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Abstract: This paper discusses the design and implementation of a wearable electrodermal activity (EDA) sensor 

intended to detect subtle changes in skin conductivity, which are indicative of emotional states such as stress 

and anxiety, thus monitoring stress and arousal levels through advanced machine learning techniques. The 

device incorporates innovative conductive lycra combined with silver-silver chloride (Ag/AgCl) electrodes, 

enabling optimal skin contact and enhancing signal reliability. This integration allows for effective 

measurement of EDA. Utilizing the XGBoost algorithm, our machine learning model was trained on the 

ASCERTAIN dataset, achieving an overall accuracy of approximately 77% in predicting levels of arousal. 

While the model exhibited some challenges in predicting intermediate arousal states, it demonstrated strong 

precision and recall for extreme levels of arousal, underscoring its potential applications in mental health 

monitoring and human-computer interaction. The capabilities of this wearable technology for continuous and 

long-term health monitoring pave the way for further research into stress assessment and the understanding 

of emotional responses, emphasizing its relevance in enhancing psychological well-being. 

1 INTRODUCTION 

The autonomic nervous system (ANS) plays a pivotal 

role in regulating numerous physiological processes, 

including the production and distribution of sweat 

through eccrine sweat glands. This regulation is 

crucial for maintaining homeostasis and responding 

to various stimuli, including emotional states 

(Grimnes and Martinsen, 2015). The insulating 

properties of the skin and the conductive nature of 

sweat result in measurable differences in skin 

conductivity (Malmivuo and Plonsey,1995). This is 

attributed to the activation of the ANS, which elevates 

sweat production in the sweat ducts during these 

emotional states. Despite the established link between 

emotional states and skin conductivity, there is a need 

for a wearable, reliable and non-invasive method to 

detect and quantify stress levels based on 

physiological responses. Current methods often lack 

the practicality or wearability required for 

continuous, real-time monitoring in everyday 

situations. A solution that addresses these limitations 
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could have profound implications for enhancing 

human-computer interactions, providing individuals 

with valuable insights into their emotional well-being 

(Bonato, 2003). 

To study electrodermal activity (EDA), the signal 

is divided into skin conductance level (SCL) and skin 

conductance response (SCR), representing tonic and 

phasic components, respectively. The tonic activity 

(SCL) is a slowly changing base signal with 

frequencies below 0.02Hz. The phasic activity (SCR) 

arises from sympathetic activation and includes faster 

signals (frequencies <0.5Hz), characterized by 

significant fluctuations with amplitudes of 0.05µS or 

higher, occurring within 3 seconds after a stimulus. 

Phasic activation can be event-related (ER-SCR) 

following a stimulus or spontaneous (NS-SCR) due to 

normal sympathetic regulation. As represented in 

figure 1, an SCR signal typically appears as a small 

bump on the SCL, with distinct rise and decay phases 

(Boucsein, 2012). 
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Figure 1: Graphic representation of an SCR event. 

The primary objective of this research is to 

develop a wearable sensor capable of detecting subtle 

changes in skin conductivity associated with arousal 

and anxiety. By analyzing these EDA (electrodermal 

activity) signals using machine learning algorithms, 

the sensor will generate a stress score. Beyond mere 

detection, the project aims to translate physiological 

information into customized actions or feedback for 

the user. 

What sets this project apart as innovative is its 

pioneering integration of a wearable device with 

advanced machine learning technology specifically 

designed to detect arousal in real-time. This 

capability allows the sensor to analyze electrodermal 

activity (EDA) signals as they occur, providing 

immediate feedback to users based on their 

physiological responses. Such a dynamic interaction 

creates a highly personalized experience, 

empowering users to gain insights into their 

emotional states and manage stress or anxiety more 

effectively. 

The implications of this research extend well 

beyond mere stress detection. By leveraging real-time 

machine learning analysis of physiological data, the 

project aims to cultivate the development of more 

empathetic and responsive technologies. This could 

greatly enhance various applications, such as 

optimizing user experience in digital interfaces or 

providing timely therapeutic interventions for 

individuals grappling with stress or anxiety. 

Ultimately, the project aspires to make significant 

contributions to the field of human-computer 

interaction by weaving emotional well-being into the 

fabric of technological design. 

