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Abstract: The advent of continuous glucose monitoring (CGM) has made it possible to measure glucose frequently in 
daily life. This availability of glucose time series enables advanced analysis to uncover patterns in glycaemic 
dynamics that were previously undetectable with traditional blood-sample-based measurements. One such 
analytical method is multiscale entropy (MSE), which assesses the complexity of time series data across 
varying time scales. In this study, we performed a comparative analysis of MSE across three cohorts: 
individuals with type 1 diabetes (T1D), type 2 diabetes (T2D) and prediabetes (PRED). Our goal was to 
identify potential differences in glucose dynamics across these groups. We applied three base entropies, 
including approximate entropy (ApEn), attention entropy (AttnEn) and dispersion entropy (DispEn). We 
found that AttnEn and DispEn were useful in distinguishing between individuals with diabetes (both T1D and 
T2D) and those with prediabetes, whereas ApEn did not show significant discriminative power. Furthermore, 
we observed no substantial differences between T1D and T2D in terms of their MSE profiles. These results 
suggest that MSE, with appropriate base entropy measures, holds promise as a tool for developing biomarkers 
to differentiate between diabetes and prediabetes. Future studies could explore additional base entropy 
measures and analysing larger, more diverse datasets.

1 INTRODUCTION 

Diabetes mellitus is a metabolic condition 
characterized by high glucose levels, which can lead 
to several systemic complications, such as 
cardiovascular diseases, nephropathy, stroke, and 
others (Alam et al., 2014). According to the 
International Diabetes Federation, 537 million adults 
worldwide were living with diabetes in 2021, and this 
number is projected to rise to 783 million by 2045, 
which is considered a serious public health problem 
(IDF Diabetes Atlas, 2021). Diabetes is commonly 
classified into two types: Type 1 Diabetes (T1D) and 
Type 2 Diabetes (T2D). T1D is a chronic autoimmune 
condition that causes destruction of pancreatic beta-
cells, which are responsible for insulin production. 
On the other hand, T2D is caused by insulin 
resistance or deficiency in the production of insulin 
(Kahn et al., 2006). Another emerging condition 
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related to insulin malfunctioning is called prediabetes 
(PRED), which can be characterized by high glucose 
levels after meals but with normal fasting glucose 
levels. It is estimated that there are 541 million people 
in the world with this condition. 

Since there is still no cure for diabetes, the best way 
to manage the disease is to change lifestyle habits and 
control blood glucose levels. In recent years, 
continuous glucose monitoring (CGM) has become 
popular as an effective tool for managing diabetes due 
to its affordability and convenience (Battelino et al., 
2019). These sensors are attached to the skin, 
continuously measuring interstitial glucose, providing 
a view of glucose trends and fluctuations throughout 
the day and generating a large amount of data (Rice and 
Coursin, 2012). These data, as represented in Figure 1, 
can be utilized to uncover insights into glycaemic 
dynamics and other aspects of human physiology and 
behaviour (Bertrand et al., 2021; Liang, 2022).  

720
Carvalho, C. F., Karunarathna, T. S. and Liang, Z.
Multiscale Entropy Analysis of Continuous Glucose Monitoring Data: A Comparative Study of Diabetic and Healthy Populations.
DOI: 10.5220/0013257000003911
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2025) - Volume 2: HEALTHINF, pages 720-726
ISBN: 978-989-758-731-3; ISSN: 2184-4305
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



CGM data is complex, containing a wealth of 
information encoded in the temporal and spatial 
patterns of glucose fluctuations. One approach to 
characterize this information is through multiscale 
entropy (MSE) analysis. MSE is based on the simple 
observation that complex human physiological 
signals often exhibit dynamics that fall between 
perfect regularity and complete randomness. These 
signals possess intricate structures that can be 
observed at multiple spatial and temporal scales 
(Costa et al., 2002). While many studies have 
employed MSE to analyse the complexity of glucose 
dynamics, most have focused only on a certain type 
of entropy measure and usually comparing the 
complexity of diabetics to that of healthy individuals. 
There is a lack of understanding regarding the 
comparative analysis of different entropy measures 
across different types of diabetic and prediabetic 
populations. 

