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Abstract: This paper proposes a novel best frames selection algorithm, ConMax3D, for multiview 3D reconstruction
that utilizes image segmentation and clustering to identify and maximize concept diversity. This method aims
to improve the accuracy and interpretability of selecting frames for a photorealistic 3D model generation with
NeRF or 3D Gaussian Splatting without relying on camera pose information. We evaluate ConMax3D on the
LLFF dataset and show that it outperforms current state-of-the-art baselines, with improvements in PSNR of
up to 43.65%, while retaining computational efficiency.

1 INTRODUCTION

Creating a 3D model of an object or a scene using
multiple images from different viewpoints has been a
long-standing problem in computer vision. Prior to
the advent of deep learning techniques for 3D recon-
struction[(Mildenhall et al., 2019), (Lombardi et al.,
2019), (Fridovich-Keil et al., 2023)], traditional meth-
ods such as structure from motion (Schonberger and
Frahm, 2016) and multiview stereo (Seitz et al., 2006)
were widely used. The introduction of Neural Ra-
diance Fields (NeRF) (Mildenhall et al., 2021) rev-
olutionized novel view rendering by leveraging neu-
ral networks to create photorealistic 3D models where
color is a function of camera pose. This innova-
tion has led to a surge in research on radiance fields,
including enhanced NeRF models such as Instant-
NGP (Müller et al., 2022), MipNeRF (Barron et al.,
2021), and ZipNeRF (Barron et al., 2023), as well
as alternative techniques such as Gaussian Splatting
(3DGS) (Kerbl et al., 2023) and related works[(Gao
et al., 2022), (Wu et al., 2024b)].

However, radiance field-based methods often re-
quire numerous frames to train high-quality 3D repre-
sentations. This challenge stems from the absence of
a systematic approach for capturing optimal frames,
as the requirements vary significantly based on object
geometry and color distribution (Pan et al., 2024).

Techniques such as ActiveNeRF (Pan et al., 2022)
and related works[(Goli et al., 2024), (Jin et al.,

2023)] have proposed uncertainty estimation as a
strategy to address this issue. While uncertainty-
based techniques outperform random sampling, they
necessitate modifications to the architecture and train-
ing regime of 3D reconstruction models such as
NeRF, which could increase the training cost and
complexity.

Other methods such as the one presented by (Pan
et al., 2024) employ the Tammes Problem (Lai et al.,
2023) to predict frame positions based solely on cam-
era poses. Although effective for synthetic data and
spherical camera poses, this approach is less applica-
ble to real-world data where not only the frame selec-
tion is influenced by scene geometry and color distri-
bution, but also the camera pose distribution may not
be spherical. Moreover, previous approaches do not
typically incorporate high-level concepts such as parts
of objects within the 3D scene, which could enhance
the interpretability of the frame selection process.

Given the constraints on computational resources,
it is often impractical to use all available frames for
3D reconstruction. For example, a typical video cap-
tured by a smartphone is 60 frames/second and may
contain over thousands of frames for a few minutes
capture. Also, as observed by (Orsingher et al., 2023),
the quality of reconstruction by NeRF has diminish-
ing returns as the number of frames increases for a
scene, particularly if there is a significant overlap be-
tween the frames. Consequently, the challenge be-
comes selecting the best subset of frames (or views)
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within a specified budget k that maximizes the qual-
ity of the 3D reconstruction. This constraint necessi-
tates a selection strategy that is both accurate and fast
to ensure that the chosen frames capture the essential
features and variations of the scene. This paper intro-
duces a novel algorithm named ConMax3D, which
employs image segmentation followed by clustering
to identify key concepts within a set of multiview im-
ages. A “concept” is defined as a recurring pattern
in pixel color distribution across multiple images, as
presented by (Asano et al., 2019). In our approach, af-
ter generating concepts, the frames are selected with
the objective to maximize the inclusion and coverage
of diverse concepts.

In addition to ConMax3D, Inspired by PC-
NBV (Zeng et al., 2020), we propose an en-
hanced baseline called Point Cloud Maximization
for Frame Selection, which first constructs a point
cloud representation of the scene and then uses a
heuristic based greedy frame selection strategy. Un-
like PC-NBV, it does not use a neural network, which
has a training overhead and potentially generalization
problems in out of distribution scenes.

We compare ConMax3D with Random Sampling,
Furthest View Sampling (FVS) which are also used as
baselines. Point Cloud Maximization is used as an ad-
vanced baseline, and ActiveNeRF (Pan et al., 2022),
is used as an state of the art baseline.