2 RECORDING SITE 

SELECTION 

Electrodermal activity (EDA) is crucial in 

psychophysiological research, typically measured on 

the palms due to their high density of eccrine sweat 

glands - 600-700 glands/cm² (Boucsein, 2012). 

However, for practical, non-invasive wearable 

technology, the wrist is an excellent alternative. 

Eccrine sweat glands are distributed throughout 

the body, with the forearm, including the wrist, 

having about 108 glands/cm². A study by van Dooren 

et al. (2012) found that the wrist demonstrated 

intermediate skin conductance responsiveness and 

ranked high for S-AMPL (sum of skin conductance 

responses per minute), comparable to traditionally 

preferred sites like the fingers and feet. The wrist also 

showed significant correlation (r = .55 to .59) with 

finger measurements, suggesting it can reliably 

reflect traditional EDA data. 

The wrist offers practical advantages: it is 

accessible, comfortable for prolonged wear, 

integrates seamlessly with existing wearable devices 

like smartwatches, and is less intrusive than high-

density sites like the palms. 

While palms are the gold standard for EDA 

measurement, the wrist is a practical and reliable 

alternative for wearables. Its responsiveness, 

correlation with traditional sites, and user-friendly 

advantages make it ideal for non-invasive EDA 

recording, supporting applications in 

psychophysiological research and personal health 

monitoring. 

3 MEASURING DEVICE 

3.1 Selection and Implementation of a 
Circuit 

Based on the literature review and the state of the art, 

it was decided that the circuit that seemed most 

appropriate to measure electrodermal activity, taking 

into account the objective of incorporating it into a 

wearable device, was the one described by Poh et al. 

(2010) from M.I.T. It offers a small size, a reduced 

number of components, an EDA measuring range 

within the required values and has no need for the 

calibration of its amplification in contrast with other 

circuits that work with a variable gain, facilitating its 

usability and the complexity of post-measuring 

processing of the obtained EDA signals. 
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Given the exploratory nature of this project, its 

feasibility had to be ensured with limited and easily 

obtained resources. Thus, the decision was made to 

start the construction of this circuit using the most 

widely used A/D converter available in the market: an 

Arduino Board. While there are several types of 

Arduino Boards, the necessity of maintaining a small 

scale for the measuring circuit and the incorporation of 

it into a wireless wearable device – to ensure usability 

– made it clear that the Arduino Nano ESP32 was the 

optimal choice. It has the smallest size among its 

counterparts and benefits from the ESP32-S3 

microcontroller, which provides full Arduino support 

for wireless and Bluetooth® connectivity. Additionally, 

literature indicates that an EDA signal requires at least 

12-bit resolution for reliable measurement (Boucsein, 

2012), and the Arduino Board meets this requirement. 

Consequently, the circuit would be powered by the 

3.3V pin, the dual amplifier by the 5V pin, with both 

components grounded via the GND pins from the 

Arduino Board. Furthermore, both measuring wires 

would connect to the analog pins to record the voltage 

received in each case. 

Moreover, initial components were chosen, with 

price being a major factor since the device is still in 

prototype phase. For the resistors, coal resistors of 

0.25W with a tolerance of 5% were picked. For the 

0.1µC capacitors, the decision was to use ceramic 

capacitors. Finally, to act as the two amplifiers, the 

dual precision operational amplifier LT1013 was 

selected. In the case of the dual operational amplifier, 

although the LM358 was the cheapest option, the 

importance of reducing the oscillation of the amplifier 

to better obtain the EDA signal made it a non-viable 

choice, thus the choice of the dual amplifier of higher 

cost, but also better performance. 

 

 

Figure 2: Final circuit configuration. 

A scheme of the final circuit configuration can be 

observed in figure 2. 

3.2 Simulation, Analysis, and 
Experimental Validation of Circuit 
Performance 

 

 

 

Figure 3: Graphic representations of simulations conducted 

in LTspice for feedback resistor of 10kΩ, 100kΩ, and 1MΩ, 

respectively from top to bottom. 

While the preliminary selection of the circuit and its 

components had been established, a comprehensive 

analysis of the analog circuit remained pending to  
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Table 1: Experimental results of prototype with 10kΩ feedback resistance. 