In this work, we analysed CGM time series from 
three distinct diabetic populations with MSE, using 
different base entropies: approximate entropy 
(ApEn), attention entropy (AttnEn) and dispersion 
entropy (DispEn). Our goal is to answer the following 
research questions: (1) What are the characteristics of 
these multiscale entropies of continuous glucose 
data? and (2) Which entropy measures are most 
effective at differentiating between the three 
populations? This study makes two key contributions. 
First, it provides new understanding of glycaemic 
complexity by employing multiple entropy measures 
to analyse glucose signal dynamics. Second, it offers 
insights into how different entropy measures can 
effectively differentiate between diabetic and 
prediabetic populations. These findings have clinical 
relevance, as they could lead to the development of 
easy-to-measure biomarkers for early diagnosis. 

2 RELATED WORKS  

Multiscale entropy (MSE) analysis is a powerful 
method to assess the complexity and irregularity of 
a signal across multiple time scales or levels of a 
system. By examining the temporal fluctuations of 
the signal, MSE offers insights into the underlying 
structure of the information encoded (Bar-Yam, 
2004; Nawaz et at., 2024). MSE has been widely 
applied to analyse the complexity of physical and 
physiological signals, such as heart rate, 
electroencephalogram (EEG) and blood oxygen 
saturation (SpO2) (Busa et al., 2016; Chu et al. 
2021; Chen et al., 2022; Liang, 2023). Regarding 
human signals, researchers combined MSE with 

Attention Entropy (AttnEn) and applied the method 
to SpO2 signals to generate features and in 
association with classification machine learning 
models to detect sleep apnea (Liang, 2023). Machine 
learning models were also used in combination with 
MSE and gait force signals to classify 
neurodegenerative diseases, such as Parkinson’s 
disease (Nam Nguyen et al., 2020).  In the context 
of glucose signal analysis, scientists usually apply 
MSE and Sample entropy (SampEn). This 
combination appears most frequently in the 
literature, such when quantifying the complexity of 
the temporal structure of the CGM time series in 
non-diabetic and diabetic people, with findings 
showing that the complexity of the signal is 
significantly higher for the non-diabetic subjects 
(Costa et al., 2014). In order to investigate 
relationship between glucose complexity, glucose 
variability and insulin resistance, Crenier et. al., 
applied SampEn and detrended fluctuations analysis 
into CGM data. As the main results, they found that 
SampEn was inversely correlated with insulin 
resistance, body mass index and glucose variability 
(Crenier et al., 2016). Another study carried out a 
retrospective cross-sectional analysis to evaluate 
and compare relationship between indices of non-
linear dynamics and traditional glycaemic 
variability, including MSE with SampEn (Kohnert 
et al., 2018). Researchers also studied the 
comparison between SampEn and Fuzzy Entropy, in 
the context of artifact blood glucose time series. 
They found that both are sufficient robust to achieve 
a significant classification performance (Cuesta-
Frau et al., 2018). Targeting in T2D pregnant 
patients under treatment, researchers analysed the 
complexity and fractality of glucose dynamics using 
MSE and applying SampEn (Chen et al., 2019). Still 
with the combination MSE and SampEn, this study 
made a comparison of the complexity of CGM 
signals between diabetics and control individuals. 
They found that the complexity of glucose dynamics 
fluctuation decreases in diabetes and MSE 
complexity index could be used as a biomarker in 
the monitoring of diabetes (Chen et al., 2014). In 
other work, scientists applied Approximate Entropy 
(ApEn) in glucose readings from T1D subjects, they 
found an increase of glucose profile complexity due 
to changes of insulin therapies (Lytrivi and Crenier, 
2014). Previous studies did not address the use of 
different entropies in signal complexity analysis and 
considered only a single type of dataset. On the other 
hand, this study contributes to the analysis of 
different entropies in different datasets with distinct 
conditions related to diabetes. 
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3 METHODOLOGIES 