The main contributions of this paper is to propose
a best frames selection algorithm that has the follow-
ing characteristics:

• Camera Pose Independence: ConMax3D does
not require camera pose information, making it
applicable in varied and realistic environments us-
ing only RGB images as input.

• Model Independence: This method is decoupled
from specific 3D reconstruction models, enhanc-
ing its utility across different radiance field-based
reconstruction techniques such as NeRF (Milden-
hall et al., 2021), 3D Gaussian Splatting (Kerbl
et al., 2023), and others that use view dependency
for color prediction.

• Concept-Based Selection: High-level concepts
are used for frame selection, improving the inter-
pretability of the process.

We demonstrate the effectiveness of our approach
through extensive experiments on both spherical cam-
era configurations, in which all the cameras are facing
towards and are equidistant from the object centroid,
and non-spherical configurations, where the cameras
can be placed in arbitrary positions and orientations.
Non-spherical configurations are more challenging
both for frame selection and 3D reconstruction algo-

rithms and are closer to real-world captures.
Our results show significant improvements, with

gains up to 43.65% in PSNR, showing the poten-
tial of this approach in reducing the number of re-
quired frames while maintaining high-quality recon-
structions.

This paper is organized as follows: we present
related work in Section 2 to provide a comprehen-
sive review of recent advancements in frame selec-
tion techniques for 3D reconstruction. We then out-
line our proposed framework in detail in Section 3,
highlighting each component of the system, from im-
age segmentation to concept maximization. We also
describe the Point Cloud Maximization. This is fol-
lowed in Section 4 by the description of our exper-
imental setup, including the reconstruction models
used, dataset, evaluation metrics, and the compara-
tive performance of our method against existing ap-
proaches. Finally, in Section 5, we discuss the impli-
cations of our findings, address potential limitations,
and suggest directions for future research in this do-
main.

2 RELATED WORK

Recent advancements in Neural Radiance Fields
(NeRF) have focused on improving efficiency through
reduced frame requirements and enhanced computa-
tional strategies. We review key contributions that
align closely with our work but differ significantly in
approach and methodology.

Semantic Consistency. Several works address the
issue of semantic consistency and overfitting in NeRF
implementations: DietNeRF (Jain et al., 2021) in-
troduces a semantic consistency loss using a pre-
trained image classifier to ensure that rendered images
are photorealistic and semantically consistent. Pixel-
NeRF (Yu et al., 2021) proposes a NeRF variant con-
ditioned on pixel-aligned features from a pretrained
CNN, improving reconstruction robustness and gen-
eralization. While these methods focus on pixel-
specific features or semantic consistency, our concept
maximization approach selects diverse frames based
on overall conceptual coverage, offering a different
perspective on improving NeRF performance.

Uncertainty Quantification. Uncertainty estima-
tion has emerged as a key strategy for optimizing
view selection: ActiveNeRF (Pan et al., 2022) inte-
grates active learning to enhance NeRF training by
modeling radiance field values as a Gaussian dis-
tribution and using variance as the measure of un-
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Figure 1: We propose the ConMax3D framework, which first segments the images using SAM, then clusters the obtained
masks into “concepts,” then creates an Image-Concept graph based on the Image-mask-concept relations, and finally selects
the best k frames maximizing the conceptual diversity and coverage in a greedy manner.

certainty. BayesRays (Goli et al., 2024) introduces
a post-hoc framework for uncertainty quantification
in pre-trained NeRF models. NeU-NBV (Jin et al.,
2023), NeurAR (Ran et al., 2023), and Smith et al.
(Smith et al., 2022) propose methods for next-best-
view (NBV) planning using uncertainty maps and
occupancy-based models.

These techniques use only low level information
(pixel-level or ray level) and modify the model archi-
tecture and/or training. Our framework, ConMax3D,
does not interact with the model used and is used in
the pre-processing step.

Efficient Reconstruction with Fewer Frames.
Some approaches aim to improve NeRF and 3D Gaus-
sian Splatting reconstructions with a limited num-
ber of frames. RegNeRF (Niemeyer et al., 2022),
InstantSplat (Fan et al., 2024), and MVSplat (Chen
et al., 2025) demonstrate efficient reconstructions by
optimizing the frame rendering process. While these
approaches provide better reconstruction with fewer
frames, their goal is fundamentally different. These
methods excel in scenarios with fewer images, op-
timizing for making most of what is available. In
contrast, ConMax3D addresses a different challenge:
selecting the optimal subset of frames from a large
pool of Images (e.g., video sequences) under specific
constraints such as GPU memory and training time.
This selection process enhances the applicability of
any subsequent reconstruction, including those per-
formed by sparse and efficient methods.