Resistance (kΩ) 972 461 216 99.0 46.0 21.0 9.83 4.60 

Conductance (μS) 1.03 2.17 4.63 10.1 21.7 46.5 101 217 

Measured mean value 

(μS) 
1.019 2.173 4.549 9.994 21.49 45.63 101.9 218.7 

Standard Deviation 

(%) 
9.76 3.66 2.38 0.82 0.60 0.16 0.29 0.05 

Accuracy (%) 0.95 0.19 1.74 1.06 1.13 1.90 0.11 0.58 

Table 2: Experimental results of prototype with 100kΩ Feedback Resistance. 

Resistance (kΩ) 972 461 216 99.0 45.5 21.5 9.83 4.60 

Conductance (μS) 1.03 2.17 4.63 10.1 21.7 46.5 102 217 

Measured mean value 

(μS) 
1.037 2.184 4.644 10.16 21.97 47.54 109.5 254.2 

Standard Deviation 

(%) 
1.17 0.72 0.35 0.27 0.31 0.36 0.44 1.27 

Accuracy (%) 0.75 0.68 0.32 0.56 0.03 0.17 7.59 16.95 

Table 3: Experimental results of prototype with 1MΩ Feedback Resistance. 

Resistance (kΩ) 968 461 217 98.0 46.0 21.0 9.84 4.61 

Conductance (μS) 1.03 2.17 4.61 10.2 21.7 48.8 101 217 

Measured mean value 

(μS) 
1.031 2.172 4.684 10.65 24.77 65.08 319.5 991.3 

Standard Deviation 

(%) 
0.18 0.25 0.31 0.66 1.30 1.7 10.7 8.97 

Accuracy (%) 0.21 0.15 1.63 4.40 14.0 33.4 214 357 

validate the previously assumed potentials and 

limitations of the circuit. Consequently, a simulation 

of the circuit was executed utilizing the LTspice free 

software. Given the skin's function as a 

potentiometer, with its conductance continually 

varying due to both internal and external influences, 

a DC operating point analysis (op.) was conducted by 

systematically varying the resistance values 

associated with the skin. In this DC operating point 

simulation, incremental steps were taken for the 

parameter X, representing the skin resistance, ranging 

from 1kΩ to 1MΩ — the spectrum of potential values 

for skin contact resistance, as indicated by existing 

literature — using intervals of 1kΩ. The measured 

conductance values were observed to be 

predominantly influenced by the feedback resistance 

of the amplifier directly connected to the skin. 

Consequently, simulations were conducted with 

varying orders of magnitude for this resistance 

(10kΩ, 100kΩ, and 1MΩ) to assess their impact on 

the measurements. 

Figure 3 depicts simulations conducted in 

LTspice and graphically represented using the R 

programming language. The upper and lower lines in 

each graph correspond to the voltage levels of the 

1out and 2out measuring pins connected to the 

Arduino board in the final circuit representation, as 

shown in Figure 2. Notably, an observable trend 

emerges wherein an increase in feedback resistance 

results in a more linear trajectory for both measured 

voltages. This effect becomes particularly 

pronounced at the termination point of the plot, 

corresponding to a skin resistance of 1MΩ. The 

anticipated behaviour, derived from a previously 

formulated expression, posits hyperbolic curves as an 

accurate representation of the measured voltages. 

Furthermore, the inclination of the curves holds 

significance in determining measurement sensitivity. 

A more inclined slope suggests heightened 

sensitivity. While one might intuitively select a 1MΩ 

feedback resistor for the initial amplifier due to its 

nearly linear behaviour within the requisite skin 

resistance range, the simulation results reveal 

deviations at lower resistances. Specifically, when 

employing a 1MΩ feedback resistor, the voltages 

cease to conform to hyperbolic curves at skin 

resistances below approximately 60kΩ, indicating 

amplifier saturation. 

Consequently, the simulation outcomes advocate 

for the adoption of a 100kΩ feedback resistor in the 

proposed circuit for optimal performance across the 

entire spectrum of skin resistance values. This 

configuration demonstrates superior sensitivity, 

while avoiding deviation at lower resistances, making 
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it the most suitable choice for the intended 

measurements. 

The culmination of the circuit analysis, 

encompassing the three specified values of feedback 

resistance (10kΩ, 100kΩ, and 1MΩ), entailed the 

construction of prototypes to evaluate the accuracy 

and precision of each distinct circuit. For a 

comprehensive assessment of these parameters across 

the entire range of skin resistance, measurements 

were executed using seven different resistors (4.7kΩ, 

10kΩ, 22kΩ, 47kΩ, 100kΩ, 220kΩ, 470kΩ, and 

1MΩ) for each of the three circuits. In each instance, 

1000 samples were collected over a 5-minute interval. 