3.1 Datasets 

In this study, CGM data from three databases were 
retrospectively analyzed. The first dataset included 12 
individuals with T1D, 58.3% of whom were women, 
with a mean age of 50 years. These individuals were 
undergoing treatment with Medtronic Enlite 530G or 
630G insulin pumps. No glycated hemoglobin 
(HbA1c) data was available for this cohort. Data 
collection occurred over 8 weeks, which Medtronic 
Enlite CGM sensors recorded blood glucose levels 
every 5 minutes (Marling et al., 2020). The second 
dataset contains time series blood glucose readings 
from 100 individuals with T2D, 44% of whom are 
women, with an average age of 60.1 years. These 
participants wore FreeStyle Libre sensors for periods 
ranging from 3 to 14 days, with glucose readings 
automatically recorded every 15 minutes. After 
removing duplicate and irregular data, a total of 92 
individuals were included in the final analysis and 
had an HbA1c average of 75.9 mmol/mol (Zhao et al., 
2023). The last dataset includes data from 16 
prediabetic subjects, 56.2% of whom were female, 
monitored using the Dexcom G6 device over a 10-day 
period. Glucose levels were recorded at 5-minute 
intervals, and the cohort's average HbA1c was 41.5 
mmol/mol (Goldberger et al., 2000). 

3.2 Multiscale Entropy Analysis  

The MSE analysis involves a series of iterative steps 
for each specified scale factor (τ): a coarse-graining 
technique is applied to the signal, followed by the 
calculation of the base entropy at each scale.  

Regarding the coarse-graining process, the 
glucose level signal is segmented into non-
overlapping sequences for different temporal scales. 
Given a glucose signal 𝑥(𝑖) = {𝑥(1),𝑥(2), … , 𝑥(𝑁)}, (𝑖 = 1,2, … , 𝑁),  the coarse-grained 
signal for scale factor τ (τϵℕା) represented as: 
 𝑥௚ఛ(𝑗) = ൛𝑥௚ఛ(1), 𝑥௚ఛ(2), … , 𝑥௚ఛ(𝑁/𝜏)ൟ           (1) 

 

Assuming 𝑗 = 1,2, … , 𝑁/𝜏 , this signal can be 
calculated by the mean of all data points within the j-
th window. When 𝜏 = 1, 𝑥௚ఛ(𝑗) is equivalent to the 
initial signal. For 𝜏 > 1  the length of the coarse-
grained signal decreases progressively as the scale 
factor τ increases. 

The value of  𝜏 is different and depends on the 
type of dataset. For the T1D and PRED datasets, 
which the glucose recording time is every 5 minutes, 

the value of the scale factor is set to values 1 to 12, 
corresponding to a time range of 5-60 minutes, which 
means that 12 coarse-grained signals were 
generated.  For the T2D dataset, in which glucose 
records are every 15 minutes, 𝜏 values were between 
1 and 4, corresponding a time range 15-60 minutes 
and generating 4 coarse-grained new signals.  

3.3 Base Entropies 

Three different entropy measures were utilized: 
approximate entropy (ApEn), attention entropy 
(AttnEn), and dispersion entropy (DispEn). Unlike 
previous studies that typically relied on a single 
entropy measure, often sample entropy, our approach 
of using three base entropies allows us to capture a 
broader range of characteristics in the CGM data. 
ApEn has been widely used in various types of 
signals, such as physiological and financial data 
(Sabeti, 2009). DispEn was selected because it 
addresses some limitations of the widely used sample 
entropy, particularly in terms of computational cost 
and its ability to capture amplitude patterns in signals 
(Rostaghi et at., 2016). However, both entropy 
measures require parameter tuning, which adds 
complexity and uncertainly to analysis. To mitigate 
this, we also performed analysis on AttnEn, which 
has the advantage of being parameter-free and is 
considered robust to variations in time-series length 
(Yang, et al. 2020). In what follows we provide a 
detailed description of each of these base entropies.   

• Approximate Entropy (ApEn) 
ApEn is a technique used to quantify the amount of 
regularity and the unpredictability of fluctuations 
over time-series data (Pincus, 1991). ApEn is 
calculated with the following steps: 

1. Define parameters: embedding dimension 
(𝑚), tolerance threshold for similarity (𝑟). 

2. Create 𝑚-dimensional vectors from CGM 
time series 𝑥௚ఛ(𝑖). 

3. For each vector 𝑥(𝑖), calculate the distance 
between two vectors 𝑥௚ఛ(𝑖)   and 𝑥௚ఛ(𝑗)  as the 
maximum absolute difference between their 
corresponding components. 

4. Define a function 𝐶௜௠(𝑟)  that counts the 
number of vectors 𝑥௚ఛ(𝑗) that are similar to 𝑥௚ఛ(𝑖), 
meaning the distance is less than equal to 𝑟. 