Autonomous Data Collection. Frameworks for op-
timizing the NeRF training process through au-

tonomous data collection have been proposed: Au-
toNeRF (Marza et al., 2024) develops an au-
tonomous data collection framework through explo-
ration. (Kopanas and Drettakis, 2023) suggest metrics
to guide camera placement for better reconstruction
quality. ActiveRMAP (Zhan et al., 2022) integrates
NeRF with active vision tasks using RGB-only data
in a dual-stage optimization alternating NeRF recon-
struction and planning.

These methods, although maybe confused as a
competitor to our framework, differ in the problem
setting. We solve for the scenario when there are al-
ready pre-captured frames available.

Frame Selection Optimization. Various strategies
have been explored for optimizing frame selection:
Cerkezi et al. (Cerkezi and Favaro, 2024) and PC-
NBV (Zeng et al., 2020) use object-centric sampling
and point clouds for efficient NBV selection. Isler et
al. (Isler et al., 2016) use information gain for NBV
selection. Zaenker et al. (Zaenker et al., 2021) max-
imize the Region of Interest (ROI) using an Octree
structure.

While our enhanced baseline uses point clouds,
which is inspired by PC-NBV, our main approach
ConMax3D, makes use of high level concepts in im-
ages which is not used in these techniques.

Ensemble and Surrogate Objectives. Some meth-
ods employ ensemble techniques or surrogate objec-
tives: Density-aware NeRF Ensembles (Sünderhauf
et al., 2023) uses NeRF ensembles to quantify uncer-
tainty in reconstruction using ray termination proba-
bilities. SO-NeRF (Lee et al., 2023) employs surro-
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gate objectives such as surface coverage and geomet-
ric complexity to measure view quality.

While these methods provide valuable insights
into improving NeRF quality and efficiency, they dif-
fer significantly from our concept-based frame selec-
tion strategy. In summary, while each of these ap-
proaches contributes uniquely to the field of 3D re-
construction, our method specifically targets the prob-
lem of frame selection by leveraging image segmenta-
tion and clustering to maximize conceptual diversity.
This not only improves the interpretability and rele-
vance of selected frames but also remains indepen-
dent of camera poses and the reconstruction model
used, making it highly adaptable to various 3D recon-
struction models available.

3 FRAMEWORK OVERVIEW

In this section, we introduce our primary contribu-
tion: ConMax3D (Frame selection through Concept
Maximization for 3D Reconstruction), an innovative
framework for frame selection in multiview 3D re-
construction (see Figure 1). Additionally, we present
an enhanced baseline approach: Point Cloud Maxi-
mization for Frame Selection (see Figure 2). While
ConMax3D leverages segmentation masks and clus-
tering to identify concepts for optimal frame selec-
tion, the Point Cloud Maximization approach utilizes
dense reconstruction techniques.

3.1 ConMax3D Framework

As illustrated in Figure 1, our ConMax3D frame-
work operates through a series of carefully designed
steps. Initially, it segments the input images and em-
beds the resulting sub-images. These embeddings are
then clustered to identify high-level concepts within
the scene. Subsequently, a frame-concept graph is
constructed, enabling the selection of the optimal k
frames through an influence maximization approach,
guided by the Utility function defined in Equation 1.

3.1.1 Image Segmentation

A critical step in optimizing frame selection for 3D re-
construction is the identification and prioritization of
the most informative image regions. We achieve this
through a image segmentation that delineates distinct
objects and regions within each image. This divides
images into semantically meaningful segments, each
represented by a mask - a binary or multi-class image
that precisely delineates regions of interest.

Our approach employs state-of-the-art segmen-
tation techniques to process a diverse set of RGB
images captured from multiple viewpoints. While
we primarily utilize the Segment-Anything Model
(SAM) (Kirillov et al., 2023), our framework is flex-
ible and can accommodate other advanced models
such as[(Yang et al., 2024), (Wu et al., 2024a)]. SAM
has many parameters, such as predicted IOU and
number of points in grid, that can be set at inference
time. By filtering the masks through a threshold pre-
dicted IOU, which tells us the confidence score of the
predicted mask, we can adjust the conservativeness of
the segmentation process, allowing for optimal adap-
tation to variety of different images.

