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Abstract: Gesture recognition has become a crucial component of human-computer interaction, with applications 
ranging from virtual reality to assistive technologies. This study explores Hyperdimensional Computing 
(HDC) as a powerful alternative to traditional machine learning techniques for real-time gesture recognition. 
HDC is known for its robustness and efficiency, enabling fast and accurate classification though the use of 
high-dimensional binary vectors. In this study, we introduce two key variants aimed at significantly improving 
the performance of gesture recognition: (1) an enhancement of item memory representation enabling a better 
gestures recognition, and (2) an advanced temporal encoding mechanism that captures the dynamic nature of 
gestures more efficiently. These modifications are evaluated using a benchmark dataset of surface 
electromyography (sEMG) signals, demonstrating significant improvements in both accuracy and 
computational efficiency. 

1 INTRODUCTION 

Recent advances in the recognition and classification 
of surface electromyography (sEMG) signals are 
opening up new opportunities in fields such as 
human-machine interfaces, robotic control, and 
augmented/virtual reality. These advances rely 
heavily on the accurate measurement of multi-
channel surface EMG signals and the application of 
machine learning (ML) algorithms for gesture 
identification. However, deploying ML models on 
wearable edge devices presents both challenges and 
opportunities. While edge computing enables real-
time processing with reduced latency and improved 
privacy through on-device data handling, machine 
learning models encounter significant challenges in 
addressing the variability of sEMG signals (Hudgins 
et al., 1993). Indeed, factors such as muscle fatigue, 
electrode displacement, changes in arm posture, and 
inter-subject/session variability can severely impact 
classification performance, limiting the robustness of 
conventional ML approaches. 

Current neural network-based solutions, despite 
their potential, are resource-intensive, requiring large 
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volumes of high-quality training data and incurring 
substantial computational and power demands. This 
makes their integration into embedded systems, 
particularly challenging for real-time gesture 
recognition (Hudgins et al., 1993; Benatti et al., 
2014). To address these issues, we introduce 
CompHD; a novel hyperdimensional computing 
(HDC) framework designed for the efficient encoding 
and classification of sEMG signals in hand gesture 
recognition.  

Unlike traditional HDC methods, which rely on 
random or continuous item memories for sequences 
encoding (Rahimi et al., 2016; Sgambato & 
Castellano, 2022), CompHD incorporates optimized 
hyperdimensional representations that allow for more 
efficient and accurate processing of gesture data. The 
HDC-based brain-inspired architecture offers several 
key advantages: it supports one-pass learning, 
reducing energy consumption and accelerating the 
learning process, while also being highly robust to 
noise and computational errors. Moreover, CompHD 
requires only a small training dataset to achieve 
competitive accuracy, making it well suited for low-
power, real-time applications and most-importantly, 
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for on-subject training, as sEMG data are highly 
individual-specific. 

For the first time, we present a comprehensive 
quantitative comparison between the CompHD 
algorithm and conventional machine learning models 
for sEMG-based gesture recognition, using publicly 
available datasets, including Ninapro—the largest and 
most comprehensive sEMG database. Our evaluation 
demonstrates that CompHD not only outperforms 
traditional methods in terms of robustness and 
computational efficiency, but also achieves 
competitive accuracy on this challenging benchmark. 

2 DATABASE DESCRIPTION 

This study utilizes several publicly available 
electromyography (EMG) datasets, including Master 
(Rahimi et al., 2016), Pattern (Lobov et al., 2018), 
Ninapro DB1, DB4 and DB5 (Atzori et al., 2012, 
2014; Pizzolato et al., 2017; Wan et al., 2018). While 
these datasets are commonly used for gesture 
recognition tasks with various classifiers, we are the 
first study to systematically compare them using the 
same HDC model. The datasets differ in terms of the 
number of gestures, subjects, sampling frequencies 
and recording channels, providing a diverse and 
comprehensive foundation for developing and 
analyzing our HDC model for sEMG signals 
recognition. They offer an opportunity to explore 
different signal characteristics and patterns, thus 
facilitating the development and evaluation of 
machine learning models for gesture classification. 
The key characteristics of these datasets are 
summarized in Table 1. 

Table 1: Number of gestures, subjects and channels 
considered for each dataset used in this work. 