The reference values assigned to each resistor were 

determined with a multimeter, considering and 

compensating for their 5% tolerance. The ensuing 

results are tabulated in this paper. Each table lists  

resistance values measured with the multimeter 

alongside their corresponding conductance 

measurements, the means of conductance values 

measured by the prototypes, and their standard 

deviations and accuracy percentages. In the provided 

tables, accuracy was quantified as the percentage 

deviation between the reference conductance value of 

the resistors and the mean conductance value 

obtained through measurement. 

Consistent with the simulations, the circuit 

featuring 1MΩ feedback resistors exhibits 

noteworthy deviations at resistances below 

approximately 60kΩ, corresponding to conductance 

values exceeding 16µS. Given that normal skin 

conductance can extend up to 30µS, this particular 

circuit proves unsuitable for the intended 

measurements. 

Upon comparing the circuits with 10kΩ and 

100kΩ feedback resistors, it becomes evident that the 

latter demonstrates superior accuracy performance up 

to conductance values of approximately 50µS, in line 

with the specified range of skin conductance values. 

Furthermore, it exhibits acceptable performance in 

terms of standard deviation, with a maximum 

deviation of 1.17%. 

Consequently, based on the insights derived from 

both simulations and experimental tests on the three 

distinct circuits, it has been conclusively 

demonstrated that the circuit featuring a 100kΩ 

feedback resistor is the most suitable for the intended 

measurements. Finally, to adapt to the alteration in 

feedback resistance, it is imperative to adjust the 

value of the capacitor connected in parallel to 1µF to 

ensure the preservation of the low-pass filter effect 

with a cut-off frequency of 1.6Hz. 

 

3.3 PCB Design and Fabrication 

Utilizing the standard EasyEDA editor, the circuit 

schematics were drafted, and employing one of the 

editor's tools, these schematics were subsequently 

transformed into a PCB design, depicted in figure 4. 

Following this, a BOOM and Gerber file were 

imported, facilitating the subsequent stages of PCB 

fabrication and assembly. The manufacturing process 

of the PCB board was carried out by the Chinese PCB 

manufacturer JCLPCB. The ensuing assembly 

procedures were executed by the manufacturer, with 

the exception of the Arduino Nano board. The latter 

was soldered to the PCB board personally by our 

team. 

 

 

Figure 4: Configuration of the final circuit PCB. 

3.4 Electrode Selection, 
Implementation and Optimization 

Silver-silver chloride electrodes have consistently 

proven to be the most suitable for recording skin 

conductance (Geddes et al., 1969), and they have 

been consistently recommended by experts (Fowles 

et al., 1981; Boucsein et al., 2012). However, dry 

usage without electrolytes applied is generally not 

advised. This is because applying the electrode metal 

directly to the skin can lead to gradual humidity 

accumulation under the metal plate, resulting in 

instability and a drift towards increased conductance 

over time (Fowles et al., 1981). Hence, dry 

silver/silver chloride (Ag/AgCl) electrodes may 

progressively become less comfortable and 

dependable, potentially leading to irritation of the 

skin at the contact area. 

In order to address these issues, given that long-

term electrodermal activity (EDA) measurement is still 

in its early stages of development, there has been a 

necessity to explore alternative electrode materials. 

These materials should be capable of better 

conforming to the skin's irregular shape and facilitating 

seamless contact between the skin and the electrode. 

Several studies (Poh et al., 2010; Banganho, 2019) 

have investigated various options, including 
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conductive fabrics, conductive leathers, and 3D-

printed electrodes crafted from polylactic acid (PLA). 

These materials have undergone rigorous testing and 

comparison with the traditional Ag/AgCl dry disc 

electrodes, which are considered the gold standard. 

Since the referred publication of António 

Bangalho's MSc thesis (2019), the developer of 

MedTex P130, Shieldex®, has introduced new 

conductive lycras that enhance their previous 

offerings. One such advancement is Shieldex® 

Technik-tex P130+B, a knitted fabric metallized with 

silver tailored specifically for the medical and smart 

wearables industries. This material represents a 

hybrid knitted fabric comprising 78% polyamide and 

22% elastane. The elastane is intricately knitted in 

both the warp and weft directions, rendering this 

highly conductive textile stretchable on both axes and 

well-suited for flexible applications in smart textiles. 

