessary. Pink noise, 
which satisfies both conditions, is particularly 
effective in capturing individual variability. 

A comparison between the proposed method and 
three conventional methods based on the relative 
emotion rule showed that the proposed method 
achieved the highest accuracy for both training and test 
data. This suggests that incorporating noise during 
training not only replicates individual differences but 
also highlights subtle, non-statistically distinct features 
essential for emotion differentiation. 

Additionally, the proposed method was compared 
to two other cases: one using only values from the 
conditions recorded in the relative emotion rule, and 
another assigning a value of 0 when the rule 
conditions did not match the test data. The proposed 
method, which used all correlation values, 
outperformed both, achieving the highest accuracy 
for training and test data. This result suggest that 
using correlation values enhances the NN's flexibility 
during training and enables the extraction of features 
that, while not recorded in the relative emotion rule 
or statistically distinct, are crucial for accurate 
emotion estimation. 
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7 CONCLUSIONS 

In this study, we propose an EEG-based method for 
emotion estimation, where EEG data with and 
without added noise are processed through 
multidimensional directed coherence analysis and 
then used to train a NN. Conventional methods have 
relied on features with statistically significant 
differences among emotions for estimation. In 
contrast, our proposed method utilizes all data from 
the coherence analysis, allowing the NN to identify 
important features for emotion estimation even if 
statistical differences between emotions are absent. 
By incorporating noise to account for individual 
differences, we aimed to capture more generalized 
features. 

The results show that training with noise-added 
data achieved higher accuracy than methods without 
noise or those based solely on the relative emotion 
rule. Among the four noise types tested, pink noise 
yielded the highest accuracy, suggesting its 
effectiveness in representing individual differences. 

Future work will focus on understanding the 
relationship between brain activity and emotion by 
analyzing information flow and frequency between 
electrodes through NN weight analysis. This will help 
identify key features for emotion discrimination, even 
in the absence of statistical differences. Additionally, 
comparisons with other NN-based methods will be 
conducted to further evaluate the effectiveness of the 
proposed approach. 
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