 

The feature used in this work for gestures 
classification is the Mean Amplitude Value (MAV) 
which has been shown to be highly effective, 
providing both high accuracy and computationally 
efficiency (Scheme & Englehart, 2014). 

 
Figure 1: Example of raw (a) and preprocessed (b) sEMG 
signals of “Pattern” database. For further clarity, the sEMG 
signals measured on 8 electrodes are shown for only one 
repetition and only five gestures (including unmarked data). 

The MAV is a widely used time-domain feature in 
sEMG signals analysis. It represents the average of 
the absolute values of the signal over a given time 
window. In this study, we use 100ms windows. The 
MAV is particularly effective at capturing muscle 
activation patterns and is less sensitive to noise 
compared to other features, making it well-suited for 
applications such as prosthetic control. In the context 
of sEMG data, where the frequency band of interest 
typically ranges from 10 to 500 Hz, the MAV is 
extracted following preprocessing steps such as 
filtering to remove artifacts and baseline drift. For the 
Ninapro DB1, this preprocessing can be performed 
analogically before digitization to ensure that only 
relevant muscle activation signals are captured. For 
the other datasets, MAV extraction is conducted 
using digital filters. This process involves summing 
the absolute values of the signal within the specified 
window and dividing by the number of samples, 
providing a robust measure of the signal’s amplitude. 
The MAV is particularly effective in detecting 
changes in muscle activity levels, making it crucial 
for real-time EMG signal classification. 

MASTER

PATTERN

NINAPRO DB1

NINAPRO DB4

Gestures 
number

Subjects 
number

5

7

52

52

5

37

27

10

Database Channels
number

4

8

10

12

NINAPRO DB5 52 10 16
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3 HIGH-DIMENSIONAL 
COMPUTING CLASSIFIER 

The Hyperdimensional Computing (HDC) is an 
emerging computational paradigm inspired by the 
human brain's approach to processing information 
and provides a robust, efficient framework for 
managing data represented as high-dimensional 
vectors, called hypervectors (HVs) (Kanerva, 2009; 
Rahimi et al., 2017; Cohen & Widdows, 2015). The 
central concept is to encode information in high-
dimensional vectors that capture rich and complex 
patterns. Some mathematical preserving operations 
are applied to process or retrieve information. As 
information is distributed across all dimensions of a 
hypervector, it is less susceptible to interference. This 
holistic characteristic inherently enhances the 
system’s robustness to noise and partial information 
loss, as individual bit errors are unlikely to 
compromise the encoded meaning.  

3.1 Conventional HDC Encoding 

This study specifically focuses on binary HVs, as 
binary HDC provides significant energy efficiency 
benefits and is particularly well-suited for embedded 
device (Chen et al., 2022) or hardware-based in-
memory implementations (Abhijith & Shekhar, 2019; 
Benatti et al., 2017; Karunaratne, et al., 2020, 2021; 
Li et al., 2016). Figure 2 illustrates the main 
components of the HDC algorithm.  

The newly highlighted areas correspond to the 
specific blocks we have targeted to enhance the 
model’s performance. At each stage of the 
spatiotemporal encoding process, binary operations 
are performed on binary hypervectors. These 
operations are dimension-preserving, ensuring that 
the dimensionality (DIM) remains consistent across 
both the input and output vectors. The core operations 
in hyperdimensional encoding — binding and 
bundling (Rahimi et al., 2017, Cohen & Widdows, 
2015) — enable the creation and manipulation of 
complex symbolic structures. 
• Binding: This operation combines two 
hypervectors (HVs) to create a new one that is distinct 
from both. Binding is performed using element-wise 
multiplication (or XOR for binary vectors), ensuring 
that the resulting hypervector is unique while still 
preserving information from both of the original 
hypervectors. 
• Bundling: This operation combines multiple 
hypervectors into a single hypervector that reflects 
the common features of all the elements in the set.  
 

 
Figure 2: Overview of HDC classifier for gesture 
recognition accounting for the new HD mapping and 
temporal encoder proposed in this work. 

Bundling captures similarities among different 
vectors representing related information and is 
implemented using an element-wise majority 
function across the set of hypervectors. 
 
The bundling operation is essential for linking 
temporal information across multiple hypervectors 
from different timestamps. The hypervector resulting 
from bundling n consecutive temporal hypervectors 
is referred to as n-gram. In hyperdimensional 
computing-based algorithms, n is a hyperparameter 
commonly referred to as NGRAM. Both DIM and 
NGRAM are critical hyperparameters that 
significantly influence the model's performance. 
 