Building upon its predecessors, Technik-tex P130+B 

improves upon its electrical surface resistance, 

decreasing from 4.2Ω/square to <2Ω/square. 

Furthermore, the applied coating (+ B) safeguards the 

silver against mechanical stress, a common 

occurrence in wearables, aligning with the primary 

purpose of the devised device. With this information 

in mind, integrating this advanced conductive lycra 

with Ag/AgCl dry electrodes proves to be a 

significant asset for the EDA measurement circuit. 

Therefore, it is the selected electrode implementation 

for the intended apparatus. 

Regarding electrodes contact area, as the contact 

area diminishes, the potential for error due to 

electrode paste seepage increases, leading to lower 

conductance levels and reduced response amplitudes. 

Consequently, it's advisable to avoid small contact 

areas. A recommended area of 1.0 cm² 

(corresponding to approximately 11 mm in diameter) 

is suggested where the recording site allows. If 

achieving an area of this size is not feasible, then the 

maximum area permitted by the recording site should 

be utilized (Fowles et al., 1981). Because of market 

availability challenges, dry Ag/AgCl disc electrodes 

with a diameter limit of 10 mm were ordered for the 

specified device. This slight deviation from the 

original plan shouldn't be of significant concern due 

to its reduced size. 

4 COMMUNICATION 

PROTOCOL 

With all device parameters set, there is the need to 

establish the communication protocol for acquiring 

conductance measurements from the device. This 

protocol involves three key parties: the measuring 

device, a remote server, and a local machine. 

The first party, the measuring device, has already 

been described in this report. It will communicate 

with all other parties via WiFi. The next component 

is the remote server, which operates through a 

specific link, stores data in BigQuery, and runs a 

machine learning model — all using Google Cloud 

Platform services. Finally, the local machine features 

a user-friendly interface that allows users to send 

commands to the measuring device and receive 

measured data and model predictions from the remote 

server. This local machine can be a personal computer 

or a smartphone with an app installed, though the app 

design and implementation will be left as part of 

future iterations of this project, as for now, it remains 

a proof of concept. 

In conclusion, the communication protocol 

effectively integrates the measuring device, remote 

server, and local machine, ensuring seamless data 

acquisition and processing. This setup lays the 

foundation for future enhancements and iterations, 

particularly in developing a comprehensive 

application for broader use. 

5 MACHINE LEARNING 

MODEL: TRAINING AND 

TESTING 

5.1 Dataset Selection 

The final step of this project involved training and 

testing a machine learning (ML) model for future 

integration into the EDA measuring device. 

According to the project objectives, the ML model 

needs to be trained to use statistical features from the 

EDA signal as input and provide predictions on the 

user's stress/arousal levels based on a previously 

trained stress score. To train the ML model, a dataset 

containing EDA signals along with corresponding 

arousal scores — either self-reported or assessed by 

external observers — was required. Among the 

proposed datasets, the ASCERTAIN dataset 

(Subramanian et al., 2018) was deemed the most 

suitable and easily accessible. 

The ASCERTAIN dataset includes big-five 

personality scales and emotional self-ratings from 58 

users, along with synchronously recorded EDA data 

and other physiological signals collected using off-

the-shelf sensors while the users watched affective 

movie clips. This dataset met all the criteria for an 
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acceptable training and testing dataset due to its 

diverse subjects and comprehensive affective movie 

clips paired with self-reported arousal scores. 

Before using the dataset, the EDA signals had to 

be pre-processed for usability and analysis. Each time 

the signal is analysed, it will be passed through a 2Hz 

low-pass filter to eliminate high-frequency noise, as 

recommended and tested in previous work by 

Gamboa and Fred (2007). 

5.2 Statistical Features Selection 

Selecting the appropriate statistical features from the 

EDA signals was a crucial step before training and 

testing. The statistical features for this project were 

based on those used in prior research by Jennifer 

Healey and Rosalind Picard (2005). The initial 

features included the mean and variance of the 

normalized signal, the total number of SCRs (skin 

conductance responses) in the analysed segment, the 

sum of the magnitudes of these responses, the sum of 

response durations, and the sum of the estimated areas 

under these responses. The algorithm for detecting 

these responses was based on the one proposed in the 

PhD thesis of H. Gamboa (2008). 