The segmentation process yields a rich set of sub-
images, each corresponding to a unique object or re-
gion within the original image. Examples of such
segmentations are shown later in Section 4, Figure
3. The segmentation masks are used subsequently in
clustering and frame selection steps, ensuring that the
most salient and informative image components are
leveraged for 3D reconstruction.

3.1.2 Embedding Generation

To enhance computational efficiency, we crop and
downscale the segments derived from the previous
step. After that, we embed these sub-images using a
CNN model. The generation of embeddings for these
segments is a crucial process, as it transforms the rich
visual information of segmented regions into com-
pact, numerically represented feature vectors. For this
task, we leverage the pre-trained EfficientNet archi-
tecture (Tan and Le, 2019), chosen for its optimal bal-
ance of accuracy and efficiency. However, our frame-
work’s flexibility allows for the integration of other
state-of-the-art vision models, such as ResNet (He
et al., 2016) or CLIP (Radford et al., 2021). We com-
pared the pairwise distances of embeddings generated
by Resnet18 and EfficientNet and plotted them as his-
togram as shown in Figure 4. Since EfficientNet em-
beddings are better separated (i.e., distribution of pair-
wise distances have higher variance), they yield bet-
ter results in clustering, and in general for our frame-
work. We extract the segments through element-wise
multiplication of the RGB image with correspond-
ing binary masks. This process ensures uniform seg-
ment sizes, enabling efficient batch processing for Ef-
ficientNet on GPU hardware for rapid inference. The
resulting embeddings encapsulate the essential fea-
tures of each segment, which is important for clus-
tering. In the next phase, these embeddings facilitate
the grouping of segments into semantically coherent
clusters based on their distinct visual attributes.
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Figure 2: We propose an advanced baseline, Point Cloud Maximization, which computes the visibility graph using stereo
matching and then uses a greedy approach to select the best k frames that maximize the number of unique points in the
visibility graph.

3.1.3 Concept Generation

The derived embeddings undergo a clustering process
utilizing the Hierarchical Density-Based Spatial Clus-
tering of Applications with Noise (HDBScan) algo-
rithm (McInnes et al., 2017). HDBScan, an evolution
of the DBSCAN algorithm (Ester et al., 1996), in-
troduces a hierarchical framework that excels in han-
dling varying cluster densities. The high dimensional
image embeddings do not guarantee any specific clus-
ter shape or uniform densities across clusters. So, the
HDBScan approach is suitable for our application.

Our implementation of HDBScan is fine-tuned
through critical hyperparameters, including minimum
cluster size and minimum samples. These parame-
ters allow us to control the granularity of clustering
and the algorithm’s robustness to noise, ensuring opti-
mal performance across diverse visual scenarios. This
clustering process aggregates similar pixel patterns
from multiple images into cohesive groups, which we
term “concepts.” As illustrated in Figure 7, these con-
cepts often correspond to human-interpretable object
parts, bridging the gap between low-level visual fea-
tures and high-level semantic understanding.

3.1.4 Concept Maximization

To identify the most informative frames, we formu-
late the selection process as an influence maximiza-
tion problem within a bipartite graph structure (see
Figure 1). In this graph, edges connect images to
their corresponding concepts, enabling us to maxi-
mize concept diversity within the prescribed frame
budget k.

Given the combinatorial complexity of selecting

the optimal subset, we employ the following strategy:
Our frame selection process iteratively identifies and
selects frames that maximize the overall concept cov-
erage through a greedy algorithm, detailed in Algo-
rithm 1.

Our algorithm initializes with an empty set of se-
lected frames S. For each candidate image, we estab-
lish its concept connections and identify the specific
pixels, delineated by segmentation masks, that cor-
respond to each associated concept. We introduce a
utility function U(S, i) as given by the equation 1 that
measures the contribution of a candidate frame i to
the set of already-selected frames S, in terms of the
number of new concept-pixels it introduces.

U(S, i) =

∣∣∣∣∣∣ ⋃
c∈C(i)

(
P(i,c)\

⋃
s∈S

P(s,c)

)∣∣∣∣∣∣ (1)

Here, C(i) represents the set of concepts present
in frame i, while P(i,c) denotes the pixels in frame
i associated with a specific concept c. Additionally,⋃

s∈S P(s,c) refers to the set of pixels already covered
by the selected frames in S for the concept c.

U(S, i) follows the property of submodularity and
monotonicity as shown in the following analysis.