NGRAM captures contextual relationships by 
encoding local dependencies, with larger n-grams 
offering richer contextual information at the expense of 
increased complexity. DIM, on the other hand, 
determines the dimensionality of the hypervectors used 
to represent data in high-dimensional space. It typically 
ranges from several thousand to as many as 10,000 
elements. This high dimensionality ensures that 
randomly generated vectors are almost orthogonal, 
minimizing overlap and enhancing distinguishability. 
A higher DIM typically offers greater capacity for 
encoding and distinguishing patterns. However, it 
requires more computational resources. Striking the 
right balance between these parameters is key to 
optimizing accuracy, efficiency, and generalization in 
hyperdimensional computing systems. 

• Class HV of Gesture #1
• Class HV of Gesture #2

…
• Class HV of Gesture #N

Similarity check

HD mapping (NEW)

Spatial Encoder

Temporal Encoder (NEW)

Testing 
dataset

Learning
dataset

• Query HV (Gesture)
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Associative Memory
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3.2 Our Spatio-Temporal Encoder 

The first modification we propose involves the 
spatiotemporal encoder. In surface electromyography 
(sEMG) signal processing, the sequence order of 
input data is generally less critical than in tasks like 
text or speech recognition, where the position of each 
element in a sequence significantly contributes to its 
meaning. sEMG signals capture the electrical activity 
of muscles during contractions, which typically 
produce patterns based on muscle activation levels 
rather than strict temporal order. As a result, models 
for sEMG analysis can often focus more on feature 
extraction and less on temporal dependencies 
compared to language processing tasks. This 
characteristic allows for the use of simpler 
preprocessing techniques and makes certain machine 
learning approaches, such as convolutional neural 
networks (CNNs), particularly effective for 
interpreting sEMG data. Instead of using the binding 
operation to encode sequences—preserving both the 
values and their order—we propose employing a 
bundling operation to compute the mean vector over 
a temporal window. This method enhances the 
model's robustness to noisy sEMG signals, where 
amplitude variability across time samples could 
otherwise impair sequence encoding and compromise 
signal interpretation. 

3.3 Our Novel Composite Encoding 
(CompHD) 

In text recognition (Abhijith & Shekhar, 2019; Cohen 
& Widdows, 2015; Rahimi et al., 2017), mapping 
data to high-dimensional hypervectors that are 
orthogonal ensures that letters or symbols are 
equidistant from each other, preventing any bias in 
the representation of specific characters. This 
orthogonality is especially advantageous for discrete 
classification tasks, where each character is treated as 
a distinct entity. However, for continuous data such 
as surface electromyographic (sEMG) signals, it is 
crucial to capture subtle variations in signal amplitude 
and frequency. In this case, projecting the data into 
continuous hypervectors offers a more effective 
representation of the continuous nature of sEMG 
amplitudes (Cohen & Widdows, 2015; Rahimi et al., 
2016/2017; Salerno & Barraud, 2024). 

In this case, the distance between hypervectors 
should reflect the magnitude of the data, allowing for 
smoother transitions and a more nuanced encoding of 
continuous signal variations. This continuous 
projection is better suited for tasks that require fine-
grained discrimination between data points, such as 

analyzing muscle activation patterns in sEMG. Thus, 
while orthogonal hypervectors are optimal for 
discrete data like text, continuous hypervectors are 
more appropriate for representing dynamic, 
continuous signals like sEMG. 

Mapping data into hypervectors using a 
combination of random (i.e., orthogonal) 
hypervectors and continuous hypervectors (Figure 3) 
offers significant advantages for pattern recognition, 
particularly in tasks where data points are highly 
similar to previously encountered examples. This 
approach leverages the high-dimensional properties 
of hypervectors to encode information in a way that 
enables fine distinctions between closely related data, 
while still preserving the ability to generalize to 
broader patterns. 

