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Abstract: In this paper, we introduce a novel method for optimizing enrollment selection in speaker identification sys-
tems, with a particular focus on low-resource languages. Unlike traditional approaches that rely on random
enrollment samples, our method systematically analyzes pair-wise similarities between enrollment utterances
to eliminate poor-quality samples often impacted by noise or adverse environments. By retaining only high-
quality and representative utterances, we ensure a more robust speaker profile. This innovative approach,
applied to the Vietnam-Celeb dataset using the state-of-the-art ECAPA-TDNN model, delivers substantial
performance improvements. Our method boosts accuracy from 73.38% in bad scenarios to 93.62% and in-
creases the F1-score from 72.91% to 95.48%, demonstrating the effectiveness of focusing on quality-driven
enrollment selection even in low-resource contexts.

1 INTRODUCTION

Speech communication has become an increasingly
popular interface in virtual assistants, especially with
advancements in large language models that enable
understanding of high-level knowledge. Speaker
recognition has garnered significant attention as it en-
hances speech communication by providing added
functionality and security. By enabling speaker
recognition, virtual assistants and smart interaction
systems can respond more naturally and customize
interactions for specific users, improving the overall
user experience (Mohd Hanifa et al., 2021). Addi-
tionally, speaker recognition strengthens security by
preventing unauthorized users from executing critical
commands.

Prior to the deep learning era, most speaker recog-
nition systems relied on i-vector based models (De-
hak et al., 2010), which utilized Mel-Frequency Cep-
stral Coefficients (MFCC) and universal background
models (UBM) built with Gaussian Mixture Models
(GMM). These i-vector approaches projected speaker
information from a high-dimensional UBM space
into a lower-dimensional speaker space. However, i-
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vector models suffered from limited performance due
to their reliance on handcrafted features, which strug-
gled to capture the complex variations in human voice
characteristics, especially under challenging condi-
tions.

However, the advent of deep learning has driven
remarkable advancements in speaker recognition per-
formance, with early deep neural embedding-based
models such as x-vectors (Snyder et al., 2018)
marking a notable leap from traditional i-vector ap-
proaches. The x-vector model pioneered the use
of deep neural networks for generating speaker em-
beddings, laying the groundwork for later innova-
tions. Building on the Time Delay Neural Network
(TDNN) (Peddinti et al., 2015) which is a frame-
level feature extractor, the ECAPA-TDNN architec-
ture (Dawalatabad et al., 2021) introduced refined fea-
ture extraction layers and when combined with the
ArcFace loss function (Deng et al., 2019), achieved an
Equal Error Rate (EER) of 0.87% on the VoxCeleb1
test set (Zeinali et al., 2019), representing a consid-
erable enhancement in accuracy. In addition, ResNet
architectures (He et al., 2016), adapted specifically for
speaker recognition, have demonstrated remarkable
performance by utilizing their powerful feature ex-
traction capabilities. Various ResNet configurations
have yielded impressive outcomes. For instance, the
Thin ResNet-34 model (Chung et al., 2019), paired
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with the Angular Prototypical loss function (Chung
et al., 2020), achieved an EER of 2.21% on the
VoxCeleb1 test set. Further pushing the boundaries,
RawNet3 (Jung et al., 2022) utilized raw audio sig-
nals directly through 1D convolutional layers, attain-
ing an EER of 0.89% on VoxCeleb1. These mod-
els underscore the remarkable evolution and effec-
tiveness of end-to-end deep learning architectures in
speaker recognition.

Although deep learning models have advanced
speaker recognition, significant challenges persist.
While speaker recognition systems face the common
challenge of capturing the natural diversity in human
vocal characteristics—including variations in tone,
pitch, and speaking style within the same individ-
ual—these difficulties. This challenge becomes espe-
cially pronounced in low-resource languages, where
data scarcity limits the ability to create comprehen-
sive speaker representations.

To address this issue, we propose a data-centric
approach that emphasizes selecting high-quality and
representative enrollment samples, especially tailored
for low-resource languages. Our method prioritizes
samples that accurately capture the speaker’s dom-
inant vocal characteristics and eliminates those af-
fected by noise or distortions. This strategy is partic-
ularly crucial in low-resource settings, where limited
data prevents comprehensive coverage of all vocal
traits. Instead, our approach ensures a well-defined
speaker profile by selecting only the most consistent
and reliable vocal traits, which in turn, enhances the
system’s robustness and reliability for speaker identi-
fication tasks.