Finally, a statistical analysis of the features 

obtained from the dataset was performed to refine 

model performance. This analysis involved shuffling 

the data and removing outliers, followed by an 

analysis of variance (ANOVA) and a correlation 

study between features. 

The ANOVA results were positive, with all 

features displaying very low p-values and very high 

F-statistics, indicating their statistical significance. 

However, the correlation study revealed a very weak 

correlation – absolute correlations values always 

below 0.4 – for the mean and variance of the 

normalized signals with all other features. 

Consequently, these two features were dropped from 

the subsequent training and testing phases. This left 

the model with the remaining four statistical features. 

5.3 Model Selection 

The XGBoost model was selected for training and 

testing due to its widely acknowledged capabilities in 

classification tasks. It is renowned in the literature for 

its exceptional performance (Sagi and Rokach, 2021; 

Chen and Fai, 2021), particularly in handling sparse 

data that often contain missing values or zeros. 

Moreover, XGBoost scales seamlessly from small to 

large datasets, maintaining high accuracy even with 

extensive data volumes. 

Additionally, XGBoost integrates regularization 

techniques to prevent overfitting, ensuring it captures 

meaningful patterns rather than merely memorizing 

the training data. It adeptly manages imbalanced 

datasets and offers interpretability features that 

provide insights into model decisions. Furthermore, 

XGBoost effectively handles multicollinear data, 

thereby ensuring robust predictions in scenarios with 

correlated predictors. 

Overall, XGBoost is celebrated for its versatility, 

interpretability, and robustness, making it a preferred 

choice for both academic research and practical 

applications in classification tasks. 

5.4 Model Performance 

At last, training and testing of the selected model was 

performed. The results from our model, including 

performance metrics and cross-validation outcomes, 

provide valuable insights into its effectiveness and 

reliability in this task. 

The model's classification report offers a 

comprehensive evaluation of its predictive 

performance across seven arousal categories (ranging 

from 0 to 6). Precision, recall, and F1-score metrics 

vary across these categories, reflecting the model's 

ability to distinguish between different arousal states. 

Notably, the model achieves high precision and recall 

– above the 90% and for most close to 99% – for low 

arousal levels (0 and 1) and the maximum arousal 

level (6), indicating robust performance in identifying 

extreme arousal states. However, in intermediate 

arousal levels, precision and recall metrics show a 

gradual decline – values fluctuate between the 50th 

and the 80th percentile. This suggests that the model 

faces challenges in accurately predicting medium 

arousal states based on the statistical features from 

EDA signals. 

The overall accuracy score on the test set is 

approximately 77%, indicating an acceptable 

performance in predicting arousal levels across the 

dataset. Cross-validation results further validate this 

performance, with an average accuracy score of 

approximately 77% across different folds. This 

consistency suggests that the model generalizes well 

to unseen data, a crucial aspect for its practical 

application.  

In conclusion, while our model shows promising 

results in predicting arousal levels from EDA signals 

using statistical features, there remains room for 

improvement, particularly in enhancing the 

prediction accuracy for intermediate arousal states. 

Future research could explore additional features to 

address these challenges effectively. Nonetheless, the 
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demonstrated reliability in cross-validation 

underscores the potential of our approach for 

automated arousal level assessment, with 

implications for fields such as mental health 

monitoring and human-computer interaction. 

6 FUTURE WORKS AND 

IMPROVEMENTS 

This research has laid the groundwork for the 

integration of electrodermal activity (EDA) 

measuring devices with machine learning models for 

arousal level prediction. However, several avenues 

for future work can be explored to enhance the results 

and expand the application of our findings. 

First, while the XGBoost model achieved an 

overall accuracy of approximately 77%, there is room 

for improvement, particularly in accurately predicting 

intermediate arousal states. Future studies could focus 

on experimenting with alternative machine learning 

algorithms, such as deep learning models or ensemble 

methods, to improve prediction accuracy across all 

arousal levels. 

Second, expanding the feature set used for 

training the machine learning model may lead to 

better classification performance. Investigating 

additional physiological signals, such as heart rate 

variability (HRV) or environmental variables, could 

provide a more comprehensive understanding of 

stress and arousal levels.  