By associating the distance between hypervectors 
with differences in their index positions, this method 
enhances the recognition of subtle variations in data, 
making it highly effective for tasks that require both 
precise identification of known patterns and 
flexibility in adapting to new, unseen data. This dual 
capability is especially valuable in applications like 
biomedical signal processing, where small variations 
can be critical, yet robust generalization is essential to 
handle variability across subjects or conditions 

 
Figure 3: HD mapping scheme used in this work. A new 
HD mapping (COM) is proposed to encode the 
preprocessed and quantized sEMG signals into binary 
hypervectors. The hamming distance between two HVs is 
calculated and compared to conventional Random and 
Continuous mapping. 

3.4 Leave-P-Groups-out  
Cross-Validation 

In this section, we outline the specific training and 
testing procedures used for CompHD, including 
dataset partitioning, cross-validation techniques, and 
performance evaluation metrics to assess model 
accuracy. To evaluate and compare the gesture 
recognition rates for different training sizes while 
maintaining temporal integrity of gestures repetitions, 
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the Leave-P-Groups-Out Cross-Validation (LPGO) is 
an excellent choice. LPGO provides a robust 
approach for evaluating machine-learning models in 
scenarios where data is structured into distinct 
groups, such as gesture repetitions in human activity 
recognition. This technique systematically partitions 
the dataset into smaller groups, such as repetitions, 
ensuring that the temporal structure of the data is 
preserved during validation. During the inference 
phase, the model trained on the remaining groups is 
tested on P small groups, known as the left-out 
groups. The LPGO cross-validation process is 
illustrated in Figure 4.  

In the context of finite sets of gesture repetitions, 
LPGO ensures that the model is evaluated exclusively 
on unseen repetitions, as it is reinitialized at each 
iteration. Thus, LPGO closely simulates real-world 
variability in user performance. This technique is 
particularly valuable for applications like prosthetic 
control or gesture recognition, where consistent 
performance across repetitions is crucial. By 
assessing how well the model generalizes across 
different instances of the same gesture, LPGO 
provides insights into its robustness.  

 
Figure 4: Protocol used for learning and testing phases. 
Leave-P-groups-Out Cross-Validation method is applied to 
use all the repetitions for both training and testing. In this 
example P=1, which corresponds to a simple 5-fold Cross-
Validation. 

4 EMG-BASED GESTURES 
RECOGNITION 

Using this training and testing protocol, we evaluated 
the performance of three state-of-the-art hypervector 
memory models: Random Item Memory (RIM), 
Continuous Item Memory (CIM), and our composite 
model, CompHD (COM), across the databases listed 
in Table 1. This comparison allows us to assess the 
strengths and limitations of each approach in the 

context of gesture recognition, highlighting how 
CompHD leverages the advantages of both RIM and 
CIM to achieve enhanced performance. The results 
are presented in order from the simplest (Master) to 
the most complex database (Ninapro). This 
organization allows us to clearly demonstrate the 
model's effectiveness and robustness, highlighting its 
adaptability across different gesture recognition 
scenarios. 

In Table 2, we present a summary of the database 
gesture information and the optimal NGRAM value, 
one of the key hyperparameters in our model. The 
tuning of these hyperparameters involves identifying 
a set of optimal parameter values for the HDC model, 
aimed at maximizing performance (i.e., recognition 
accuracy) while minimizing memory resource 
allocation. Higher-dimensional hypervectors are 
critical as they help prevent data loss during 
encoding. Several hyperparameters in HDC require 
fine-tuning, including the NGRAM value, which 
determines the number of bundled hypervectors 
during temporal encoding, and the dimensionality 
(DIM) of the hypervectors. 

To optimize these hyperparameters, we conducted 
an extensive Grid search across different NGRAM 
values and dimensionalities. The tuning process 
involved computing the average performance score 
for various combinations of NGRAM and DIM. 
Specifically, we evaluated these parameters using a 
2D heatmap (see Appendix), which allowed us to 
visualize the relationship between the dimensionality 
and the NGRAM value. From this analysis, we 
identified the optimal parameter set that maximized 
the performance score for a given database, ensuring 
the best possible recognition rate. These selected 
values were then applied consistently across all 
subjects in the database.  

Table 2: Average gesture duration, optimal NGRAM and 
dimension of HVs used for each database. 

 
 
 

MASTER

PATTERN

NINAPRO DB1

NINAPRO DB4

Average gesture 
duration (a.u.)

Optimal 
NGRAM (a.u.)