Monotonicity

If S⊆ T , then for any frame i and concept c,⋃
s∈S

P(s,c)⊆
⋃
t∈T

P(t,c). (2)

This implies that removing the pixels already covered
(P(s,c)) leaves at least as many unique pixels when S
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is smaller. Thus,

U(S, i)≥U(T, i), (3)

proving monotonicity.

Submodularity

For any S ⊆ T and i /∈ T , adding frame i to the set S
introduces at least as many new pixels as adding i to
the larger set T . This is because T already covers all
the pixels that S does, and possibly more. Formally,
the following inequality is always satisfied:

U(S, i)≥

∣∣∣∣∣∣ ⋃
c∈C(i)

(
P(i,c)\

⋃
t∈T

P(t,c)

)∣∣∣∣∣∣=U(T, i)

(4)
This demonstrates the diminishing returns prop-

erty of the utility function, thereby proving that it is
submodular.

For such functions that are both monotonous and
submodular, it can be proven that greedy algorithm
gives near-optimal results with an approximation ratio
of at least 1−1/e (Nemhauser and Wolsey, 1981).

The first image is also selected based on U(S, i),
translating to selecting the image with maximum
number and size of semantically recognizable seg-
ments. Then the selection process proceeds iteratively
in a greedy manner, again maximizing U(S, i) at each
step. The algorithm terminates upon reaching the de-
sired frame count k or exhausting the available image
pool, thereby constructing a subset of frames that op-
timally captures the scene’s conceptual richness.

Algorithm 1: ConMax3D.
Input:
C(i): Set of concepts connected to image i
P(i,c): Set of pixels for image i under concept c

U(S, i) =
∣∣∣⋃c∈C(i) (P(i,c)\

⋃
s∈S P(s,c))

∣∣∣
Initialize: S← /0

while |S|< k and I \S ̸= /0 do
Choose i from I \S that maximizes U(S, i):
i← argmaxi′∈I\S U(S, i′)
Update S← S∪{i}

end
return S

3.2 Point Cloud Maximization

We introduce an advanced baseline for Point Cloud
Maximization that aims to optimize the capture of
unique 3D points. This approach, illustrated in Fig-
ure 2, leverages depth maps and camera pose infor-
mation to achieve superior results.

This framework operates as follows:

1. Depth Map Computation: Depth maps are gen-
erated for each image in the multiview dataset.

2. Dense Point Cloud Reconstruction: Utilizing
the depth maps in conjunction with camera pose
information, a dense 3D point cloud representa-
tion of the scene is reconstructed.

3. Visibility Graph Construction: A comprehen-
sive visibility graph is established, linking each
point in the reconstructed cloud to its correspond-
ing source images.

4. Greedy Frame Selection: Finally, a greedy al-
gorithm is employed, maximizing the number of
unique points captured, in a manner analogous to
our ConMax3D approach.

The details of this method are shown in Algo-
rithm 2.

Algorithm 2: Point Cloud Maximization.
Input: Total number of frames k, mapping of

images to points image2points
Output: Set of selected frames S
Initialize: S← /0

for iteration = 1 to k do
max union← 0
max union idx←−1
for j,points in enumerate(image2points) do

if j /∈ S then
union←
|set(points)∪ (

⋃
s∈S set(image2points[s]))|

if union > max union then
max union← union
max union idx← j

end
end

end
S← S∪{max union idx}

end
return S

3.3 Comparative Baseline Approaches

To rigorously evaluate the efficacy of our proposed
methods, we implement and assess two additional
frame selection algorithms that serve as important
baselines. First, we employ a stochastic frame se-
lection process, randomly selecting k frames from a
dataset containing N total frames. This method pro-
vides a crucial lower bound for performance evalua-
tion.

As a more advanced baseline, we implement
the Furthest View Sampling (FVS) algorithm (Eldar
et al., 1997), which employs a positionally informed
selection strategy. FVS begins by randomly sam-
pling the first frame, then iteratively selects subse-
quent frames based on their maximal distance from
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the currently selected set, using the minmax crite-
rion until the desired number of frames k is reached.
FVS aims to maximize the spatial diversity of selected
camera positions, capturing a comprehensive range of
perspectives of the 3D scene.

By including these baselines and ActiveNeRF,
which is the state of the art, in our evaluation, we pro-
vide a comprehensive comparison that highlights the
advancements and unique strengths of our proposed
ConMax3D and Point Cloud Maximization methods.