5. Calculate Φ ௠(𝑟) , the average of the 
logarithms of 𝐶௜௠(𝑟).  

6. Increase the embedding dimension to 𝑚 + 1, 
repeat the steps 2-5, and calculate Φ ௠ାଵ(𝑟) 

7. The formula of Approximate Entropy is:  
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ApEn(𝑚, 𝑟, 𝑁) = Φ௠(𝑟) − Φ௠ାଵ(𝑟) 
• Attention Entropy (AttnEn) 
AttnEn measures the distribution or spread of attention 
across multiple inputs in a system. This method does 
not need any parameter to tune, it is robust to the time-
series length and requires only linear time to compute 
(Yang et al., 2020). Attention entropy is calculated 
with the following four main steps:  

1. Identify the peak points 𝑥௚ఛ(𝑗), which can 
be considered as local maxima or a local 
minimum. 

2. Define the key patterns ω in 𝛺.   
3. Calculate the intervals 𝐼ఠఛ (𝑗) between two 

adjacent peak points for each pattern ω for 
any given sub-series. 

4. Calculate Shannon entropy over 
frequencies of all intervals by the equation 
below: 

AttnEn =  − 14 ෍ ෍ 𝑝(𝐼ఠఛ (𝑘))log 𝑝(𝐼ఠఛ (𝑘))௞ఠ∈ஐ  
• Dispersion Entropy (DispEn) 
DispEn is a recently introduced entropy metric to 
quantify the uncertainty of time series and is fast to 
compute (Rostaghi et al., 2016). To calculate DispEn, 
the followings steps are necessary:  

1. The signal is mapped to c classes, labelled 
from 1 to c. The normal cumulative 
distribution function (NCDF) is used to map 𝑥௚ఛ(𝑗) into 𝑦௚ఛ(𝑗). Next, the linear algorithm is 
used to assign to an integer from 1 to c. For 
each member, is converted to 𝑧௚ఛ,௖(𝑗) =𝑟𝑜𝑢𝑛𝑑(𝑐. 𝑦௚ఛ + 0.5). 

2. Each embedding vector  𝑧௚ఛ,௖,௠(𝑗) ={𝑧௚ఛ,௖(𝑗), 𝑧௚ఛ,௖(𝑗 + 𝑑) … , 𝑧௚ఛ,௖(𝑗 + (𝑚 − 1)𝑑)} , 
with embedding dimension m and time delay 
d, is mapped to a dispersion pattern 𝜋௩బ௩భ…௩೘షభఛ (𝑗).  

3. For each 𝑐௠  potential dispersion, relative 
frequency is obtained as follows: p൫𝜋௩బ௩భ…௩೘షభఛ (𝑗)൯= 𝑁𝑢𝑚𝑏𝑒𝑟{𝑘|𝑘 ≤ 𝑁 − (𝑚 − 1)𝑑, 𝑧௚ఛ,௖,௠(𝑗) ℎ𝑎𝑠 𝑡𝑦𝑝𝑒 𝜋௩బ௩భ…௩೘షభఛ (𝑗)}𝑁 − (𝑚 − 1)𝑑  

4. Based on Shannon’s definition of entropy, the 
Dispersion Entropy is: DispEn൫𝑥௚ఛ, 𝑚, 𝑐, 𝑑൯

= − ෍ 𝑝(𝜋𝑣0𝑣1…𝑣𝑚−1𝜏 (𝑗))log 𝑝(𝜋𝑣0𝑣1…𝑣𝑚−1𝜏 (𝑗))௖೒೘
గୀଵ  

4 RESULTS 

Figure 2 (a) shows the distribution of ApEn across the 
time scales. This figure reveals that the entropy values 
remain relatively stable, making it difficult to 
differentiate between the various diabetic populations 
and prediabetes. This suggests that ApEn is not a 
useful metric for separating the different populations. 
The distribution of AttnEn for three groups at each 
time scale is shown in Figure 1 (b). As seen in the 
figure, it is noticeable trend of entropy decreasing 
over time, which allows for the distinction between 
the T1D/T2D and prediabetic datasets from 10 
minutes onward, continuing through to the time scale 
of 60 minutes. Finally, Figure 1 (c) illustrates the 
distribution of DispEn. From this figure, we observe 
an increase in entropy values over the time scale, with 
a clear separation between the diabetes groups and the 
prediabetic group across the entire time scale. This 
indicates that DispEn can effectively distinguish 
between the CGM data of diabetic patients and 
healthy people. Table 1 shows a summary of these 
observations.  