26.5

17

25.08

37.06

25

9

41

51

Database Dimension
of HVs

8192

16384

16384

16384

NINAPRO DB5 25.75 43 16384
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4.1 Master Database 

The first database, known as the Master database, 
contains ten repetitions of five gestures performed by 
four subjects (with one subject excluded due to 
inconsistent repetitions). In our study, the CompHD 
model consistently outperformed both CIM and RIM 
in classification accuracy across all training sizes. 
Notably, CompHD achieved higher accuracy rates at 
each incremental training size, demonstrating its 
robustness on both small and large datasets. For some 
subjects, CompHD’s classification accuracy reached 
an impressive 99.9%, further highlighting its 
precision in delivering accurate classifications across 
subjects. This consistent advantage at every stage of 
training establishes CompHD as a significantly more 
effective model than CIM and RIM for achieving 
high-accuracy classifications under various training 
conditions. Remarkably, CompHD requires only 40% 
of the training data to outperform both CIM and RIM, 
even when larger training sizes (up to 90%) are used. 
This underscores CompHD's superior efficiency and 
effectiveness in gesture recognition tasks. 

 
Figure 5: Master database. (a) Classification accuracy was 
averaged across all subjects and gestures for different 
training sizes. (b) Averaged accuracy achieved per subject 
across all five gestures using the largest training size. 

4.2 Pattern Database 

The second database, known as the Pattern database, 
includes four repetitions of seven gestures performed 
by 36 subjects. This dataset was recorded using eight 
electrodes, providing a rich data source for analyzing 
gesture recognition performance across diverse 
subjects.  

As with the previous database, the CompHD 
model consistently outperformed both CIM and RIM 
in classification accuracy across all training sizes. 
Notably, CompHD achieved higher accuracy rates at 
each incremental training size, demonstrating its 
robustness on both smaller and larger datasets. For 
some subjects, CompHD’s classification accuracy 
reached an impressive 100%, further emphasizing its 
effectiveness in delivering precise classifications 
across different subjects. 

This consistent advantage at every stage of 
training reinforces CompHD as a significantly more 
effective model than CIM and RIM for achieving 
high-accuracy classifications under varied training 
conditions. 

 
Figure 6: Pattern database. (a)  The classification 
accuracy, averaged across all subjects and gestures, was 
evaluated for different training sizes. (b) Averaged 
accuracy achieved per subject across all seven gestures 
using the largest training size. 
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4.3 Ninapro Database 1 

The third database tested, Ninapro DB1, includes ten 
repetitions of 52 gestures performed by 27 subjects. 
This dataset was recorded using 8 electrodes.  

 
Figure 7: Ninapro DB1. (a)  Classification accuracy was 
averaged across all subjects and gestures for different 
training sizes.  (b)  Averaged accuracy  achieved by each 
subject across all 52 gestures using the largest training size. 

While RIM outperforms CIM with larger training 
sizes, the reverse holds true for smaller sample sizes. 
Despite this, the CompHD model consistently 
demonstrated superior classification performance 
across all training sizes compared to both CIM and 
RIM. While the average score amongst subjects is 
approximately 70%.  

For some subjects, CompHD’s classification 
accuracy reached an impressive 85%, further 
highlighting its precision in delivering accurate 
classifications across subjects, even with more 
complex datasets. Notably, CompHD requires only 
40% of the training data to outperform both CIM and 
RIM, even when larger training sizes (up to 90%) are 
used. 

 
 
 

4.4 Ninapro Database 4 

The fourth database tested, Ninapro DB4, includes six 
repetitions of 52 gestures performed by 10 subjects, 
recorded using 10 electrodes. As with the previous 
databases, the CompHD model consistently 
outperformed both CIM and RIM in classification 
accuracy across all training sizes.  

 
Figure 8: Ninapro DB4. (a) Classification accuracy was 
averaged across all subjects and gestures for different 
training sizes.  (b)  Averaged accuracy achieved by each 
subject across all 52 gestures with the largest training size. 

For some subjects, CompHD’s classification 
accuracy reached nearly 80%, further emphasizing its 
ability to deliver precise classifications across 
different subjects. Notably, CompHD requires only 
50% of the training data to achieve similar accuracies 
as both CIM and RIM, even when larger training sizes 
(up to 83.33%) are used.  