3.4 Metrics

We use the standard metrics to assess the quality
of 3D multiview 3D Reconstructions. Peak Signal
to Noise Ratio (PSNR) is used to assess the pixel
level accuracy in reconstructions. PSNR quantita-
tively measures the ratio of maximum signal power to
the noise affecting the signal, providing a convenient
numerical reference for how closely a reconstructed
image matches the ground truth in terms of pixel-level
fidelity.

Structured Similarity Index Metric (SSIM) (Wang
et al., 2004) goes beyond this pixel-level comparison
by modeling the perceived change in structural infor-
mation, luminance, and contrast, aligning better with
human visual perception.

Meanwhile, Learned Perceptual Image Patch Sim-
ilarity (LPIPS) (Zhang et al., 2018) takes advantage
of deep neural network features trained to mimic hu-
man judgments of image similarity, offering a more
perceptual measure of quality. By jointly reporting
PSNR, SSIM, and LPIPS, we capture complemen-
tary aspects of reconstruction quality ranging from
low-level pixel fidelity to high-level perceptual re-
semblance.

4 EXPERIMENTS AND RESULTS

For our 3D reconstruction evaluations, we employed
the vanilla Neural Radiance Field (NeRF) model
and 3D Gaussian Splatting (3DGS), using the LLFF
dataset (Mildenhall et al., 2019). This dataset pro-
vides eight diverse realistic scenes with two config-
urations: spherical and non-spherical. Our objective
is to select k frames from N available frames, where
k is the budget and N is the total number of frames
in the scene. We used metrics PSNR, SSIM, and
LPIPS (Zhang et al., 2018) to assess reconstruction
quality.

Our NeRF model was trained for 50,000 epochs
using the images selected by the respective frame se-
lection algorithms. Additionally, we trained 3D Gaus-

sian Splatting for 30,000 epochs using the gsplat
library (Ye and Kanazawa, 2023) for the same im-
ages. The remaining images were used as test im-
ages to evaluate the model. For comparison, the Ran-
dom Sampling and Furthest View Sampling (FVS)
methods were also executed. ActiveNeRF (Pan et al.,
2022) was included for comparison, with results taken
from the literature. For that reason the results of Ac-
tiveNeRF are omitted for non-spherical configuration.

As mentioned before, by utilizing both NeRF and
3D Gaussian Splatting in our experiments, we demon-
strate that our frame selection methods are model-
agnostic. This independence from specific recon-
struction models enhances the generalizability and
broad applicability of our proposed techniques across
various 3D reconstruction paradigms.

4.1 Experimental Setup and Methods

Our experimental protocol was designed to rigorously
evaluate the proposed frame selection methods across
various conditions. We utilized the LLFF dataset,
downsampling the images to a resolution of 378×504
pixels to balance computational efficiency with the
preservation of salient features.

4.1.1 ConMax3D Framework

Our ConMax3D Framework incorporated several key
steps. On a dataset of around 50 images, the en-
tire pipeline takes approximately 15 minutes to run
on a single GPU. We began with image segmentation
using the Segment-Anything Model (SAM) (Kirillov
et al., 2023), setting the predicted IOU threshold to
0.8 to strike a balance between segmentation gran-
ularity and robustness. The resulting segmented re-
gions were then cropped and downscaled by a factor
of 4 to enhance computational efficiency.

To mitigate the impact of noisy masks generated
by SAM, we implement several strategies:
1. We remove small masks that contain fewer pix-
els than the square root of the product of the image’s
height and width

√
(H ∗W ).

2. We set the prediction IOU to 0.8 for SAM, which
is not too low to avoid noisy masks.
3. We exclude outlier clusters identified by HDBScan
from the Image-Concept Graph. These outliers typi-
cally contain 20-40% of the masks and do not fit well
within any established cluster, reflecting their noise-
dominated nature.

For embedding generation, we utilized the Effi-
cientNet model (Tan and Le, 2019) to create compact,
information-rich representations of the processed seg-
ments. These embeddings were then clustered using
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(a) Room Scene (b) Flower scene
Figure 3: In this figure we show the effectiveness of the SAM in segmenting different kinds of images. The individual
segments of different images in a scene are clustered into concepts, which are then used for frame selection in ConMax3D
framework.

Figure 4: Pairwise distances of embeddings generated by
EfficientNet and Resnet are shown as histogram plots re-
spectively. The Efficientnet embeddings have a higher vari-
ance, which can be interepreted as the embeddings having
better ”separation” in the embedding space, leading to bet-
ter clustering.

the HDBScan algorithm to group similar pixel pat-
terns across multiple images into “concepts.” We dy-
namically set the minimum cluster size to N/4, where
N is the total number of frames, allowing the cluster-
ing to adapt to the dataset’s scale. To maintain cluster
quality and reduce noise, we discard outlier clusters.