In this work, we introduce an empirical method
to optimize enrollment sample selection for speaker
identification, aimed at maximizing the effectiveness
of limited data in low-resource settings. Our experi-
ments demonstrate that selecting high-quality enroll-
ment samples leads to significant performance im-
provements in speaker identification. The proposed it-
erative selection method identifies and removes poor-
quality samples, resulting in a high-confidence en-
rollment set. By configuring the total number of en-
rollment samples, our approach also allows for cus-
tomization based on application needs.

The rest of this paper is organized as follows.
Section 2 discusses the existing literature and related
work in models of speaker recognition. Section 3 de-
scribes the proposed method of optimizing selection
of enrolling utterances in speaker identification, illus-
trating our idea, explaining the underlying principles,
and detailing the key steps. Section 4 presents the
experimental setup and configurations, the results of
evaluations, and analyzes the results. Section 5 gives

some concluding remarks and suggests some direc-
tions for future work.

2 RELATED WORK

Before the era of deep learning, speaker recogni-
tion models predominantly used the i-vector method
(Dehak et al., 2010), which extracted speaker fea-
tures based on Mel-Frequency Cepstral Coefficients
(MFCC) and universal background models (UBM).
In this approach, a Gaussian Mixture Model (GMM)
was employed to map the high-dimensional UBM
space to a lower-dimensional i-vector space, provid-
ing a compact representation of each speaker. Despite
its utility, the i-vector approach was limited by its vul-
nerability to variations in speaking style, background
noise, and other environmental conditions. These
limitations reduced its robustness in real-world ap-
plications, as it struggled to consistently differenti-
ate speakers across diverse and unpredictable acoustic
environments.

The shift to deep learning introduced a new era
of speaker recognition architectures, beginning with
x-vectors (Snyder et al., 2018), a deep neural net-
work (DNN) embedding model designed for text-
independent speaker recognition. The x-vector model
consists of three main components: a Time Delay
Neural Network (TDNN) (Peddinti et al., 2015) for
frame-level feature extraction from MFCC inputs, a
statistics pooling layer that aggregates segment-level
statistics, and a soft-max output layer trained with
cross-entropy loss to classify speakers. This archi-
tecture laid the foundation for further advancements
in speaker embedding. Building on this structure,
the ECAPA-TDNN architecture (Dawalatabad et al.,
2021) introduced refined feature extraction layers,
further enhancing accuracy, particularly when paired
with the ArcFace loss function (Deng et al., 2019),
achieving an EER of 0.87% on the VoxCeleb1 test set
(Zeinali et al., 2019).

ResNet (He et al., 2016), initially popularized in
computer vision, has also become a prominent archi-
tecture in speaker recognition. Unlike its use in im-
age tasks, ResNet in audio processing is customized
to work with speech spectrograms, capturing speaker-
specific patterns effectively. Several ResNet configu-
rations, such as Thin ResNet-34 (Chung et al., 2019)
combined with the Angular Prototypical loss function
(Chung et al., 2020), have demonstrated impressive
performance, with Thin ResNet-34 achieving an EER
of 2.21% on the VoxCeleb1 test set.

Further advancements in deep learning for speaker
recognition include the use of raw audio data, exem-
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plified by RawNet3 (Jung et al., 2022). This model
employs 1D convolutional layers to directly process
raw audio signals, eliminating the need for spectro-
gram conversion and enabling the capture of more
granular acoustic features. Combined with the Arc-
Face loss, RawNet3 achieved an EER of 0.89% on
the VoxCeleb1 test set, underscoring the potential of
end-to-end deep learning models in speaker recogni-
tion.

Several techniques of adaptation and normaliza-
tion were proposed to deal with limited enrollment
data (Kimball et al., 1997) and training, enrollment
and test mismatching (Mak et al., 2006), (Glembek
et al., 2014), (Wang et al., 2018), (Aronowitz, 2014),
(Li et al., 2022). Some approaches have been pro-
posed to deal with enrollment of utterances for later
uses in verification or identification processes. (Li
et al., 2024) proposed an augmentation technique that
applies to enrolling utterances which results in con-
sistent performance improvement. (Mingote et al.,
2020) directly trained speaker enrollment models for
each speaker by leveraging an embedding dictionary
stored during the training phase in the last layer of
a deep neural network. The verification scores are
obtained directly from the speaker enrollment models
without using another comparison metric.