Table 1: Trends and utilities of three base entropies in MSE 
analysis. 

Entropy Trend Utility 

ApEn Stable Not useful 

AttnEn Decrease Useful when time 
scale is between 
10 – 60 minutes

DispEn Increase Useful 
 

5 DISCUSSIONS 

There are few studies related to CGM time series and 
entropy analysis (Chen et al., 2019; Lytrivi and 
Crenier, 2014). Furthermore, most studies do not 
address other types of diabetes incidence, such as 
prediabetes and their comparisons among all groups. 

This study, we selected three base entropy 
measures for analysis. Our analysis revealed that the 
three base entropy measures exhibited distinct trends 
as the time scale increased, and they showed 
differences in their effectiveness at differentiating 
between diabetic and the healthy population. 
Different patterns among different populations of 
diabetic and healthy individuals are expected due to 
the characteristic blood glucose level behaviours of 
everyone in these groups. Entropy algorithms 
manipulate the analysed signal to detect patterns and 

Multiscale Entropy Analysis of Continuous Glucose Monitoring Data: A Comparative Study of Diabetic and Healthy Populations

723



characteristics inherent to each analysed population. 
We found that approximate entropy was not useful at 
any time scale, attention entropy was effective when 
the time scale ranged between 10 to 60 minutes, and 
dispersion entropy was useful across the entire time 
scale analysed. ApEn, despite being widely used in 
previous studies on physiological signal analysis, did 
not prove useful in distinguishing between the 
diabetes and prediabetes cohorts in our study. This 
suggests that popular and widely used methods are 
not always the most effective for every problem. In 
the case of glucose dynamics, ApEn may not capture 
the dysfunction in the physiological systems 
regulating blood glucose levels in individuals with 
diabetes. In contrast, the other two entropy measures, 
despite being rarely used in the literature, appear to 
provide more relevant insights for our analysis. This 
observation underscores the importance of exploring 
a diverse range of entropy measures, especially those 
that are not yet widely adopted in the literature.  It is 
also important to note that none of the base entropy 
measures were able to differentiate between T1D and 
T2D. The possible reasons for this include similarities 
in glucose dynamics between T1D and T2D or 
limitations in the datasets used. 

It is necessary to interpret these results with 
caution. The utility of the base entropy measures may 
be context dependent. Since our analysis was limited 
to three datasets, each homogeneous in terms of 
subject demographics, it is important not to 
overgeneralize these findings. Further research with 
more diverse populations and additional datasets is 
necessary to draw more definitive conclusions. 
Nonetheless, this research broadens the scope of MSE 
analysis applied to glucose signals, and our findings 

provide valuable insights that can inspire future 
hypotheses and research in this area. 

6 CONCLUSION 

In this study, we investigated the potential of MSE 
analysis to distinguish between individuals with T1D, 
T2D, and prediabetes using CGM data. Our findings 
highlight the importance of selecting appropriate base 
entropy measures. While ApEn, a widely used 
measure in physiological signal analysis, proved 
ineffective for distinguishing between the diabetes 
and prediabetes cohorts, AttnEn and DispEn showed 
promising results, especially in capturing dynamic 
differences across time scales. In particular, DispEn 
was useful across the entire time scale analysed, 
suggesting its potential as a more robust marker. In 
addition, DispEn entropy analysis showed results 
similar to previous studies, in which the complexity 
of CGM signals is greater for non-diabetic than for 
diabetic subjects and that this technique can detect an 
increased regularity in the pattern of glucose 
fluctuations (Costa et al, 2014; Chen et al., 2014). 

Overall, our work suggests that MSE analysis 
holds promise for developing biomarkers to 
distinguish between diabetes and prediabetes. 
Although no significant differences were observed 
between T1D and T2D cohorts, future studies with 
larger and more diverse datasets may help clarify the 
utility of MSE analysis in differentiating these two 
groups. In the next step, we plan to explore additional 
entropy measures to deepen our understanding of 
glucose dynamics across different populations. 

 
Figure 1: Time-series Continuous Glucose Monitoring. 
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(c) 

 

Figure 2: Multiscale entropy analysis on CGM data for T1D, T2D, and prediabetes using different base entropy: (a) 
Approximate entropy, (b) Attention entropy, (c) Dispersion entropy.
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