The relationships between images and their asso-
ciated concepts were then modeled as a graph struc-
ture. We applied our greedy frame selection algo-
rithm, as detailed in Algorithm 1, to this graph to
maximize concept diversity in the selected subset of
frames.

4.1.2 Point Cloud Maximization

For our Point Cloud Maximization approach, we
leveraged COLMAP (Schonberger and Frahm, 2016)
to compute depth maps and construct dense point

clouds. From these point clouds, we derived a visibil-
ity graph that established connections between points
the images from which they are visible. We then im-
plemented a greedy algorithm, as outlined in Algo-
rithm 2, to maximize the selection of unique points,
thereby optimizing for comprehensive scene cover-
age. On a dataset of around 50 images, the entire
pipeline takes approximately 1 hour to run on a single
GPU.

4.2 Results

The results, averaged over eight scenes from the
LLFF dataset, are summarized in Table 1 for both
spherical and non-spherical cases using NeRF and 3D
Gaussian Splatting (3DGS) respectively.

The results of ConMax3D are shown in bold. This
method demonstrates significant improvements over
the baselines in PSNR for a 10-frame budget in the
non-spherical case, with gains up to 43.65% across
various scenes. The highest gain is seen in the room
scene, possibly due to well-detected segments and a
larger image set (Please refer to the project github for
scene-wise comparison statistics). This indicates that
ConMax3D may be particularly suitable for selecting
best frames for indoor scene reconstruction. The im-
provement in the spherical case is similar as can be
seen in the table.

In non-spherical setting, which is closer to real
world captures, ConMax3D consistently outperforms
other methods for both NeRF and 3DGS. In the
spherical setting, it outperforms all other methods
for NeRF and for one setting (25 frames) with 3D
Gaussian Splatting. Notably, the performance gains
are observed with ConMax3D except in one case
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Table 1: Performance Comparison of Frame Selection Methods on Spherical and Non-Spherical Data (LLFF).

Setting Method Spherical Data Non-Spherical Data
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

10 Frames

Random + NeRF 15.55 0.38 0.36 15.83 0.39 0.38
FVS + NeRF 20.39 0.59 0.22 17.95 0.50 0.31

ActiveNeRF-BE + NeRF 18.67 0.45 0.37 - - -
ActiveNeRF-CL + NeRF 20.14 0.66 0.33 - - -

Point Cloud Maximization + NeRF 24.35 0.79 0.15 22.49 0.71 0.23
ConMax3D + NeRF 25.60 0.81 0.13 24.63 0.79 0.14

Random + 3DGS 22.46 0.82 0.36 22.33 0.76 0.17
FVS + 3DGS 22.46 0.83 0.35 23.05 0.78 0.16

ConMax3D + 3DGS 21.21 0.77 0.40 23.44 0.78 0.15

20 Frames

Random + NeRF 13.98 0.30 0.39 16.46 0.41 0.33
FVS + NeRF 21.67 0.64 0.19 19.21 0.55 0.26

ActiveNeRF-BE + NeRF 21.86 0.64 0.30 - - -
ActiveNeRF-CL + NeRF 23.12 0.77 0.29 - - -

Point Cloud Maximization + NeRF 25.70 0.82 0.13 25.74 0.82 0.13
ConMax3D + NeRF 25.82 0.83 0.12 27.48 0.85 0.11

Random + 3DGS 24.21 0.86 0.37 25.74 0.85 0.11
FVS + 3DGS 25.85 0.89 0.34 26.31 0.86 0.11

ConMax3D + 3DGS 22.98 0.80 0.40 26.50 0.86 0.10

25 Frames

Random + NeRF 26.61 0.83 0.12 26.87 0.85 0.11
FVS + NeRF 27.33 0.86 0.11 27.42 0.86 0.10

Point Cloud Maximization + NeRF 26.66 0.84 0.12 26.64 0.83 0.12
ConMax3D + NeRF 27.43 0.86 0.10 27.52 0.86 0.10

Random + 3DGS 22.17 0.79 0.42 26.30 0.87 0.10
FVS + 3DGS 23.39 0.80 0.39 26.85 0.87 0.10

ConMax3D + 3DGS 23.41 0.81 0.40 26.99 0.87 0.09

FVS+3DGS for 20 frames in the spherical setting
(shown in red in Table 1) where FVS used with 3DGS
gives better reconstruction quality. This maybe due to
some variations due to the stochasticity of the meth-
ods used.