Our method prioritizes the selection of high-
quality samples that accurately reflect the speaker’s
dominant vocal traits, while filtering out those af-
fected by noise or inconsistencies. By capturing the
most consistent and reliable vocal characteristics, we
create an effective and representative speaker profile
for recognition tasks.

3 PROPOSED METHOD

Figure 1 illustrates the 3D representation of embed-
dings for seven randomly selected speakers from the
Vietnam-Celeb (Thanh et al., 2023) dataset, after di-
mensionality reduction through the Principal compo-
nent analysis (PCA) (Kurita, 2019) algorithm. These
embeddings were generated using the ECAPA-TDNN
model (Dawalatabad et al., 2021), fine-tuned on the
Vietnam-Celeb (Thanh et al., 2023) data. While there
is clear separation among most speakers, some points
remain indistinct, reflecting cases where embeddings
overlap. Further auditory analysis reveals that these
ambiguous samples are often of lower quality, likely
due to noise or variations in voice tone and pronun-
ciation that deviate from the speaker’s usual patterns.
These represent outlier embeddings that could benefit
from filtering in the data preprocessing phase.

Our proposed approach, which emphasizes the

Figure 1: Representation of Speaker Utterances.

careful selection of high-quality samples, proves par-
ticularly advantageous in low-resource languages,
where it enables performance levels comparable to
systems using extensive datasets. This efficiency
makes the method highly suited to low-resource con-
texts, where obtaining large datasets can be chal-
lenging. While this method requires tonal consis-
tency during enrollment, potentially leading to au-
thentication rejections when a user’s voice tone varies
significantly, this trade-off enhances system robust-
ness—a compromise acceptable in low-resource lan-
guage contexts, where consistent enrollment data sig-
nificantly improves performance without requiring
large datasets.

Based on these observations, our method relies on
two key assumptions:

• Higher similarity among samples within the en-
rollment set likely indicates convergence toward
the speaker’s standard voice under optimal condi-
tions, minimizing variability in vocal traits.

• Increasing high-quality samples in the enroll-
ment set enhances system robustness, allowing
a smaller set of samples in low-resource lan-
guages to achieve comparable robustness to larger
datasets in high-resource languages.

Initially, we hypothesized that high-quality sam-
ples alone would be sufficient. However, our find-
ings showed that a more nuanced approach is neces-
sary. Thus, we propose a data-centric solution that
involves optimizing sample selection based on a fine-
tuned positive threshold.

The positive threshold optimizes Equal Error Rate
(EER) during training, ensuring that selected enroll-
ment samples have a pairwise similarity meeting or
exceeding this threshold. This approach creates a
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consistent and representative enrollment set, reducing
noise and environmental variability.

In our experiments, we also observed diminish-
ing returns with increasing sample quantity, reveal-
ing that more data does not necessarily improve per-
formance. We therefore propose selecting an opti-
mal sample quantity at which performance stabilizes,
achieving a balance between complexity and accu-
racy. In summary, our solution comprises three key
steps:

• Define a positive threshold during training to en-
sure high-quality, consistent samples.

• Ensure each sample pair in the enrollment set
meets or exceeds the positive threshold, forming
a homogeneous and representative set.

• Determine the optimal sample quantity to prevent
redundancy or noise, balancing performance and
complexity.
Figure 2 presents an example enrollment set con-

taining four utterances. When adding a new sample
(5), we calculate its similarity to each existing sam-
ple. Sample (5) is closely aligned with samples (1)
and (2), indicated by solid connections, while sample
(2) is also close to (1). These samples form a high-
similarity cluster, from which we can select (1), (2),
and (5) as candidates. However, sample (5) lacks sim-
ilarity with samples (3) and (4), represented by dashed
lines, and thus does not meet the positive threshold for
a cohesive enrollment set.

Figure 2: Example of Enrollment Selection Based on Pair-
wise Similarity.