The random Item memory (RIM) outperforms the 
Continuous one (CIM) only on the Ninapro database 
1 and 4. However, our new Composite Item Memory 
(COM) is robust across all database and outperforms 
both of the traditional item memories used. 
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4.5 Ninapro Database 5 

The fifth database: Ninapro DB5 includes six 
repetitions of 52 gestures performed by 10 subjects 
and was recorded using 16 electrodes. 

 
Figure 9: Ninapro DB5. (a) Classification accuracy was 
averaged across all subjects and gestures for different 
training sizes.  (b)  Averaged accuracy achieved by each 
subject across all 52 gestures using the largest training size. 

Once again, the CompHD model demonstrated 
superior classification performance across all training 
sizes compared to both CIM and RIM. For some 
subjects, CompHD’s classification accuracy reached 
nearly 80%, further highlighting its efficacy in 
delivering precise classifications across subjects. 
Notably, CompHD requires only 50% of the training 
data to outperform both CIM and RIM, even when 
larger training sizes (up to 83.33%) are used.  

Moreover, CompHD not only achieves better 
accuracy than CIM and RIM, but the latter two 
models also exhibit significant inconsistencies across 
multiple databases. In contrast, CompHD has proven 
its robustness across various datasets and training 
sizes, consistently outperforming both CIM and RIM 
in every case.  

Beyond its impressive accuracy and robustness, 
HDC (Hyperdimensional Computing) also 
demonstrates notable resilience to errors, making it a 

compelling choice for applications requiring fault 
tolerance. This error resilience enhances HDC’s 
suitability for real-world conditions in in-memory 
computing, where environmental and electrical 
variability, along with data imperfections, are 
common challenges. 

5 CONCLUSIONS 

In this study, CompHD consistently outperformed 
both state-of-the-art CIM and RIM, demonstrating 
superior classification accuracy across all training 
sizes while requiring significantly fewer samples. 
This efficiency opens the door to embedded, on-
device training, reducing reliance on large, 
centralized datasets and enabling more adaptive, 
resource-efficient deployments. 

CompHD’s robustness goes beyond performance; 
it also exhibits resilience to data variability and 
encoding errors, which is a critical advantage for real-
world applications that deal with imperfect data or 
noisy environments. These qualities, combined with 
its compatibility with low-complexity and massively 
parallel operations, position CompHD as a highly 
effective choice for embedded systems. Furthermore, 
its high accuracy, efficiency, and fault tolerance make 
it a promising candidate for in-memory computing 
applications. 

ACKNOWLEDGEMENTS 

This project is supported by the “HDC” exploratory 
Carnot project. 

REFERENCES 

Hudgins, B., Parker, P., Scott, R. N. (1993). A new strategy 
for multifunction myoelectric control. IEEE 
Transactions on Biomedical Engineering, vol.40(1), 
82-94. 

Benatti, S., Farella, E., Gruppioni, E., Benini, L. (2014). 
Analysis of robust implementation of an EMG pattern 
recognition based control. International Conference on 
Bio-inspired Systems and Signal Processing 2014 
BIOSIGNAL. 

Rahimi, A., Benatti, S., Kanerva, P., Benini, L., Rabaey, J. 
M. (2016). Hyperdimensional biosignal processing: A 
case study for EMG-based hand gesture recognition. 
Proceedings of the 2016 IEEE International 
Conference on Rebooting Computing (ICRC), San 
Diego, CA, USA, pp. 1-8. 

BIOSIGNALS 2025 - 18th International Conference on Bio-inspired Systems and Signal Processing

770



Sgambato, B., Castellano, G. (2022). Performance 
comparison of different classifiers applied to gesture 
recognition from sEMG signals. In Bastos-Filho, T. F., 
de Oliveira Caldeira, E. M., Frizera-Neto, A. (Eds.), 
XXVII Brazilian Congress on Biomedical Engineering. 
CBEB 2020. IFMBE Proceedings, Vol. 83. Springer, 
Cham. 

Salerno, A., Barraud, S. (2024). Evaluation and 
implementation of High-Dimensionnal Computing for 
gesture recognition using sEMG signals. Proceedings 
of the 2024 International Conference on Control, 
Automation and Diagnosis (ICCAD) 

Lobov, S., Krilova, N., Kastalskiy, I., Kazantsev, V., 
Makarov, V. A. (2018). Latent factors limiting the 
performance of sEMG-interfaces. Sensors, 18(4), 1122. 