As the number of frames increases, the perfor-
mance differences between ConMax3D and other
methods becomes less pronounced. These results un-
derscore ConMax3D’s superior ability to maximize
conceptual diversity and enhance 3D reconstruction
quality, especially when the frame budget is limited
and especially when used with NeRF.

The Point Cloud Maximization approach also
proved to be a robust method, particularly advanta-
geous when depth data is available or dense recon-
struction can be easily done. These findings demon-
strate the potential of our proposed frameworks to ad-
vance the state-of-the-art in frame selection for 3D re-
construction, regardless of the underlying reconstruc-
tion method used.

Explainability. Using the concept-image graph, we
can calculate a variance map, as shown in Figure 5,
which is the difference between the selected views
and the candidate view according to equation 1. This
variance map allows us to pinpoint exactly which con-
cepts and to what extent they are covered in the cur-
rent selection. Additionally, we can visualize which

masks from different images are clustered as con-
cepts, as shown in Figure 7.

5 DISCUSSION AND
CONCLUSION

While existing 3D reconstruction models such as
NeRF and 3D Gaussian Splatting operate on pixel-
level information, human perception is fundamentally
concept-based. This work bridges this gap between
low-level pixel processing and high-level concept un-
derstanding through the ConMax3D approach.

Our method identifies concepts in images and se-
lects optimal frames using a utility function proposed
in Equation 1, which evaluates pixel shifts within con-
cepts while prioritizing diverse concepts with larger
coverage. This approach not only achieves high re-
construction quality but also provides interpretable in-
sights into why certain images and camera positions
result in better or worse rendering outcomes.

While the framework is promising, it has cer-
tain limitations in its current form. The SAM-based
mask generation serves as a computational bottle-
neck, particularly for high-resolution images, though
faster variants such as (Zhang et al., 2023) could po-
tentially address this. The current HDBScan cluster-
ing approach requires pre-computed embeddings and
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Figure 5: In the top row are shown the frames which are already selected. In the bottom row, the first image from the left
is a candidate view, the second is the masks overlay on that candidate view, the third image shows the ”difference” between
the selected frames and the candidate view as per the Utility function proposed, and the fourth image is the black and white
version of the third to visualize the ”difference”, or the contributions of the candidate view, better.

Figure 6: In the clustering step, the HDBScan algorithm classifies some masks (generated by SAM) as outliers. Some
examples are shown in this figure. For the Image-Concept graph creation, these outliers are ignored.

Figure 7: Concept (cluster) examples generated by SAM +
HDBScan. In the figure, each row represents a concept and
columns represent examples of different masks classified as
that concept. Similar masks are grouped into the same clus-
ters (concepts).

generates an outlier cluster of concepts which is ig-
nored in the selection process, potentially problem-
atic when the number of outliers is significant. Deep
learning-based clustering algorithms such as (Asano
et al., 2019) could potentially overcome these clus-
tering limitations. Furthermore, the greedy selection
algorithm provides an approximate solution, which

is suboptimal, with a guaranteed approximation ra-
tio of only 0.632 for the maximal coverage problem.
While dynamic programming could provide optimal
solutions, its prohibitive space complexity makes it
impractical for large-scale problems. Graph Neural
Networks offer a promising direction for approximat-
ing dynamic programming solutions while maintain-
ing scalability (Dudzik and Veličković, 2022). Be-
yond addressing these limitations, future work would
also focus on numerically relating the PSNR and re-
lated metrics to the variance map (shown in Figure 5).

Also we compared our frameworks with Furthest
View Sampling (FVS), which uses exact camera posi-
tions in the benchmarks, and our method does not use
camera positions at all. In the real world scenarios,
often we have noisy camera poses. It would be inter-
esting to see if ConMax3D benefit from such poses
and how will the noise affect FVS.

To conclude, we demonstrate that for high-quality
3D reconstruction in models such as NeRF and
3DGS, considering conceptual diversity and coverage
is sufficient for optimal frame selection. This find-
ing not only simplifies the frame selection process
but also aligns it with human visual understanding of
the scene. Through this conceptual framework, we
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provide both better reconstruction quality and inter-
pretable insights into the reconstruction process.

Supplementary Material. For more plots and
scene-wise comparisons, please refer to the following
github repository:
https://github.com/akashjorss/Con3DMax.
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