These steps aim to create a robust enrollment pro-
cess that represents dominant vocal traits, enhanc-
ing system performance while resisting variations in
speech style and environmental factors.

4 EXPERIMENTS

4.1 Dataset and Experimental Setup

In this study, we used the Vietnam-Celeb dataset
(Thanh et al., 2023), which consists of voice samples

collected from 1,000 distinct speakers. This dataset
was split into three subsets: 900 speakers for train-
ing, 50 speakers for validation, and 50 speakers for
testing. The primary goal of our experiments was to
evaluate the effectiveness of our proposed method of
enrollment selection with speaker recognition model
ECAPA-TDNN (Dawalatabad et al., 2021) which
was found efficient for Vietnamese (Ngo and Le,
2024).

We chose this dataset because Vietnamese is a
low-resource language, making it an ideal choice to
rigorously evaluate our algorithm’s effectiveness un-
der challenging conditions. By using Vietnamese, we
can accurately assess the algorithm’s performance in
optimizing enrollment selection and speaker recogni-
tion accuracy when data is inherently limited.

4.1.1 Data Quality Control and Mislabeled
Samples

During the initial data inspection, we discovered that
a significant number of samples in the test set were
mislabeled. This issue posed a potential threat to
the reliability of the experimental results, as inaccu-
rate labeling could lead to biased evaluation metrics.
Upon further investigation, we found that out of 7,351
utterances in the test set, 182 were mislabeled, which
accounts for 2.48% of the total test data.

To ensure the validity of the evaluation, we man-
ually re-labeled the entire test set, correcting the mis-
labeling errors. The re-labeling process was critical
for the integrity of the results, as it directly impacted
the accuracy of performance metrics like Equal Er-
ror Rate (EER). However, due to resource constraints,
we did not re-label the training and validation sets.
We believe that the impact of mislabeled data in the
training and validation sets is minimal, given that only
2.48% of the test set samples were mislabeled. This
relatively small percentage of mislabels is unlikely
to significantly influence the model’s ability to learn.
The ECAPA-TDNN model (Dawalatabad et al., 2021)
is robust and can effectively generalize, allowing it to
focus on key speaker characteristics and ignore occa-
sional mislabeled samples. Furthermore, the model’s
resilience to mislabeled data is enhanced when work-
ing with larger datasets, as the model can still capture
meaningful patterns from the majority of correctly la-
beled data.

4.1.2 Embedding Model and Similarity
Measurement

For embedding extraction, we used the ECAPA-
TDNN model (Dawalatabad et al., 2021), a state-of-
the-art architecture widely recognized for its supe-
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rior performance in speaker recognition tasks. This
model was specifically designed to effectively cap-
ture speaker-specific features and handle variations
in speech signals, making it ideal for this task. The
ECAPA-TDNN model (Dawalatabad et al., 2021) was
chosen not only for its strong performance but also
because it was used in the original Vietnam-Celeb pa-
per (Thanh et al., 2023), ensuring consistency in com-
parison and enabling a fair evaluation of results across
different studies.

The ECAPA-TDNN model (Dawalatabad et al.,
2021) was trained using the 79,789 training samples,
which consist of voice data from 900 distinct speak-
ers. The model’s architecture was fine-tuned during
the training process to optimize its ability to differ-
entiate between speakers based on their unique vocal
characteristics.

To measure similarity between speaker embed-
dings, we employed cosine similarity. Cosine simi-
larity calculates the cosine of the angle between two
embedding vectors, producing a score in the range
[−1,1], where values closer to one indicate higher
similarity. This metric allows for a precise compari-
son of embeddings, as it quantifies the alignment of
speaker-specific features in the enrollment and test
samples, contributing to accurate speaker identifica-
tion.

4.1.3 Threshold Optimization and Evaluation

After calculating the similarity between two embed-
dings, a positive threshold is applied to determine
whether they belong to the same person. If the sim-
ilarity score between two embeddings meets or ex-
ceeds this threshold, they are classified as belonging
to the same individual; otherwise, they are considered
as coming from different individuals. Setting an ap-
propriate positive threshold is essential for balancing
the False Acceptance Rate (FAR), which measures the
rate of mistakenly accepting embeddings from differ-
ent individuals and the False Rejection Rate (FRR),
which represents the rate of incorrectly rejecting em-
beddings from the same individual.