Atzori, M., Gijsberts, A., Castellini, C., et al. (2014). 
Electromyography data for non-invasive naturally-
controlled robotic hand prostheses. Scientific Data, 1, 
140053 

Atzori, M., et al. (2012). Building the Ninapro database: A 
resource for the biorobotics community. Proceedings of 
the 2012 4th IEEE RAS & EMBS International 
Conference on Biomedical Robotics and 
Biomechatronics (BioRob), Rome, Italy, pp. 1258-
1265. 

Pizzolato, S., Tagliapietra, L., Cognolato, M., Reggiani, M., 
Müller, H., et al. (2017). Comparison of six 
electromyography acquisition setups on hand 
movement classification tasks. PLOS ONE, 12(10), 
e0186132. 

Wan, Y., Han, Z., Zhong, J., Chen, G. (2018). Pattern 
recognition and bionic manipulator driving by surface 
electromyography signals using convolutional neural 
network. International Journal of Advanced Robotic 
Systems, 15(5). 

Scheme, E., Englehart, K. (2014). On the robustness of 
EMG features for pattern recognition based myoelectric 
control: A multi-dataset comparison. Proceedings of 
the 2014 36th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society, 
Chicago, IL, USA, pp. 650-653. 

Kanerva, P. (2009). Hyperdimensional Computing: An 
Introduction to Computing in Distributed 
Representation with High-Dimensional Random 
Vectors. Cogn Comput 1, 139–159. 

Widdows, D., Cohen, T. (2015). Reasoning with vectors: A 
continuous model for fast robust inference. Logic 
Journal of the IGPL, 23(2), 141-173. 

Rahimi, A., et al. (2017). High-dimensional computing as a 
nanoscalable paradigm. IEEE Transactions on Circuits 
and Systems I: Regular Papers, 64(9), 2508-2521. 

Chen H., Najafi, M. H., Sadredini, E., Imani, M. (2022). 
Full Stack Parallel Online Hyperdimensional 
Regression on FPGA. Proceedings of the 2022 IEEE 
40th International Conference on Computer Design 
(ICCD), Olympic Valley, CA, USA, 2022, pp. 517-524  

Benatti, S., et al. (2017). A sub-10mW real-time 
implementation for EMG hand gesture recognition 
based on a multi-core biomedical SoC. Proceedings of 
the 2017 7th IEEE International Workshop on 

Advances in Sensors and Interfaces (IWASI), Vieste, 
Italy, pp. 139-144.  

Karunaratne G., Rahimi, A., L. Gallo, M., Cherubini, G., 
Sebastian A. (2021). Real-time Language Recognition 
using Hyperdimensional Computing on Phase-change 
Memory Array," IEEE 3rd International Conference on 
Artificial Intelligence Circuits and Systems (AICAS), 
Washington DC, DC, USA, 2021, pp. 1-1 

Li, H., et al. (2016). Hyperdimensional computing with 3D 
VRRAM in-memory kernels: Device-architecture co-
design for energy-efficient, error-resilient language 
recognition. Proceedings of the 2016 IEEE 
International Electron Devices Meeting (IEDM), San 
Francisco, CA, USA, pp. 16.1.1-16.1.4. 

Karunaratne, G., Le Gallo, M., Cherubini, G., Benini, L., 
Rahimi, A., Sebastian, A. (2020). In-memory 
hyperdimensional computing. arXiv preprint, 
1906.01548. 

Abhijith, M., Shekhar, G. (2019). Language classification 
technique using in-memory high dimensional 
computing (HDC). Proceedings of the 2019 2nd 
International Conference on Intelligent Computing, 
Instrumentation and Control Technologies (ICICICT), 
Kannur, India, pp. 293-298. 

APPENDIX 

Master DB: Heatmap showing the accuracy of our HDC
model for different HV dimensions (DIM) and NGRAM. 

Pattern DB: Heatmap showing the accuracy of our HDC
model for different HV dimensions (DIM) and NGRAM. 
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Ninapro DB1: Heatmap showing the accuracy of our HDC
model for different HV dimensions (DIM) and NGRAM. 

Ninapro DB4: Heatmap showing the accuracy of our HDC
model for different HV dimensions (DIM) and NGRAM. 

Ninapro DB5: Heatmap showing the accuracy of our HDC
model for different HV dimensions (DIM) and NGRAM. 
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