Conducting longitudinal studies to assess the 

effectiveness of the wearable device in real-life 

situations is essential. Future research can involve 

testing the device across various contexts — such as 

workplaces, social gatherings, or during relaxation 

exercises — to provide insights into its usability and 

effectiveness in actual settings. 

Additionally, creating an engaging and intuitive 

user interface for the application would enhance user 

experience. Incorporating features like real-time 

feedback, personalized stress management 

recommendations, and tracking capabilities could 

significantly increase user engagement and utility. 

Exploring novel electrode materials or 

configurations could further enhance comfort and 

accuracy in skin conductance measurements. 

Comparative studies of different materials will help 

optimize the design for diverse user needs. 

Moreover, incorporating our device with other 

products presents an exciting opportunity to gain 

valuable insights into users' arousal states, which can 

significantly enhance their interactive experiences 

with those products. By integrating the wearable 

sensor with applications in gaming, virtual reality 

(VR) environments, or even automotive systems, we 

can adapt these experiences in real time based on the 

users' emotional and physiological responses. For 

instance, gaming applications could adjust difficulty 

levels or narrative elements depending on the player's 

stress or excitement levels, creating a more 

immersive and tailored experience. Similarly, in VR 

settings, the content could dynamically shift to either 

calm or engage users based on their arousal state, 

promoting emotional well-being. In the context of 

driving, our device could trigger alerts or adjustments 

to vehicle settings to enhance safety or comfort based 

on detected stress levels. This adaptability not only 

enriches user experience but also fosters improved 

human-computer interaction by ensuring that 

technology aligns more closely with the emotional 

needs of its users. 

Finally, in the course of our experiments 

measuring skin conductance using different 

configurations of the circuit from Poh et al. (2010) on 

the wrists of some team members, we observed an 

intriguing phenomenon. The typical EDA signal, 

consisting of its tonic and phasic components, 

appeared to be modulated by a distinct periodic 

signal. Upon analysing this modulation, we 

concluded that it is likely associated with the heart 

rate of our team members. 

This discovery opens up a promising direction for 

future iterations of our device. By utilizing this 

modified configuration of the original circuit, we 

could develop a wearable device capable of 

simultaneously measuring both electrodermal activity 

(EDA) and heart rate variability (HRV) signals. 

Incorporating HRV measurements alongside EDA 

could significantly enhance the accuracy of stress 

detection, as both physiological metrics provide 

complementary insights into the body’s stress 

response. This two-in-one measurement capability 

could lead to more nuanced and effective stress 

management applications, ultimately offering users a 

better understanding of their emotional and 

physiological states. 

By pursuing these avenues, future research can 

further enhance the utility of EDA measurements in 

mental health monitoring and provide innovative 

solutions for stress management and emotional well-

being. 
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7 CONCLUSION 

This paper successfully demonstrated the integration 

of an electrodermal activity (EDA) measuring device 

with a robust communication protocol and a machine 

learning model for stress and arousal level prediction. 

By selecting the most suitable materials and 

configurations for the device, including the use of a 

100kΩ feedback resistor and silver-silver chloride 

electrodes, we ensured accurate and reliable 

conductance measurements. 

The communication protocol effectively linked 

the measuring device, a remote server, and a local 

machine, facilitating seamless data acquisition and 

processing. This setup serves as a foundation for 

future developments, particularly in creating a 

comprehensive application for broader usage. 

The machine learning model, trained using the 

ASCERTAIN dataset and implemented with the 

XGBoost algorithm, achieved an overall accuracy of 

approximately 77% in predicting arousal levels. 

Despite challenges in accurately predicting 

intermediate arousal states, the model's acceptable 

precision and recall for extreme arousal levels 

underscore its potential for practical applications in 

mental health monitoring and human-computer 

interaction. 

Overall, the project lays a solid groundwork for 

future enhancements and iterations, with significant 

implications for the automated assessment of arousal 

levels and related applications. Future research 

should focus on improving model performance for 

intermediate arousal states and exploring additional 

features to enhance prediction accuracy. 

Additionally, future research should also focus on 

implementing this device in a useful application 

where it enhances human-computer interaction or 

daily stress monitoring. This will not only validate the 

practical utility of the device but also pave the way 

for its integration into everyday technologies aimed 

at improving emotional well-being and user 

experience. 
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