To optimize this threshold, we fine-tuned it using a
validation set of 50 speakers, aiming to minimize the
Equal Error Rate (EER) — the point where FAR and
FRR are equal. By iteratively adjusting the thresh-
old, we identified the value that balances these error
rates, thus reducing both types of errors and improv-
ing the system’s overall accuracy. This process en-
sures that the model is neither overly lenient (which
would increase FAR) nor too strict (which would in-
crease FRR), resulting in a robust and reliable classi-
fication.

Once the optimal positive threshold was estab-

lished, we evaluated the model’s performance on a
carefully re-labeled test set to ensure data accuracy.
This final evaluation provided a comprehensive as-
sessment of the model’s capability to correctly clas-
sify identities under realistic conditions. The model’s
performance was then compared with other state-of-
the-art methods, demonstrating the effectiveness of
our approach in terms of both accuracy and error
rates.

4.2 Experimental Configurations

Our experiments were divided into three main config-
urations, each designed to assess the impact of enroll-
ment data quality and consistency on speaker identifi-
cation performance:

• Bad Case: In this configuration, enrollment sam-
ples have low pairwise similarity, with values
falling below a predefined positive threshold. This
threshold represents the minimum similarity score
needed to consider samples as consistent repre-
sentations of the speaker’s primary vocal charac-
teristics. The Bad Case simulates a worst-case
scenario, where enrollment samples are likely to
be impacted by noise, distortions, or inconsistent
speaker tones. Such poor-quality data introduces
variability and can compromise the reliability of
the speaker profile, leading to decreased identifi-
cation accuracy and increased error rates.

• Random Case: In the Random Case, enrollment
samples are selected without any consideration
for pairwise similarity, meaning samples are cho-
sen randomly from the dataset. This setup repre-
sents a typical real-world scenario where no spe-
cific enrollment strategy is applied, serving as a
baseline for comparison. Some samples may, by
chance, meet the positive threshold, while others
may fall below it, creating inconsistencies in data
quality. The mixed-quality dataset in this con-
figuration reflects common, unsupervised enroll-
ment conditions and helps gauge how our method
compares against a standard, uncontrolled selec-
tion process.

• Optimal Case: In the Optimal Case, only sam-
ples that meet or exceed the positive threshold are
included in the enrollment set. This careful se-
lection process ensures a high level of quality and
consistency, producing a dataset that strongly rep-
resents the speaker’s dominant vocal characteris-
tics. By filtering out samples that do not meet the
similarity criteria, this configuration aims to pro-
vide the most reliable speaker profile, with min-
imal noise or variability. As a result, the Opti-
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mal Case is expected to deliver the highest perfor-
mance in speaker identification, highlighting the
benefits of a controlled, similarity-based enroll-
ment strategy.

An illustration of the algorithm setup for all con-
figurations can be found in Figure 3. For each config-
uration, we systematically varied the number of en-
rollment samples from one to 10 to observe its effect
on performance metrics. This approach allowed us
to analyze how the quality and quantity of enrollment
data interact to influence accuracy and to determine
the optimal number of samples required to achieve
high identification accuracy with a minimal enroll-
ment set size.

Figure 3: Illustration of the algorithm setup across configu-
rations.

The experimental results, summarized in Table 1,
Table 2, and Table 3, demonstrate the substantial im-
pact of enrollment data quality on speaker identifi-
cation performance across three configurations: Bad
Case, Random Case, and Optimal Case. For each con-
figuration, we evaluated the model’s performance by
analyzing Accuracy, Precision, Recall, and F1-score
as the number of enrollment samples increased from
one to 10. We randomly selected the samples for each
sample size with 30 iterations and calculated mean
and standard deviation (std) of the scores. A clear
trend is observed: the Optimal Case yields the high-
est performance across all metrics, substantiating the
effectiveness of our proposed solution.

4.3 Results and Analysis

In the Bad Case configuration, where enrollment sam-
ples fall below the positive threshold, model per-
formance is notably reduced. Accuracy begins at
68.73% with one sample, increasing only marginally
to 73.38% with 10 samples, while high standard devi-
ations across metrics reveal unstable and inconsistent
outcomes. These results underscore the adverse ef-
fects of low-quality and inconsistent samples, which
introduce variability and noise, ultimately degrading
identification accuracy.

Table 1: Performance Metrics for Different Enrollment
Sample Sizes in Bad Case.

Size Accuracy Precision Recall F1-score

Mean Std Mean Std Mean Std Mean Std

1 0.687 0.016 0.868 0.028 0.646 0.019 0.694 0.018
2 0.700 0.020 0.887 0.034 0.658 0.022 0.705 0.021
3 0.708 0.023 0.899 0.035 0.665 0.024 0.712 0.023
4 0.715 0.024 0.900 0.033 0.673 0.026 0.719 0.024
5 0.720 0.024 0.896 0.033 0.677 0.026 0.722 0.023
6 0.724 0.024 0.892 0.033 0.681 0.025 0.724 0.022
7 0.727 0.023 0.887 0.033 0.684 0.024 0.726 0.021
8 0.730 0.023 0.881 0.035 0.687 0.024 0.727 0.020
9 0.732 0.023 0.877 0.036 0.689 0.024 0.729 0.019

10 0.734 0.022 0.873 0.036 0.691 0.023 0.729 0.019

The Random Case configuration, representing
typical real-world conditions without specific enroll-
ment criteria, achieves moderate improvements over
the Bad Case. Accuracy increases from 84.88% with
one sample to 89.38% with 10 samples; however,
these values remain consistently lower than those in
the Optimal Case. F1-score and other metrics sim-
ilarly improve as sample quantity increases, but rel-
atively high standard deviations indicate limited ro-
bustness compared to the Optimal Case configuration.
This baseline scenario illustrates that random sample
selection, while beneficial, lacks the consistency and
quality necessary for optimal performance.

Table 2: Performance Metrics for Different Enrollment
Sample Sizes in Random Case.

Size Accuracy Precision Recall F1-score

Mean Std Mean Std Mean Std Mean Std

1 0.849 0.022 0.943 0.019 0.840 0.026 0.868 0.026
2 0.863 0.024 0.954 0.019 0.855 0.027 0.882 0.026
3 0.872 0.024 0.959 0.018 0.864 0.026 0.891 0.026
4 0.878 0.024 0.962 0.017 0.871 0.026 0.897 0.025
5 0.882 0.024 0.965 0.016 0.875 0.026 0.900 0.024
6 0.886 0.023 0.966 0.016 0.878 0.025 0.903 0.024
7 0.888 0.023 0.967 0.015 0.881 0.024 0.906 0.023
8 0.890 0.022 0.969 0.015 0.883 0.024 0.908 0.022
9 0.892 0.022 0.969 0.014 0.885 0.024 0.909 0.022

10 0.894 0.021 0.970 0.014 0.887 0.023 0.911 0.022

The Optimal Case configuration, where enroll-
ment samples meet or exceed the positive threshold,
consistently demonstrates the highest results across
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all metrics. With only one sample, the model attains
an Accuracy of 92.05%, which further improves to
93.62% with 10 samples. The F1-score shows a sim-
ilar progression, increasing from 94.15% to 95.48%,
with low standard deviations reflecting high reliabil-
ity and robustness. These findings confirm that pri-
oritizing high pairwise similarity in enrollment data
produces a stable and accurate speaker profile, effec-
tively mitigating the impact of noise and variability.

Table 3: Performance Metrics for Different Enrollment
Sample Sizes in Optimal Case.

Size Accuracy Precision Recall F1-score

Mean Std Mean Std Mean Std Mean Std

1 0.921 0.008 0.966 0.005 0.927 0.008 0.942 0.006
2 0.926 0.009 0.970 0.006 0.932 0.008 0.947 0.007
3 0.930 0.009 0.973 0.006 0.936 0.009 0.950 0.008
4 0.932 0.009 0.975 0.005 0.937 0.008 0.951 0.007
5 0.933 0.008 0.974 0.005 0.939 0.008 0.952 0.007
6 0.934 0.008 0.975 0.005 0.940 0.008 0.953 0.007
7 0.935 0.009 0.976 0.005 0.940 0.007 0.954 0.006
8 0.935 0.008 0.976 0.005 0.941 0.007 0.954 0.006
9 0.936 0.007 0.976 0.005 0.941 0.007 0.955 0.006

10 0.936 0.007 0.977 0.005 0.941 0.006 0.955 0.006

Across all the configurations, increasing the num-
ber of enrollment samples generally enhances perfor-
mance; however, the rate of improvement diminishes
beyond 5 samples, particularly in the Optimal Case.
This suggests that, above a certain threshold, addi-
tional samples contribute minimally to performance,
especially when data quality is already high, confirm-
ing that sample quality is more critical than quantity
in enrollment selection.

Although a large number of utterances were used
for evaluations in our experiments, in practice, we can
iteratively choose enrolling utterances that maximize
pairwise similarity instead of random utterances. This
process can be repeated over several iterations until
we get a suitable number of qualified utterances, e.g.,
five utterances.

4.4 Summary of Experimental Findings

Our experimental findings underscore the critical role
of data quality in enrollment selection, with clear ev-
idence that high pairwise similarity among enroll-
ment samples significantly boosts speaker identifica-
tion performance. The Optimal Case, which empha-
sizes selecting samples that meet a predefined pos-
itive similarity threshold, consistently outperformed
the Bad Case and Random Case. Specifically, with
5 enrollment samples, the Optimal Case achieved an
F1-score of 95.21%, compared to 72.20% in the Bad
Case and 90.02% in the Random Case. These results
demonstrate that carefully curated, high-quality sam-
ples are essential for creating robust speaker profiles.

In addition to quality, our findings indicate that in-
creasing the number of enrollment samples can im-
prove performance, but only up to a certain point.
The rate of improvement diminishes beyond 5 sam-
ples, particularly in the Optimal Case, suggesting that
a modest number of high-quality samples is suffi-
cient for reliable identification. This observation con-
firms that sample quality is more critical than quan-
tity, as adding more samples beyond a certain thresh-
old yields minimal benefits.

Based on these insights, the most effective ap-
proach for enrollment selection is to maintain a mod-
est sample size of approximately 5 high-quality ut-
terances per user, with each sample meeting the pos-
itive threshold. This solution optimizes the balance
between performance and resource efficiency, deliv-
ering a robust speaker identification system that max-
imizes accuracy with minimal data. Such a strategy is
especially valuable in low-resource scenarios, where
data quality is prioritized over quantity to achieve op-
timal results.

5 CONCLUSION

In this paper, we presented a data-centric approach
for optimizing the enrollment selection process in
speaker identification systems, with a particular focus
on low-resource languages such as Vietnamese. Our
proposed method emphasizes the importance of se-
lecting high-quality and representative samples dur-
ing the enrollment phase to mitigate the challenges
posed by variability in voice characteristics and envi-
ronmental factors. This approach is especially effec-
tive in low-resource settings, where the availability of
large and diverse datasets is limited, making it diffi-
cult to capture all aspects of a speaker’s vocal charac-
ters.

Through a series of experiments, we demonstrated
that by filtering out low-quality and inconsistent sam-
ples, we can create robust speaker profiles that en-
hance the accuracy and reliability of the speaker iden-
tification system. Our method consistently outper-
formed random and bad enrollment selection strate-
gies, showing significant improvements in key per-
formance metrics such as accuracy and F1-score.
The results validate the effectiveness of leveraging a
small set of high-quality samples to achieve compara-
ble performance to systems that require much larger
datasets in high-resource scenarios.

Additionally, we acknowledged a trade-off in our
approach, where the system requires consistency in
the user’s voice tone between enrollment and authen-
tication. While this constraint may limit flexibility, it
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significantly enhances the robustness of the system,
which is particularly important in low-resource lan-
guages.

Overall, our findings highlight the potential of a
data-centric approach to overcome the challenges in-
herent in low-resource speaker recognition, paving
the way for more efficient and effective systems in
this domain. Future work may explore further opti-
mizations in the enrollment process and investigate
how additional techniques, such as data augmenta-
tion, can be applied to further improve performance
in low-resource settings.
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chot, O. (2019). But system description to voxceleb
speaker recognition challenge 2019. arXiv preprint
arXiv:1910.12592.

Data-Centric Optimization of Enrollment Selection in Speaker Identification

351


